UNIVERSITY OF CAPE TOWN é

[c—r %

DEPARTMENT OF COMPUTER SCIENCE

CS Honours Project
Final Paper 2024

Title: Implementing a Multilingual Backend for the CoSMo
Language

Author: Jordy Kafwe
Project Abbreviation:

Supervisor(s): Maria Keet

Category Min | Max | Chosen
Requirement Analysis and Design 0120 |20
Theoretical Analysis 0125 |0
Experiment Design and Execution 0120 |0
System Development and Implementation 0120 |20
Results, Findings and Conclusions 10120 |10
Aim Formulation and Background Work 10115 |10
Quality of Paper Writing and Presentation 10 10
Quality of Deliverables 10 10
Overall General Project Evaluation (this section 01|10

allowed only with motivation letter from supervisor)

Total marks 80

Implementing a Multilingual Backend for the CoSMo Language

Jordy Kafwe

University of Cape Town

Cape Town, South Africa

KFWJOR001@myuct.ac.za

Abstract

The development of a multilingual backend for the CoSMo language
addresses the need for abstract representation in applications such
as database view specification and natural language generation.
This paper presents the creation of a backend system for CoSMo,
focusing on parsing, query mapping, and data retrieval from Wiki-
data. The system is designed to support Abstract Wikipedia’s mul-
tilingual goals by using CoSMo constructors, which are modular,
language-independent representations of content. By implement-
ing a query generation module that converts CoSMo syntax into
SPARQL or SQL queries, the backend demonstrates platform inde-
pendence and suggests related items to enhance content selection.
The system’s architecture, built as an HTTP API, ensures inter-
operability with other applications within the Abstract Wikipedia
project. Key results include the successful parsing of CoSMo con-
structors and the generation of accurate queries. This work high-
lights the potential applications of CoSMo in creating a truly mul-
tilingual Wikipedia, overcoming language disparities in content
availability.

1 Introduction

There currently exists large disparities in content availability and
quality across Wikipedia’s language editions [10]. For instance,
while the English Wikipedia has over six million articles, many
other language editions have significantly fewer articles, and the
comprehensiveness of these articles can vary greatly [10]. This
uneven distribution means that speakers of less-represented lan-
guages often have limited access to the breadth of knowledge avail-
able in more dominant languages. In addition, smaller language
communities face the daunting task of creating and maintaining a
comprehensive encyclopedia with limited resources and contribu-
tors.

Abstract Wikipedia [8] is a project which seeks to create a truly
multilingual Wikipedia by generating articles from structured data
stored in Wikidata and functions from Wikifunctions[2, 10]. This
approach is designed to overcome the challenges posed by the vast
number of languages that Wikipedia needs to cover to fulfill its
vision of providing free access to the sum of all human knowledge.

To achieve its goal, Abstract Wikipedia will use Wikidata. Wikidata
is an open, collaborative knowledge base [9]. Wikidata houses a
large collection of labelled entities and the relationships they have
with other entities. This data is stored as an RDF store accessible
through a public SPARQL endpoint. Its goal is to provide a diverse
collection of machine-readable knowledge that anyone may con-
tribute to and benefit from [9]. The content is, however, largely

inaccessible to the broader public. This is due to the technical bar-
rier prohibiting interaction with the content. Abstract Wikipedia
intends to solve this problem by producing human-readable natural
language from the knowledge housed in Wikidata.

CoSMo, a novel Content Selection Modelling language, which has
recently been formalised, will help Abstract Wikipedia to this end
[1]. CoSMo will help in selecting data housed in Wikidata as base, ab-
stract representations of content. CoSMo is platform-independent,
meaning it functions effectively regardless of the system in which
the data is stored, whether it be RDF, XML, SQL, or others. In ad-
dition, CoSMo is natural language-independent, which supports
Abstract Wikipedia’s multilingual goals. The abstracted representa-
tions of content are given the term constructors [10]. Constructors
are declarative statements of content to be selected from Wikidata.
The declarations can be conceptualised as expressive arrangements
of language-independent Wikidata identifiers. They are modular
representations of content that can be composed to form an article.
CoSMo is, thus, the modelling language for constructors.

There is, presently, no software implementation of CoSMo construc-
tors. This paper gives particular concern to the current absence of
content selection and Wikidata integration [10]. Without the func-
tionality of content extraction from Wikidata, the constructors are
unable to fulfill their intended purpose within Abstract Wikipedia.

