
Project Proposal: Toolkit for an Abstract Wikipedia

Matthew Craig
University of Cape Town

Cape Town, South Africa

CRGMAT002@myuct.ac.za

Jordy Kafwe
University of Cape Town

Cape Town, South Africa

KFWJOR001@myuct.ac.za

Toolkit for an Abstract Wikipedia
30 April 2024

1 Abstract
A vision for a truly multilingual Wikipedia has been proposed [18],
architected [20], and specified [2, 5]. This vision, titled Abstract
Wikipedia, aims to generate Wikipedia articles from base, abstract
representations of content. Past research [2, 16, 20] has shown the
endeavour’s viability, however, work is still needed if a complete
system is to be actualised. This proposal details a set of software
tools that broaden the accessibility and functionality of Abstract
Wikipedia. This includes a tool for managing templates and a tool
for extracting content for use in constructors.

2 Introduction
Abstract Wikipedia is a much broader project, of which this project
forms only a small part. Abstract Wikipedia envisions a system of
open collaboration between people of diverse, multilingual back-
grounds [20]. Its goal is to leverageWikidata [19] andWikifunctions
[20] to facilitate the creation of language-agnostic representations
of content. Natural Language Generation (NLG) techniques will be
utilised to produce articles from these abstract representations in a
vast array of languages.

Figure 1: Abstract Wikipedia Concept Diagram

Wikidata is an open, collaborative knowledge base [19]. Wikidata
houses a large collection of labelled entities and the relationships
they have with other entities (figure 4). Its goal is to provide a di-
verse collection of machine-readable knowledge that anyone may
contribute to and benefit from [19]. The content is, however, largely
inaccessible to the broader public. This is due to the technical bar-
rier prohibiting interaction with the content. Abstract Wikipedia
intends to solve this problem by producing human-readable natural
language from the knowledge housed in Wikidata.

Figure 2: Wikidata Knowledge Graph [21]

The abstracted representations of content are given the term con-
structors [20]. Constructors are declarative statements of content
to be selected from Wikidata. The declarations can be conceptu-
alised as expressive arrangements of language-independent Wiki-
data identifiers. They are modular representations of content that
can be composed to form an article. A modelling language for
constructors, CoSMo, has recently been specified [2].

Figure 3: Example CoSMo [2] Constructor Declaration

Each constructor is to have, associated with it, a set of language-
specific templates for generating natural language. Each template
describes how constructor-specified content is to be arranged in
a particular language [5]. Templates are composed of slots inter-
spersed with free-text [5]. Slots can represent interpolations of
arguments, lexical function calls, or sub-templates [5]. Slots are
to be given dependency labels which identify their grammatical
role [5]. Free-text is simply a string of text in the chosen language.
Natural language is to be generated from the realisation of these
templates. In figure 4, slots are denoted by braces and free text is
rendered in green.



Matthew Craig and Jordy Kafwe

Figure 4: Example Template [5]

Templates act as an intermediary representation between construc-
tors and natural language. The templates effectively act as functions
that take in content from a constructor and return natural language.
The existence of templates will, ideally, facilitate the rapid produc-
tion of informationally-consistent content across many languages.
The re-usability and composability of templates are key to this
prospect.

Figure 5: Relationship between Constructor and Templates

3 Problem Statement
The scope of this proposal’s project does not seek to address all
the problems that Abstract Wikipedia aims to. Rather, the compo-
nents intend to alleviate AbstractWikipedia’s current shortcomings.
These can be loosely categorised into two categories: Functionality
and Accessibility.

3.1 Problem: Functionality
The functionality required by Abstract Wikipedia is largely ab-
sent. Key components such as the constructors and templates have
not been developed. While partial implementations - notably Ni-
nai/Udiron [16] - have been attempted, progress towards a production-
ready system has not yet begun. There are no existing tools capa-
ble of providing the functionality necessary to achieve Abstract
Wikipedia’s goals.

3.1.1 Constructors

There is, presently, no software implementation of constructors.
This proposal gives particular concern to the current absence of
content selection and Wikidata integration [20]. Without the func-
tionality of content extraction from Wikidata, the constructors are
unable to fulfill their intended purpose within the system.