In this paper, we show that we were able to build an initial back-
end system that realises the functionality of CoSMo. The system
is available as an HTTP API that offers its functionality through
various endpoints. Firstly, it parses the constructors. This involves
accurately following CoSMo syntax to ensure that the content
selection is correctly interpreted and validated. Secondly, it imple-
ments a query generation module that converts the CoSMo syntax
into the appropriate SPARQL or SQL query. Although Wikidata
currently uses SPARQL, having SQL query generation was imple-
mented to demonstrate that CoSMo is in fact platform-independent.
This query generation module also implements query expansion to
suggest items related to the entities of interest.

To emphasise, the main objective of this project was to create a
backend system that implements the functionality of CoSMo. This
paper will demonstrate how we accomplished this objective and
explain the reasoning behind our conclusions. We will begin by
reviewing related works and providing background information.
Next, we will outline the design process of the application and
its implementation. Subsequently, we will describe the evaluation
of each component of the project and present the results of these
evaluations.

2 Background and Related Work

The CoSMo specification paper established that current content
selection tools often require considerable technical expertise, hin-
dering accessibility [1]. Existing tools, such as TexToData, offer
some multilingual capabilities, but they rely on translation meth-
ods that are not inherently multilingual [1]. In addition, while
graphical query builders like VSB and RDF Explorer facilitate query
construction, they lack modularity and multilingual support[1].
Furthermore, they do not accept conceptual data models, which are
necessary for a constructor implementation [1]. These limitations,
therefore, made it necessary to develop a novel content selection
tool for use in Abstract Wikipedia.

The development of CoSMo was driven by the recognition that
existing modelling languages do not adequately support the unique
requirements of multilingual content selection and representation
[1]. The language is specifically tailored to function within the Ab-
stract Wikipedia project, which aims to create a truly multilingual
Wikipedia by generating articles from data stored in Wikidata [10].
This project necessitates a modeling language that can integrate
with the diverse linguistic and functional needs of the Wikipedia
ecosystem.

To achieve this, CoSMo incorporates several features that distin-
guish it from traditional modeling languages. It embeds multilin-
guality directly into the language, allowing users to declare content
in their preferred natural language [1]. This is achieved through a
modular approach where modules, referred to as ’constructors’, can
be defined at both the class and instance levels, enabling flexible
and dynamic content selection. In addition, CoSMo supports the
inclusion of both static content and functions, allowing for the
computation of derived content, such as calculating a person’s age
from their date of birth [1].

The rigorous design process of CoSMo involved a comprehensive
analysis of requirements, stakeholder consultations, and iterative
refinements. This process ensured that the language not only meets
the technical needs of content selection but also aligns with the col-
laborative and open nature of the Wikimedia community. CoSMo’s
specification includes a formal syntax and semantics, graphical
notation, and a preliminary evaluation that demonstrates its effec-
tiveness in real-world applications [1].

Ninai/Udiron is a notable attempt at implementing a natural lan-
guage generation (NLG) system for Abstract Wikipedia [3]. How-
ever, Ninai currently only makes use of constructors on a surface
level, which limits its flexibility in content selection and generation

[3].

The NLG pipeline for Abstract Wikipedia involves several steps,
including content selection, discourse planning, and linguistic re-
alisation [7, 10]. CoSMo addresses the content selection stage by
providing a language that allows users to specify what information
should be verbalised from structured data. This is a critical step in
the pipeline, as it determines the content that will be included in
the generated text.

In summary, while existing tools and systems provide some func-
tionality for content selection and NLG, they do not fully meet the

requirements of the Abstract Wikipedia project. CoSMo fills this
gap by offering a multilingual, modular, and user-friendly language
for content selection, enabling the generation of articles in multiple
languages from structured data.

3 Design

The design of the backend for the CoSMo language was informed
by a comprehensive requirements analysis conducted by Keet et
al. during the development of CoSMo [1]. This analysis identified
several critical requirements that CoSMo must fulfill in order to sup-
port the Abstract Wikipedia project [1]. We designed the backend
to fulfill as a many of these requirements as possible.

3.1 Requirements Analysis

Using the CoSMo paper [1] as a base, the requirements for this
initial backend were then further refined in face-to-face meetings
with the project supervisor. Through this process the following
requirements were identified:

(1) The backend must support multilinguality, enabling the re-
trieval and display of labels in the user’s preferred language
[1]. In addition, the backend must be platform-independent,
capable of functioning regardless of the underlying data-
base technology.

(2) The backend should allow for the reuse and combination
of constructors. [1]. It must also enable the specialisation
and generalisation of constructors, including creating sub-
constructors and refining or generalising existing ones.

(3) Roles are integral to the CoSMo language [1], and the back-
end must support roles as first-class citizens. This includes
the ability to name and manage roles within constructors
[1]. To allow detailed and precise content selection, the
backend should also support declarations at both the in-
stance and type levels, allowing users to retrieve specific
instances or types from Wikidata.

(4) The backend should support the specification of value con-
straints and mandatory participation for elements within
constructors which ensures that the selected content meets
specific criteria and requirements [1]. Facilitating join or
merge operations between elements is necessary for com-
bining similar or related items.

(5) The backend should be capable of being used by other appli-
cations within the Abstract Wikipedia project. This interop-
erability ensures that the CoSMo language can be effectively
integrated into the broader ecosystem of Wikimedia tools
and applications.

(6) The backend should also allow the discovery of related
Wikidata data that may be of interest to the user based on
their initial CoSMo query.

The requirements were then transformed into software objectives
with certain tasks prioritised based on the project goals. Using an
iterative waterfall method, we worked on achieving these objectives.
The iterative waterfall method allowed a structured approach to
completing tasks whilst allowing iteration within a phase, if needed.

Therefore we determined that we needed to develop a system that
fulfills the following objectives:

1) Processes Constructors.
2) Produces queries.

(
(
(3) Interfaces with Wikidata.
(

4) Provides access though an API Endpoint

3.2 System Components

The CoSMo backend system is structured using a layered archi-
tecture, a design approach that organises the system into distinct
layers, each with a specific responsibility. This architecture is cho-
sen for its ability to separate concerns, enhance modularity, and
improve maintainability and scalability. Each layer focuses on a spe-
cific function. Layers interact sequentially and they communicate
with adjacent layers.

The rationale for adopting a layered architecture is multifaceted.
Separation of concerns allows focused development. Debugging
becomes easier. Modularity is a key advantage as each layer can be
developed, tested, and maintained independently. This modularity
facilitates updates and integration with other systems, as changes
in one layer do not necessarily impact others. The architecture
supports scalability by enabling individual layers to be optimised
or expanded as needed without affecting the entire system. This
flexibility is crucial for accommodating future enhancements with-
out disrupting existing functionality. Furthermore, the architecture
ensures seamless interaction with external applications, particu-
larly within the Abstract Wikipedia project, thereby enhancing
interoperability.

Overall, the backend system is designed as an HTTP API to facili-
tate integration with other applications in the Abstract Wikipedia
project. By receiving CoSMo statements and returning responses
in JSON format, the system meets the requirement for interoper-
ability with external applications. This design choice abstracts the
internal workings of the backend from users, who only need to
know the appropriate endpoint for sending their statements and
the expected response format; users do not need to understand
the underlying modules that comprise the backend. The layers of
the CoSMo backend system, in the order they interact with each
other, are: the HTTP API Layer, the Parser Layer, the Semantic
Analysis Layer, the Mapping Layer, the Execution Layer, the Result
Processing component, and finally back to the HTTP API Layer to
return the response.

3.2.1 Parser Layer

This layer is responsible for interpreting CoSMo syntax. It uses
ANTLR (Another Tool for Language Recognition) to generate a
parser from a BNF (Backus-Naur Form) notation [4, 5]. ANTLR
provides a robust framework for building language parsers [?],
which are essential for converting CoSMo’s high-level constructs
into a form that can be processed by the backend system.

3.2.2 Semantic Analysis Layer

After the parser layer has parsed the constructors and determined
they are syntactically correct, this layer will conduct a few basic

semantic checks. First, that variables are not referenced before they
have been declared. Secondly, that variables are not any CoSMo
keywords.

3.2.3 Mapping Layer

Once the CoSMo syntax is confirmed to be semantically and syntati-
cally correct, the mapping layer translates the parsed constructs into
SPARQL or SQL queries. This involves mapping CoSMo’s declara-
tive elements to equivalent query constructs. The engine ensures
that the multilingual and modular aspects of CoSMo are preserved
in the query output.

3.2.4 Execution Layer

This layer handles the execution of the generated queries against
the target database. It interfaces with RDF triple stores for SPARQL
queries or relational databases for SQL queries, ensuring that the
data retrieved is consistent with the specifications outlined in the
CoSMo constructors.

3.2.5 Result Processing Layer

After query execution, the results are processed to fit the require-
ments of the natural language generation pipeline. This includes
formatting the data and integrating it with other components of the
system to produce coherent and contextually appropriate outputs.