3.1.2 Templates

Similarly to constructors, an implementation of templates does not
yet exist. This proposal focuses on the issue of absent template

validation and parsing. [5]. Templates are unable to be realised as
natural language without a system that can handle these tasks.

3.2 Problem: Accessibility
Significant technical barriers are preventing the general public from
contributing to and benefiting from Abstract Wikipedia. Even if
constructors and templates were to be fully functional in selecting
and realising content, there persist significant hurdles in using
them. There are no existing tools that improve the ease-of-use,
accessibility, or comprehensibility of the project.

Two aspects of accessibility, content awareness and template creation,
are specifically relevant to this proposition.

3.2.1 Content Awareness

Creating a constructor requires awareness of the relevant Wikidata
entries that are to be used. Currently, such discoverability is rel-
egated to manual interaction with Wikidata’s SPARQL endpoint
[19]. Ideally, a system would exist that suggests relevant content to
a user during the constructor-creation process.

3.2.2 Template Creation

The template-creation process is complex and unintuitive without
guidance. This deters a majority of potential users. It is infeasible
to expect users to devote time to understanding the syntax and
functionality of templates.

4 Project Aims
The project proposed here aims to solve many of the problems that
currently affect Abstract Wikipedia. To solve these problems, this
project includes the development of:

a) CRAFT : A system for optimally extracting relevant Wiki-
data content.

b) TempTing: A web tool that streamlines the management
and creation of templates.

Both components are to be developed in parallel with another
project which aims to develop a tool for managing the creation of
constructors. Ideally, in future, all 3 components will be integrated.
At present, however, this falls outside of the proposal’s scope.

Figure 6: Project Components
A: CRAFT
B: TempTing



Project Proposal: Toolkit for an Abstract Wikipedia

4.1 CRAFT
CRAFT (Content Retrieval and Finder Tool) will interface directly
with Wikidata to ensure that the desired content is efficiently re-
trieved. Wikidata exposes a SPARQL endpoint for interfacing with
its knowledge graph [19]. The tool will take a constructor state-
ment as input, parse the statement and fetch the specificied content.
The tool will also take a Wikidata identifier or a natural language
text as input. From either input, the tool must determine the nec-
essary SPARQL or SQL query for retrieving the entity and related
data. The system will provide an API through which a hypothetical
constructor-management tool may interface. This component aims
to address the following problems:

(1) Functionality: Currently, constructors are not actualised;
their intended purpose of content selection is unfulfilled.

(2) Accessibility: A user wishing to create a constructor has
no way of knowing what data is available without manual
exploration of Wikidata.

4.2 TempTing
The tool for managing templates is intended to be user-facing. The
tool will allow users of various languages to create templates nec-
essary for the realisation of constructors in natural language. The
tool intends to assist in the production of these templates through
a web interface. The primary functionality of the web app will in-
clude both a textual and a visual diagramming tool for constructing
templates. The templates should be parsed such that they can be
converted between either representation. It has been concluded
that realisation (NLG) falls outside of the scope of this project. In-
stead, TempTing will prioritise the robustness and accessibility of
the template creation process. The TempTing tool should ideally
achieve:

(1) Functionality: A first step towards the successful implemen-
tation of a template-realisation system.

(2) Accessibility: The template creation process is sufficiently
abstracted and simplified.

5 Procedures and Methods
5.1 Development Platform and Architecture
5.1.1 CRAFT

The content retrieval tool will be implemented as a RESTful API.
The RESTful API backend will be written in FastAPI, a Python
framework for building web APIs.[17] Python was chosen due to it
being one of the supported languages in Wikifunctions.[15]

This API backend will interface with the SPARQL endpoint pro-
vided by the local Wikibase, running in Docker, as well as query the
MariaDB relational database used by this Wikibase [19]. Wikibase
is the software platform that powers Wikidata, enabling the man-
agement of its large structured knowledge base. It allows one to
run a local or self-hosted Wikidata[19]. The query expansion logic
will be implemented as part of this backend. That is, after receiving
the user input, the tool will convert it to the appropriate SPARQL or
SQL query and then return the data as JSON in an HTTP response.