3.2.6 Relational Database Design

The relational database design for storing Wikidata data is deter-
mined by the wd2sql tool we are using. This schema includes several
key tables: a meta table that contains the English label and descrip-
tion for each entity, with columns for the entity ID, label, and
description; and separate tables for different types of claim values,
such as string, entity, coordinates, quantity, and time, where each
table corresponds to a property’s value type and includes columns
for the subject entity ID and the property ID. In addition, none and
unknown tables store claims with "no value" and "unknown value,"
respectively, identified by their entity and property IDs. Therefore,
all property (P) and Wikidata entity (Q) values are stored in the
entity table. Althpug

The wd2sql tool encodes Wikidata IDs, which consist of a type
prefix (Q/P/L) followed by an integer, into a single integer format.
That is, entity IDs are represented simply by the integer part of
their ID, so Q42 becomes 42. Property IDs are adjusted by adding an
offset of 1 billion to differentiate them. For example, P271 becomes
1000000271.

4 Implementation

4.1 Development Environment and Tools

The backend was developed using Python, with FastAPI [6]. serving
as the framework for building the HTTP APIL Python was chosen
due to its simplicity, large ecosystem and currently being one of
three languages supported by Wikifunctions [?]. FastAPI was se-
lected due to its high performance and ease of use when building
HTTP APIs. The parser layer was developed using ANTLR4 [5],
which generated a Python parser and lexer for CoSMo. This en-
sured robust syntax interpretation for both shorthand and long
form CoSMo language constructs. Docker was used to containerise

string
id integer pk

f—1- property_id integer

meta string text

label text
description text

id integer pk*f

entity
id integer pk

entity_id integer

L property_id integer
1

Figure 1: Entity Relationship Diagram of SQLite instance

the application, providing a consistent environment across develop-
ment and testing. For data storage and query execution, the publicly
available Wikidata SPARQL endpoint was used for interfacing with
the RDF triple store. A local SQLite instance, created by the wd2sql
tool, was used as the relational database.

4.2 CoSMo Parser

ANTLR v4 [5] was chosen for its ability to generate native Python
parser and lexer and that it separates the grammar from the actual
logic, allowing the grammar to be reused in more contexts [4]. In our
case, this means that we can use the exact same grammar for both
SPARQL and SQL. A Python parser is beneficial because the Python
FastAPIHTTP server can directly use the parser. The CoSMo parser
to interpret language statements was designed according to the
Backus-Naur Form (BNF) written by Keet et al [1]. The BNF was
converted into the ANTLR eBNF grammar language. This eBNF
is what ANTLR used to generate the Python parser. A few lexical
rules, shown in Listing 2, were also added to the initial BNF from [1]
to allow the syntax (or parser) rules to work on actual statements.
The parser was implemented to work with both shorthand and
long form notation of the CoSMo language. In order to meet the
multilingual goal, the parser uses the pivot with CSMxxx identifiers
[1]. This allows the compiler to work correctly, even as more natural
languages are supported by CoSMo. CSMxxx identifiers are used
to map each CoSMo language construct that would appear in the
natural language of the constructor.

PItem: 'P' DIGIT+;
QItem : 'Q' DIGIT+;
ZItem : 'Z' DIGIT+;

VARIABLE : [a-zA-Z][a-zA-Z0-9]%;
DIGIT : [0-9];

COMMA : ')';

NUMBER : [0-91+ ('.' [0-91+)7;

STRING : '"' .%x? '"';
WS : [\t\r\nl+ -> skip;

Figure 2: CoSMo Lexer rules

program:1
declaration:1
longFormDeclaration:1

typeConstructor:1

TypeConstructor: ~ G1 (typeDefinition:1 typeDefinition:2 typeDefinition:2)
pred\cé1e 1, rolet role:1
= 2 =,
Property (P40 (r1 , 12)) r1 : ObjectType (Q7566) r2 : ObjectType (Q29514218)

TypeConstructor:C1(
Property(P40(r1,r2)),
r1:0bjectType(Q7566),
r2:0bjectType(Q29514218)

Figure 3: Example CoSMo Parse Tree

4.3 Mapping Layer

The mapping layer uses the parse tree (as shown in figure 3) created
by ANTLR parser after successfully interpreting a statement. The
ANTLR Visitor pattern is then used to walk the tree, progressively
generating the appropriate SQL or SPARQL query. The visitor pat-
tern is unguided tree traversal as ANTLR performs a depth first
search, ultimately visiting every node in the tree. To do this a class
that inherits from ANTLR’s ParseTreeVisitor is generated by the
library. In this class, there is a method associated with every CoSMo
language type defined in the eBNF. We completed these methods
to adhere to our mapping algorithm. Each construct and variable
in the CoSMo statement is directly available in code according to
the labelx it was given in the ANTLR eBNF grammar.