To overcome the 60-second timeout on the publicWikidata SPARQL
endpoint, a subset of Wikidata will be created from the publicly
available data dumps [14]. WDumper, a no-code tool designed to
extract specific subsets of data from Wikidata dumps will be used
to do this [1]. The resulting Wikidata subset will then be used to
populate the local Wikibase copy.

5.1.2 TempTing

The tool’s architecture will be split between a backend and a fron-
tend. The backend will handle template parsing and storage. The
frontend will include the web app for interfacing with the system.
The web app will contain both a textual and visual interface for
template creation.

Frontend
The frontend will be developed in Svelte, a Javascript framework [6].
The visual diagramming tool will be developed with SvelteFlow, a
Svelte-compatible diagramming library [11]. The library enables the
creation of dynamic, interactive diagrams. These diagrams produce
JSON output [11] that can be feasibly parsed into an abstract syntax
tree.

The text-editor interface will be developed using the CodeMirror
[8]. This Javascript library will simplify and accelerate the develop-
ment of text-editing features. It has support for syntax highlighting,
code-completion, and linting [8]. These features can be achieved
by connecting the library to the abstract syntax tree produced by
the parser.

Backend
The backend, including the parser, will be developed in Javascript
via the full-stack SvelteKit framework [7]. Javascript was chosen
as it is a supported language on Wikifunctions [15]. This facilitates
future parser interoperability with Wikfunctions.

5.2 Implementation Strategy
The project will adopt an iterative waterfall method implementa-
tion strategy. This approach combines the structured phases of the
waterfall model with the flexibility to iterate within each phase. The
specific tasks found in each phase can be found in the Gantt chart
in section 8. This will offer the clear direction of Waterfall, while
still allowing leeway for feedback accommodation. A full imple-
mentation of agile has, however, been avoided. It was deduced that
there is not enough time or opportunity to continuously evaluate
with stakeholders.

5.3 Expected Challenges
5.3.1 CRAFT

This project faces multiple challenges. First, accurately determining
the "relatedness" of Wikidata content can be difficult, as there might
not be a single perfect metric. Implementing query expansion for
the relational MariaDB database can be complex. Unlike SPARQL,
which is specifically designed for navigating relationships within
RDF data like Wikidata, SQL’s capabilities for expanding queries to
explore connected information are more limited. [19] This could
restrict the comprehensiveness of the extracted content.



Matthew Craig and Jordy Kafwe

5.3.2 TempTing

Understanding and defining the template syntax is likely to be chal-
lenging. There currently are very few examples [5] and edge case
handling may likely be unclear. Developing a concrete grammar
for the parser will require an in-depth understanding of the inten-
tions and features of the syntax. Obtaining knowledge about an
ideal parsing approach will be difficult, as few resources are geared
towards natural language generation. Integrating the parsing with
CodeMirror (the text editor library) will be challenging, as CodeMir-
ror recommends a bespoke format for grammar specification [5].

A prominent challenge will be to define a compatible visual lan-
guage for templates. This visual language will need to balance
expressiveness with ease-of-use. If this is later deemed infeasible, a
contingency plan has been made to exclude the visual representa-
tion of templates.

5.4 Evaluation
5.4.1 CRAFT

Unit testing will be used to ensure the correctness of individual code
modules. That is, the individual backend components like functions
and modules will be isolated for focused testing. This includes func-
tionalities for interacting with the local Wikibase instance. Mocks
or stubs can be used to simulate the Wikibase environment for con-
trolled testing. Unit tests will also target the core logic of converting
user queries into SPARQL or SQL statements. Specific user’s inputs
will be provided and then it will be checked that the generated
queries accurately reflect the user’s intent. This comprehensive
unit testing strategy targeting critical backend components will,
ideally, identify any errors in the individual modules.

5.4.2 TempTing

The tool is focused on accessibility and ease-of-use, thus, user test-
ing is essential for determining that goals have been met. Partic-
ipants will be asked to navigate the interface and achieve tasks
without prompting. This will be executed as time-limited screen
recordings. Afterwards, opinions will be given in an anonymous
questionnaire/survey format. Questions will include "How easily
could you achieve x task?" and "How frustrating was feature y?".
The targeted user group will be existing Abstract Wikipedia, Wiki-
data, and Wikifunctions contributors. The number of participants
surveyed will be kept small (2 to 5 users). A significant window
will be dedicated to this process. This is to avoid any unforeseen
issues that arise from a dependency on the small pool of potential
participants. Additionally, heuristics evaluation will be performed
to ensure a more objective measurement is included.

During the planning phase, a series of test templates and their
expected parsed structures will be defined. These can later be used
to validate that the parser is behaving as expected. Key parts of the
code will also be tested with unit testing. To facilitate this, the code
will be structured in a modular manner, primarily as pure functions.
This has the added benefit of streamlining future Wikifunctions
transposition.

Bidirectional testing between textual and visual templates will be
carried out. This will ensure that the visually constructed templates
are analogous to their textual counterparts.

6 Anticipated Outcomes
6.1 Key Features
6.1.1 CRAFT

CRAFT will exist as a RESTful API, accessible through an HTTP
endpoint. Firstly, it will process constructors. This involves accu-
rately extracting Wikidata identifiers from constructors. Secondly,
it will implement a query generation module that converts Wiki-
data identifiers into the appropriate SPARQL or SQL query. This
query generation module will also implement query expansion to
suggest items related to the target. Therefore the key features are:

(1) Processing Constructors.

(2) Production of Queries.

(3) Interfacing with Wikidata.

(4) Providing access though an API Endpoint.

6.1.2 TempTing

TempTingwill exist as aweb appwith support for template selection
and management. This must include tools facilitating both visual
and textual template creation. Visual creationwill be done through a
diagrammatic, drag-and-drop, visual interface. This should abstract
the process of creating templates. A hypothetical example of a
visually produced template can be seen in figure 7. Textually, the
tool should include features such as syntax-highlighting, linting,
pretty printing, and auto-completion. A hypothetical example of
template syntax highlighting can be seen in figure 4

The tool should have parsing functionality, including bi-directional
conversion between visually-created templates to their textual
equivalents. Additionally, this should allow users to verify a tem-
plate’s adherence to the syntax requirements.

Thus, TempTing’s three key features are:

(1) A visual template diagramming tool.

(2) A template text editor.

(3) Parsing for bi-directional conversion.

Figure 7: Hypothetical Visually Created Template



Project Proposal: Toolkit for an Abstract Wikipedia

6.2 Impact
The core problems of functionality and accessibility will be ad-
dressed. This will push Abstract Wikipedia forward and spark new
interest in its progression.

6.2.1 Functionality

Providing a base of functionality will allow future development
to expand upon the work done here. This will spur research and
engagement with Abstract Wikipedia. Solving the content selection
problem will mean that constructors may viably be integrated into
a complete system. Successful template validation and parsing will
ideally be a precursor to the realisation process.

6.2.2 Accessibility

Improved accessibility will enable a far greater pool of contrib-
utors to engage with Abstract Wikipedia. This will significantly
impact the public exposure that the project receives. CRAFT will
improve the discoverability of Wikidata content, assisting in the
creation of constructors. TempTing’s implementation will reduce
the complexity of the template creation process.

6.3 Key Success Factors
Each of the introduced components aims to address a set of core
requirements. The key factor determining the project’s success,
thus, will be the degree to which these requirements are met.

6.3.1 CRAFT

CRAFT’s success is dependent on three main factors. Firstly, accu-
rately parsing constructors to determine what data to fetch. This
influences all subsequent features after processing the received
constructor. Achieving this will thus be determined by whether an
algorithm to process a constructor of the Wikidata identifiers it
specifies can be developed.

Secondly, the generation of queries must adequately and correctly
fetch desired data. This is important as correctness is imperative in
an encyclopedia, like Wikipedia [2].

Lastly, it must be ensured that query expansion, for both SQL and
SPARQL queries, is accurate. This enriches the retrieved data by
providing related entities and properties. To broaden the scope of
information, the expanded data must be relevant.

Therefore, the produced tool must meet these core requirements to
be considered successful. However, the inclusion of niceties such
as caching and further optimisations would be preferable.

6.3.2 TempTing

The principal requirements affecting TempTing relate to the parsing
of templates. Both visually and textually created templates need
to be parsable to a base abstract syntax tree (AST) [3]. This will
facilitate validation and bi-directional conversion between either
form.