4.4 Execution Layer

SQLModel is used as the object relational mapper (ORM) for SQLite.
The ORM, in combination with FastAPI’s ‘Depends()* method, al-
lows us to perform dependency injection with the database. This
results in cleaner, more easily testable code. The SPARQL queries
are made using the SPARQLWrapper library, which provides a
simple interface to query the Wikidata public SPARQL endpoint.
This approach abstracts the details of making HTTP requests and
parsing responses, resulting in more streamlined and maintainable
code.

4.5 HTTP API Layer

Two main endpoints were implemented. /sparql/query using the
public Wikidata SPARQL endpoint and /sql/query using the local
SQLite instance. The Both these endpoints are HTTP POST end-
points and accept the the CoSMo syntax in the payload which is
then decoded and passed to the parser.

4.6 Algorithms
4.6.1 Mapping

The algorithm for mapping CoSMo constructs to SPARQL queries
efficiently parses CoSMo statements while tracking the usage of
type constructors by instance constructors and ensuring that each
triple is associated with its corresponding constructor. The process
begins with initialising a visitor class, ‘CoSMoToSPARQLVisitor,

(e N
| @ DOCKER CONTAINER |
s $ob
[_Jj %oﬂ% Wikidata
Client FastAPI SP:RQI;
endpoin
HTTP API sQLite P
Database
- J

Figure 4: High level system diagram

which includes data structures: a list for “Triple‘ objects, a dictionary
for CoSMo variable mappings, a dictionary for type constraints,
and a set for tracking type constructor usage.

As the visitor traverses the parse tree, it processes CoSMo constructs
like type constructors, instance constructors, and properties. The
focus is on tracking information, not immediate SPARQL mapping.
When visiting type constructors, the visitor records expected object
types in the ‘subject_type_constraints‘ dictionary. The dictionary
has a constructor variable name as a key and then the value itself
is another dictionary. In the sub-dictionary, the key is a role or
variable identifier, and the value is the expected object type. This
ensures subjects in the SPARQL query match specified types. The
visitor also tracks type constructor usage. For instance constructors,
it checks role conformity and updates the set of referenced type
constructors.

The algorithm maintains a set, ‘used_type_constructors’, to track
referenced type constructors. Each time an instance constructor
references a type constructor, its identifier is added to this set. RDF
triples are constructed by identifying the subject, predicate, and
object from the CoSMo statement. These are stored as instances of
the “Triple‘ class, which includes fields for the subject, predicate, ob-
ject, and constructor association. This class encapsulates necessary
information for SPARQL queries.

The ‘getSPARQLQuery‘ method assembles the SPARQL query after
processing all constructs. It iterates over stored triples, constructing
the ‘SELECT‘ and ‘WHERE' clauses. Type constraints are added
using ‘wdt:P31°, based on the ‘subject_type_constraints dictionary.
This ensures results match specified types. After processing, the
algorithm checks for unused type constructors. If a type constructor
is not used to create an instance-level constructor, the algorithm
generates a SPARQL query to fetch all objects that match that type
constructor. Conversely, if a type constructor is used to create an
instance-level constructor, the query is tailored to fetch only those
objects that match the specific instance constructor. This distinction
ensures that the query results are accurate and relevant, reflect-
ing the intended scope of the CoSMo constructs. The algorithm
finalises the SPARQL query, ensuring all patterns and constraints
are included. The pseudo code for this algorithm is depicted in
Algorithm 1.

The above was simplified to only explain the more general case
- to convery the big idea. In the actual implementation, we also
keep track of Joins, IsMandatory and SubConstructor. Join and
SubConstructor are both dictionaries where the key is one part of
the relationship and the value is the other. IsMandatory is simply a
set of all the mandatory variables.