The issue of parsing can be more easily navigated by reframing it as
a well-established problem. Template parsing is highly comparable
to the development of a domain-specific language (DSL) [3]. Ergo,
achieving this requires the development of a lexer and parser [3]
for the template syntax. Following this conventional approach will

yield additional benefits. The path to achieving the desired linting,
syntax highlighting, and auto-complete features is demystified in
this framing. Parsing can be performed efficiently and concisely;
the template language is governed by a context-free-grammar [5].

Parser implementation will require formalisation of the grammar
such that parsing rules are understood. The parser will either be
implemented via recursive descent parsing [3] or combinatoric
parsing [9]. The decisionwill depend on themost natural expression
of the grammar.

TempTing will be considered successful if it can meet these parsing
requirements. Ideally, however, all features listed in section ?? will
be achieved.

7 Ethical and Legal Issues
7.1 Licensing and Credit
All libraries and frameworks planned for use in this project are
open source and use permissive licences (either MIT or BSD). This
means that they may be used freely in our project without legal
requirement for credit. However, all usages of external code and
libraries will be made explicit to distinguish which aspects of the
work are our own. Each library planned for use, its licence, and its
source code can be found in table 1.

Library Licence Source Code
Svelte MIT [6]
SvelteKit MIT [7]
SvelteFlow MIT [11]
shadcn-Svelte MIT [10]
Tailwind MIT [22]
CodeMirror MIT [8]
FastAPI MIT [17]
Universal Dependencies Apache [23]

Table 1: Software Licences

It is essential that any work benefited from or utilised in the project
be credited. The template tool makes strong use of the template
syntax defined on theMediaWikiMetawiki [5]. The template syntax
is also defined in terms of dependency labels sourced fromUniversal
Dependencies [23]. This project is obliged to highlight all instances
in which the work of others is used.

Abstract Wikipedia, and more broadly Wikipedia, aims to allow
people of diverse languages to “collaborate in the sum of all Knowl-
edge” [18]. Keeping with this spirit, this project has decided to open
source all of its code. Open-sourcing the code will allow future
work to expand upon any achievements made here. The code will
be hosted on GitHub and licensed under the permissive MIT licence.

7.2 Participants
As discussed previously, the template tool’s development will in-
volve the surveying of participant questions. Care must be taken to
ensure all data is anonymised, participants give informed consent,
and participants do not feel forced to take part. Efforts should be
made to clearly explain the rights participants have when engaging



Matthew Craig and Jordy Kafwe

in the study. The participants should understand what data is be-
ing captured and how it is being used. In alignment with Abstract
Wikipedia’s vision for a multilingual Wikipedia, it will ensure that
a linguistically diverse group is selected and fairly represented.

7.3 Content Selection Accuracy
It is essential that content is accurately selected from Wikidata.
Inaccurate selection may result in content that includes mislead-
ing falsehoods. Presenting false content as factual could result in
harmful misunderstandings among users. For example, an article
incorrectly portraying someone as having committed violent acts
would be highly libellous. The accuracy of CRAFT’s selection is,
thus, of ethical concern.

7.4 Related Work
7.4.1 Architecture and Design

The project will be developed with heavy influence from the work
of Denny Vrandečić. Vrandečić justified [18] and proposed [20] the
Abstract Wikipedia project.

The constructors were given a far stronger, formal specification in
CoSMo [2]. CoSMo help guide the requirements of CRAFT. The
template syntax, used by TempTing, has also been specified [5].
TempTing’s parser will be designed such that it strictly follows this
guideline.

7.4.2 Related Implementations

Several past implementations are similar to the project proposed
here. Nina/Udiron [16], in particular, is a promising attempt at
implementing an NLG system for AbstractWikipedia. Ninai/Udiron
does not, however, make use of templates in the same way as this
project.

An implementation of the templates has been conducted [4]. This
implementation is not fully featured and lacks the accessibility
benefits this project proposes. The proposed visual diagramming
tool will help solve this problem and will take heavy influence from
the work done for the ToCTEditor [13].

The participant evaluation procedure will be influenced by the work
conducted in ArticlePlaceholder [12].

The CoSMo specification paper established that current content
selection tools often require considerable technical expertise, hin-
dering accessibility [2]. Existing tools, such as TexToData, offer
some multilingual capabilities, but they rely on translation meth-
ods that are not inherently multilingual [2]. In addition, while
graphical query builders like VSB and RDF Explorer facilitate query
construction, they lack modularity and multilingual support [2].
Furthermore, they do not accept conceptual data models, which are
necessary for a constructor implementation. [2]. These limitations,
therefore, make it necessary to develop a novel content selection
tool for use in Abstract Wikipedia.

8 Project Plan
See appendix for Risks, Timeline, Deliverables, and Milestones.

8.1 Work Allocation
The stated software components are kept largely independent in
their development to maximise parallelisation in the development
process.

(1) Jordy Kafwe will develop CRAFT; represented by blue in
the Gantt chart.

(2) Matthew Craig will develop TempTing; represented by red
in the Gantt chart.

References
[1] 2021. Experiences of Using WDumper to Create Topical Subsets from Wikidata.

CEUR Workshop Proceedings 2873 (2 June 2021).
[2] K. Arrieta, P.R. Fillottrani, and C.M. Keet. 2024. CoSMo: A multilingual modular

language for Content Selection Modelling. ACM/SIGAPP Symposium on Applied
Computing (SAC ’24) 39 (2024). https://doi.org/10.1145/3605098.3635889

[3] T. Ball. 2020. Writing an Interpreter in Go. Germany. https://interpreterbook.com/
[4] A Gutman. 2022. Abstract Wikipedia/Template Language for

Wikifunctions/Scribunto-based implementation. https://meta.wikimedia.org/
wiki/Abstract_Wikipedia/Template_Language_for_Wikifunctions/Scribunto-
based_implementation

[5] A. Gutman and C.M. Keet. 2024. Abstract Wikipedia/Template Language for
Wikifunctions. https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template_
Language_for_Wikifunctions#Example_templates

[6] R. Harris. 2024. Svelte Github. https://github.com/sveltejs/svelte
[7] R. Harris. 2024. SvelteKit Github. https://github.com/sveltejs/kit
[8] M. Haverbeke. 2024. CodeMirror5 Github. https://github.com/codemirror/

codemirror5
[9] G. Hutton. 2016. Programming in Haskell. Cambrdige University Press, United

Kingdom. https://www.cs.nott.ac.uk/~pszgmh/pih.html
[10] H. Johnston. 2024. Shadcn-Svelte Github. https://github.com/huntabyte/shadcn-

svelte
[11] M. Klack. 2024. XYFlow Github. https://github.com/xyflow/xyflow
[12] K. Lucie-Aiméea, V. Pavlos, and S. Elenac. 2022. Using natural language gen-

eration to bootstrap missing Wikipedia articles: A human-centric perspective.
Semantic Web 13 (2022). https://doi.org/10.3233/SW-210431

[13] Z.Mahlaza and C.M. Keet. 2021. ToCT: A TaskOntology toManage Complex Tem-
plates. In Joint Ontology Workshops. https://api.semanticscholar.org/CorpusID:
240005311

[14] S. Malyshev, M. Krötzsch, L. González, J. Gonsior, and A. Bielefeldt. 2018. Getting
theMost Out ofWikidata: Semantic Technology Usage inWikipedia’s Knowledge
Graph. In The Semantic Web – ISWC 2018. Springer International Publishing,
Cham, 376–394.

[15] L. Martinelli. 2023. Wikifunctions FAQ. https://www.wikifunctions.org/wiki/
Wikifunctions:FAQ

[16] M. Morshed. 2023. Using Wikidata Lexemes and Items to Gen-
erate Text from Abstract Representations. Semantic Web (2023).
https://www.semantic-web-journal.net/content/using-wikidata-lexemes-
and-items-generate-text-abstract-representations-0

[17] S. Ramírez. 2023. FastAPI Github. https://github.com/tiangolo/fastapi
[18] D. Vrandecic. 2020. Collaborating on the Sum of All Knowl-

edge Across Languages. (10 2020). https://doi.org/10.7551/
mitpress/12366.003.0016 arXiv:https://direct.mit.edu/book/chapter-
pdf/2247832/9780262360593_c001200.pdf