SELECT ?entityId _subject_ ?label
WHERE {
// triples generated going here
// followed by type checking of subjects here

BIND(STRAFTER
(STR(?r1), "http://www.wikidata.org/entity/")
AS ?entityld)

SERVICE wikibase:1label {
bd:serviceParam wikibase:language "[AUTO_LANGUAGE],
language" .
subject rdfs:label ?label .
}
}

Figure 5: Base query used to fetch data specificed in construc-
tors

ALGORITHM 1
CoSMo to SPARQL Mapping Algorithm (Partial)

initialize triples < list of Triple objects
initialize subject_type_constraints « dictionary of CoSMo
variable mappings
initialize used_type_constructors < set of type constructors
initialize sparql_queries < empty dictionary
function GETSPARQLQUERIES
for all triple in triples do
subject « GETSUBJECT(triple)
constructor «— GETCONSTRUCTOR(triple)
if constructor ¢ sparql_queries then
sparql_queries[constructor] « "SELECT * WHERE

{\n"
end if
sparql_queries|constructor] —
sparql_queries[constructor]+ " " + sTR(triple) + "\n"
end for
for all subject, expected_type in
subject_type_constraints.items() do
constructor — GETCONSTRUCTORFROM-
TyPE(expected_type)
sparql_queries[constructor] —

n

sparql_queries[constructor]+
?" + expected_type +" .\n"
end for
return sparql_queries
end function

?" + subject + " p:P31

4.6.2 Semantic Analysis

The semantic analysis algorithm for this language is designed to
ensure that all variables are declared before they are used and that
each variable is declared uniquely. The process begins by initialising
a set, DeclaredVariables, which will store the names of all declared
variables. The use of a set is advantageous due to its constant
time, or O(1), lookup performance, and its inherent property of
disallowing duplicate entries. This ensures efficient management
of variable declarations and prevents the same variable from being
declared multiple times for different purposes.

As the algorithm traverses the parse tree generated by ANTLR, it
identifies nodes that represent variable declarations and usages,
thanks to the explicit labeling in the grammar. When a variable
declaration node is encountered, the algorithm extracts the variable
name and checks if it is already in the declared_variables set. If not,
the variable is added to the set, marking it as declared. This step
ensures that each variable is declared only once. Conversely, when
a variable usage node is encountered, the algorithm checks if the
variable is present in the declared_variables. If the variable is not
found, a semantic error is reported, indicating that the variable
has been used without prior declaration. The pseudo-code for this
algorithm is depicted in Algorithm 2.

ALGORITHM 2
Semantic Analysis for Variable Declaration and Usage

initialize declaredVariables «— {}
function DECLAREVARIABLE(var Name)
if not varName € declaredVariables then
add varName to declaredVariables
else
print "Semantic Error: Variable " + varName + " already
declared”
end if
end function
function 1SVARIABLEDECLARED(var Name)
return varName € declaredVariables
end function
function TRAVERSEPARSETREE(node)
if node is a variable declaration node then
varName <« GETVARIABLENAME(node)
DECLAREVARIABLE(var Name)
end if
if node is a variable usage node then
varName < GETVARIABLENAME(node)
if not 1SVARIABLEDECLARED(var Name) then
print "Semantic Error: Undeclared variable ™" +
"’ at line " + GETLINENUMBER(node)

> An empty set

varName +
end if
end if
for all childNode in cHILDREN(node) do
TRAVERSEPARSETREE(childNode)
end for
end function

This approach efficiently ensures that the program adheres to
the language’s semantic rules regarding variable declarations and

uniqueness, leveraging the properties of the set data structure for
optimal performance.

4.6.3 Query expansion

The query expansion algorithm fetches all nodes directly connected
to the entity of interest. The SPARQL query used for this is shown
in figure 6. The same process is followed for the SQL database,
but without ordering by sitelinks as those are not available. We
then order the results by the number of sitelinks because a higher
number of sitelinks suggests that a piece of information is widely
used across Wikimedia projects. This widespread usage implies
that the information is likely highly relevant to the entity in ques-
tion. By prioritising data with more sitelinks, the algorithm helps
users discover on the most significant and commonly referenced
attributes of the entity, providing a more relevant overview of its
characteristics and associations.

SELECT ?property ?propertylLabel
?value ?valuelabel ?sitelinks
WHERE
{
Replace Qxxx with the Wikidata ID of interest
wd:Qxxx ?property ?value .

Get the property label

?prop wikibase:directClaim ?property ;
rdfs:label ?propertylLabel .

FILTER(LANG(?propertyLabel) = "_language_")

Get the number of sitelinks for the value
OPTIONAL { ?value wikibase:sitelinks ?sitelinks }

Service to add labels and descriptions
SERVICE wikibase:1label {
bd:serviceParam wikibase:language "_language_,
[AUTO_LANGUAGE]" .
?value rdfs:label ?valuelabel .
?prop rdfs:label ?propertylLabel .
}

3
ORDER BY DESC(?sitelinks)

Figure 6: SPARQL Query used for Query Expansion

5 Testing

The testing phase of this project encompassed a comprehensive
approach to validate the backend system, language parsing, and
API components. A combination of unit testing, integration testing,
functional testing methodologies was used to ensure the robustness
and reliability of the system. Unit tests were developed to verify the
correct functionality of individual components in isolation. These
tests focused on validating specific functions, methods, and classes
within each module.