[19] D. Vrandečić and M. Krötzsch. 2014. Wikidata: a free collaborative knowledge-
base. Commun. ACM 57, 10 (sep 2014), 78–85. https://doi.org/10.1145/2629489

[20] D. Vrandečić. 2020. Architecture for a multilingual Wikipedia. (2020). https:
//doi.org/10.48550/arXiv.2004.04733 arXiv:2004.04733 [cs.CY]

[21] X. Wang, T. Gao, Z. Zhu, Z. Zhang, Z. Liu, J Li, and J. Tang. 2021. KEPLER: A
unifiedmodel for knowledge embedding and pre-trained language representation.
Transactions of the Association for Computational Linguistics 9 (2021), 176–194.

[22] A. Wathan. 2024. Tailwind Github. https://github.com/tailwindlabs/tailwindcss
[23] D. Zeman. 2024. Universal Dependencies Github. https://github.com/

UniversalDependencies

https://doi.org/10.1145/3605098.3635889
https://interpreterbook.com/
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template_Language_for_Wikifunctions/Scribunto-based_implementation
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template_Language_for_Wikifunctions/Scribunto-based_implementation
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template_Language_for_Wikifunctions/Scribunto-based_implementation
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template_Language_for_Wikifunctions#Example_templates
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template_Language_for_Wikifunctions#Example_templates
https://github.com/sveltejs/svelte
https://github.com/sveltejs/kit
https://github.com/codemirror/codemirror5
https://github.com/codemirror/codemirror5
https://www.cs.nott.ac.uk/~pszgmh/pih.html
https://github.com/huntabyte/shadcn-svelte
https://github.com/huntabyte/shadcn-svelte
https://github.com/xyflow/xyflow
https://doi.org/10.3233/SW-210431
https://api.semanticscholar.org/CorpusID:240005311
https://api.semanticscholar.org/CorpusID:240005311
https://www.wikifunctions.org/wiki/Wikifunctions:FAQ
https://www.wikifunctions.org/wiki/Wikifunctions:FAQ
https://www.semantic-web-journal.net/content/using-wikidata-lexemes-and-items-generate-text-abstract-representations-0
https://www.semantic-web-journal.net/content/using-wikidata-lexemes-and-items-generate-text-abstract-representations-0
https://github.com/tiangolo/fastapi
https://doi.org/10.7551/mitpress/12366.003.0016
https://doi.org/10.7551/mitpress/12366.003.0016
https://arxiv.org/abs/https://direct.mit.edu/book/chapter-pdf/2247832/9780262360593_c001200.pdf
https://arxiv.org/abs/https://direct.mit.edu/book/chapter-pdf/2247832/9780262360593_c001200.pdf
https://doi.org/10.1145/2629489
https://doi.org/10.48550/arXiv.2004.04733
https://doi.org/10.48550/arXiv.2004.04733
https://arxiv.org/abs/2004.04733
https://github.com/tailwindlabs/tailwindcss
https://github.com/UniversalDependencies
https://github.com/UniversalDependencies


‭Risks‬

‭Risk‬ ‭Project‬ ‭Category‬ ‭Likely‬
‭(1-5)‬

‭Impact‬
‭(1-5)‬

‭Mitigation‬ ‭Monitoring‬ ‭Management (Contingencies)‬

‭Unrealistic Schedule‬ ‭Both‬ ‭Planning‬ ‭3‬ ‭3‬ ‭Gantt Chart for planning.‬ ‭Current progress compared‬
‭against gantt chart.‬

‭Additional features can be‬
‭dropped.‬

‭Misunderstanding of‬
‭Requirements‬

‭Both‬ ‭Planning‬ ‭1‬ ‭4‬ ‭Project plan will be‬
‭reviewed before‬
‭execution.‬

‭Meetings with the supervisor will‬
‭be held.‬

‭New plans will be drafted.‬

‭Scope too Large‬ ‭Both‬ ‭Planning‬ ‭3‬ ‭3‬ ‭Scope is detailed in the‬
‭proposal.‬

‭Achievability reassessed after‬
‭each task is completed.‬

‭Additional features can be‬
‭dropped.‬

‭A team member drops‬
‭out.‬

‭Both‬ ‭People‬ ‭2‬ ‭1‬ ‭Component projects are‬
‭designed to be‬
‭independent and‬
‭parallel.‬

‭We will frequently converse to‬
‭check up on eachother.‬

‭Website and Poster will be‬
‭handled individually.‬

‭Libraries are unable to‬
‭handle expected‬
‭capabilities‬

‭Both‬ ‭External‬ ‭3‬ ‭1‬ ‭The projects are not‬
‭overly dependent on any‬
‭single library.‬

‭Documentation will be analysed‬
‭for features.‬

‭New libraries will be used.‬

‭Burnout‬ ‭Both‬ ‭People‬ ‭2‬ ‭5‬ ‭Work will be done‬
‭consistently, rather than‬
‭left to the last stretch.‬

‭The current status will be‬
‭reflected on.‬

‭Conversations with peers will‬
‭help reignite passion.‬

‭Unable to establish an‬
‭adequate visual language‬
‭to model templates.‬

‭Template‬
‭Tool‬

‭Direction‬ ‭3‬ ‭4‬ ‭The grammar of‬
‭templates will be fully‬
‭understood before‬
‭attempting to design a‬
‭visual language.‬

‭The viability of such a language‬
‭will be assessed during the‬
‭design stage.‬

‭The diagramming tool will be‬
‭excluded from the project.‬

‭Abstract Wikipedia‬
‭Contributors are‬
‭unavailable for testing.‬

‭Template‬
‭Tool‬

‭People‬ ‭3‬ ‭3‬ ‭Ample time is given to‬
‭the testing phase.‬

‭Early communication will be‬
‭established with participants.‬
‭Confirmation will occur closer to‬
‭the time.‬

‭Contributors from other‬
‭Wikimedia projects will be used.‬
‭Eg. Wikidata or Wikifunctions‬

‭Availability of system‬
‭reliant on Wikidata‬

‭Content‬
‭Extraction‬
‭System‬

‭External‬ ‭1‬ ‭5‬ ‭Create backups or find‬
‭dumps of data‬

‭Regular checks to ensure‬
‭availability of Wikidata.‬

‭Switch to a backup source of‬
‭Wikidata.‬



‭Deliverables‬

‭CRAFT‬

‭Deliverable‬ ‭Deadline‬

‭Subset Wikidata‬ ‭25 June‬

‭Setup and Populate local Wikibase‬ ‭03 July‬

‭Query Expansion Algorithm‬ ‭24 July‬

‭API Routes‬ ‭4 August‬

‭Constructor Processing‬ ‭12 August‬

‭TempTing‬

‭Deliverable‬ ‭Deadline‬

‭Basic Backend‬ ‭09 May‬

‭DB Integrated Backend‬ ‭14 May‬

‭Skeleton Frontend‬ ‭28 May‬

‭Visual Diagramming Tool‬ ‭24 June‬

‭Parser for Textual Templates‬ ‭30 June‬

‭Parser for Visual Templates‬ ‭15 July‬

‭Bi-Directional Template Converter‬ ‭29 July‬

‭Textual Template Editor‬ ‭04 August‬

‭Both‬

‭Deliverable‬ ‭Deadline‬

‭Demonstrable Iteration‬ ‭22 July‬

‭Draft Paper‬ ‭23 August‬

‭Final Paper‬ ‭30 August‬

‭Final Code‬ ‭09 September‬

‭Poster‬ ‭27 September‬

‭Website‬ ‭03 October‬



‭Milestones‬

‭Milestone‬ ‭Estimated Date‬

‭Research Phase Complete‬ ‭1 June‬

‭Design Phase Complete‬ ‭21 June‬

‭Project Progress Demonstration‬ ‭22 June‬

‭Primary Development Complete‬ ‭04 August‬

‭Evaluation Complete‬ ‭13 August‬

‭Draft Paper Handed In‬ ‭23 August‬

‭Final Paper Handed In‬ ‭30 August‬

‭Final Code Handed In‬ ‭09 September‬

‭Project Demonstrated‬ ‭18 September‬

‭Poster Handed In‬ ‭27 September‬

‭Website Handed In‬ ‭03 October‬

‭Project Complete‬ ‭04 October‬