We used the constructors given through the CoSMo [1] paper to
test the parser and overall system. Th

After development was completed, we conducted manual integra-
tion tests to assess the interaction between different components
of the system. These tests ensured that the parser, other backend
logic, and API worked cohesively. Functional testing validated that
the system met its specified requirements and produced expected
outputs for given inputs.

The testing process used several tools and frameworks to streamline
and automate the validation procedures. Pytest, a popular Python
testing framework, was used for writing and executing unit tests.
HTTPie was used for manual integration testing by allowing the
creation and automation of API requests.

The combination of these testing methodologies, tools, and frame-
works resulted in a thorough validation of the system. It allowed
for the identification and resolution of issues at various levels of
the application stack. This comprehensive testing approach signifi-
cantly contributed to the overall quality and reliability of the final
product.

6 Results and Discussion
6.1 Results

All promised functionality was achieved with some caveats. Wiki-
functions could not be integrated with as it is not yet functional [9].
Although we demonstrated that CoSMo is platform-independent
by also integrating with a SQL database. The SQL database was
working on a much simpler schema with no qualifiers and also only
in English.

The backend’s layered architecture enhances modularity, facilitat-
ing easy maintenance and future expansion. This was shown by
the SQL addition made to the originally SPARQL only system.

As can be seen in figure 7, the parser is able to parse CoSMo con-
structors with 0 ambiguities in milisecond speeds.

6.2 Discussion

The development of CoSMo presented several challenges. One sig-
nificant challenge was ensuring that the constructors accurately
reflected the data representation in Wikidata. For instance, when
designing a constructor to fetch locations where capybaras are en-
demic, it was discovered that the initial assumptions about data
structure did not match Wikidata’s representation. Locations were
categorised as instances of "country” rather than a general "region"
or "location" QID. This discrepancy highlighted the importance of
understanding and adapting to the actual data structures in Wiki-
data to ensure the effectiveness of CoSMo.

Another challenge was the absence of certain data entries in Wiki-
data, which are crucial for constructing accurate content selection
models. A specific example was the attempt to create a constructor
for Edith Eger’s parentage, only to find that her parents were not
listed in Wikidata. Such data gaps pose significant obstacles, as
they prevent the creation of complete and accurate constructors.
Although, this could be fixed by using IsMandatory() notation [1]
which requires the data to exist for the constructor to fetch data,
data not being present may hinder non-expert users.

Invocations Time (ms) Total k Max Ambiguties DFA cache miss

0

Figure 7: ANTLR Profiler with Figure 8 as input

In addition, the compatibility of CoSMo’s formal syntax with dif-
ferent parser generators posed a technical challenge. Initially, the
CoSMo BNF specification did not work with the lightweight Lark
parser generator[4], which is often preferred for its simplicity, due
it raising to many ambiguities. However, it was successfully imple-
mented using ANTLR [5], a more robust parser generator capable of
handling complex grammar specifications. While ANTLR provided
the necessary support for CoSMo’s complex BNF, it also required
a greater investment in learning due to its complexity compared
to Lark. This means that making changes to the existing code may
require more time and effort if other maintainers were needed to
oversee such a system, as ANTLR is generally more complicated to
use.

The current system was completely developed and tested on a local
machine. Although, it met all the requirements, this is not the same
environment that it would encounter if it is was to be integrated
into the Abstract Wikipedia project. This current system also did
not integrate with Wikifunctions as it was not yet.

Overall, this work lays a solid foundation for achieving Abstract
Wikipedia’s multilingual goals, contributing to the vision of provid-
ing free access to the sum of all human knowledge across languages.

7 Conclusion and Future Work

In conclusion, the development of a multilingual backend system
for the CoSMo language marks a significant advancement in tack-
ling the challenges of content selection and representation within
the Abstract Wikipedia project. The system effectively implements
CoSMo’s core functionalities, such as parsing, query generation,
and data retrieval, demonstrating its platform independence and
multilingual capabilities. Although integration with Wikifunctions
is pending due to its current unavailability, the backend’s ability
to interface with both SPARQL and SQL databases highlights its
versatility. The project underscores the necessity of understanding
Wikidata’s data structures for accurate constructor creation and
addresses the challenges posed by data gaps. The backend’s layered
architecture enhanced modularity, facilitating easy maintenance
and future expansion. Future efforts should focus on integrating
with Wikifunctions, addressing Wikidata’s data gaps, and deploy-
ing the system in a production environment to ensure successful
integration into the Abstract Wikipedia project.

TypeConstructor:C1(
Property(P40(r1,r2)),
r1:0bjectType(Q7566),
r2:0bjectType(Q29514218))

InstanceOf(C2, C1)

InstanceConstructor:C2(
Property(P40(r1,r2)),
r1:0bjectType(Q7566),
r2:0bjectType(Q29514218),
ObjectType(Q29514218)={Q620703813})

SubConstructor0f(C3, C1)

TypeConstructor:C3(
Property(P40(r1,r2)),
r1:0bjectType(Q7566),
r2:0bjectType(Q29514218),
Function(Z12345(Q29514218)))

Figure 8: Profiled constructors used in figure 7

References

(1]

[2]
(3]

[9]

(10]

K. Arrieta, P.R. Fillottrani, and C.M. Keet. 2024. CoSMo: A multilingual modular
language for Content Selection Modelling. ACM/SIGAPP Symposium on Applied
Computing (SAC "24) 39 (2024). https://doi.org/10.1145/3605098.3635889

L. Martinelli. 2023. Wikifunctions FAQ. https://www.wikifunctions.org/wiki/
Wikifunctions:FAQ

M. Morshed. 2023. Using Wikidata Lexemes and Items to Gen-
erate Text from Abstract Representations. Semantic Web (2023).
https://www.semantic-web-journal.net/content/using-wikidata-lexemes-
and-items-generate-text-abstract-representations-0

Francisco Ortin, Jose Quiroga, Oscar Rodriguez-Prieto, and Miguel Garcia. 2022.
An empirical evaluation of Lex/Yacc and ANTLR parser generation tools. Plos
one 17, 3 (2022), €0264326.

Terence Parr. 2013. The Definitive ANTLR 4 Reference (2nd ed.). Pragmatic
Bookshelf, 17-20.

Sebastian Ramirez. [n.d.]. FastAPL https://github.com/fastapi/fastapi

EHUD REITER and ROBERT DALE. 1997. Building applied natural language
generation systems. Natural Language Engineering 3, 1 (1997), 57-87. https:
//doi.org/10.1017/S1351324997001502

D. Vrandecic. 2020. Collaborating on the Sum of All Knowl-
edge Across Languages. (10 2020). https://doi.org/10.7551/
mitpress/12366.003.0016 arXiv:https://direct.mit.edu/book/chapter-
pdf/2247832/9780262360593_c001200.pdf

D. Vrandec¢i¢ and M. Krotzsch. 2014. Wikidata: a free collaborative knowledge-
base. Commun. ACM 57, 10 (sep 2014), 78-85. https://doi.org/10.1145/2629489
D. Vrandeti¢. 2020. Architecture for a multilingual Wikipedia. (2020). https:
//doi.org/10.48550/arXiv.2004.04733 arXiv:2004.04733 [cs.CY]

https://doi.org/10.1145/3605098.3635889
https://www.wikifunctions.org/wiki/Wikifunctions:FAQ
https://www.wikifunctions.org/wiki/Wikifunctions:FAQ
https://www.semantic-web-journal.net/content/using-wikidata-lexemes-and-items-generate-text-abstract-representations-0
https://www.semantic-web-journal.net/content/using-wikidata-lexemes-and-items-generate-text-abstract-representations-0
https://github.com/fastapi/fastapi
https://doi.org/10.1017/S1351324997001502
https://doi.org/10.1017/S1351324997001502
https://doi.org/10.7551/mitpress/12366.003.0016
https://doi.org/10.7551/mitpress/12366.003.0016
https://arxiv.org/abs/https://direct.mit.edu/book/chapter-pdf/2247832/9780262360593_c001200.pdf
https://arxiv.org/abs/https://direct.mit.edu/book/chapter-pdf/2247832/9780262360593_c001200.pdf
https://doi.org/10.1145/2629489
https://doi.org/10.48550/arXiv.2004.04733
https://doi.org/10.48550/arXiv.2004.04733
https://arxiv.org/abs/2004.04733

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Design
	3.1 Requirements Analysis
	3.2 System Components

	4 Implementation
	4.1 Development Environment and Tools
	4.2 CoSMo Parser
	4.3 Mapping Layer
	4.4 Execution Layer
	4.5 HTTP API Layer
	4.6 Algorithms

	5 Testing
	6 Results and Discussion
	6.1 Results
	6.2 Discussion

	7 Conclusion and Future Work
	References

