

CS Honours Project
Final Paper 2024

Title: Implementing a Multilingual Backend for the CoSMo
Language

Author: Jordy Kafwe

Project Abbreviation:

Supervisor(s): Maria Keet

Category Min Max Chosen
Requirement Analysis and Design 0 20 20
Theoretical Analysis 0 25 0
Experiment Design and Execution 0 20 0
System Development and Implementation 0 20 20
Results, Findings and Conclusions 10 20 10
Aim Formulation and Background Work 10 15 10
Quality of Paper Writing and Presentation 10 10
Quality of Deliverables 10 10
Overall General Project Evaluation (this section
allowed only with motivation letter from supervisor)

0 10

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

Implementing a Multilingual Backend for the CoSMo Language

Jordy Kafwe

University of Cape Town

Cape Town, South Africa

KFWJOR001@myuct.ac.za

Abstract

The development of a multilingual backend for the CoSMo language

addresses the need for abstract representation in applications such

as database view specification and natural language generation.

This paper presents the creation of a backend system for CoSMo,

focusing on parsing, query mapping, and data retrieval from Wiki-

data. The system is designed to support Abstract Wikipedia’s mul-

tilingual goals by using CoSMo constructors, which are modular,

language-independent representations of content. By implement-

ing a query generation module that converts CoSMo syntax into

SPARQL or SQL queries, the backend demonstrates platform inde-

pendence and suggests related items to enhance content selection.

The system’s architecture, built as an HTTP API, ensures inter-

operability with other applications within the Abstract Wikipedia

project. Key results include the successful parsing of CoSMo con-

structors and the generation of accurate queries. This work high-

lights the potential applications of CoSMo in creating a truly mul-

tilingual Wikipedia, overcoming language disparities in content

availability.

1 Introduction

There currently exists large disparities in content availability and

quality across Wikipedia’s language editions [10]. For instance,

while the English Wikipedia has over six million articles, many

other language editions have significantly fewer articles, and the

comprehensiveness of these articles can vary greatly [10]. This

uneven distribution means that speakers of less-represented lan-

guages often have limited access to the breadth of knowledge avail-

able in more dominant languages. In addition, smaller language

communities face the daunting task of creating and maintaining a

comprehensive encyclopedia with limited resources and contribu-

tors.

Abstract Wikipedia [8] is a project which seeks to create a truly

multilingual Wikipedia by generating articles from structured data

stored in Wikidata and functions from Wikifunctions[2, 10]. This

approach is designed to overcome the challenges posed by the vast

number of languages that Wikipedia needs to cover to fulfill its

vision of providing free access to the sum of all human knowledge.

To achieve its goal, Abstract Wikipedia will use Wikidata. Wikidata

is an open, collaborative knowledge base [9]. Wikidata houses a

large collection of labelled entities and the relationships they have

with other entities. This data is stored as an RDF store accessible

through a public SPARQL endpoint. Its goal is to provide a diverse

collection of machine-readable knowledge that anyone may con-

tribute to and benefit from [9]. The content is, however, largely

inaccessible to the broader public. This is due to the technical bar-

rier prohibiting interaction with the content. Abstract Wikipedia

intends to solve this problem by producing human-readable natural

language from the knowledge housed in Wikidata.

CoSMo, a novel Content Selection Modelling language, which has

recently been formalised, will help Abstract Wikipedia to this end

[1]. CoSMowill help in selecting data housed inWikidata as base, ab-

stract representations of content. CoSMo is platform-independent,

meaning it functions effectively regardless of the system in which

the data is stored, whether it be RDF, XML, SQL, or others. In ad-

dition, CoSMo is natural language-independent, which supports

Abstract Wikipedia’s multilingual goals. The abstracted representa-

tions of content are given the term constructors [10]. Constructors
are declarative statements of content to be selected from Wikidata.

The declarations can be conceptualised as expressive arrangements

of language-independent Wikidata identifiers. They are modular

representations of content that can be composed to form an article.

CoSMo is, thus, the modelling language for constructors.

There is, presently, no software implementation of CoSMo construc-

tors. This paper gives particular concern to the current absence of

content selection and Wikidata integration [10]. Without the func-

tionality of content extraction from Wikidata, the constructors are

unable to fulfill their intended purpose within Abstract Wikipedia.

In this paper, we show that we were able to build an initial back-

end system that realises the functionality of CoSMo. The system

is available as an HTTP API that offers its functionality through

various endpoints. Firstly, it parses the constructors. This involves

accurately following CoSMo syntax to ensure that the content

selection is correctly interpreted and validated. Secondly, it imple-

ments a query generation module that converts the CoSMo syntax

into the appropriate SPARQL or SQL query. Although Wikidata

currently uses SPARQL, having SQL query generation was imple-

mented to demonstrate that CoSMo is in fact platform-independent.

This query generation module also implements query expansion to

suggest items related to the entities of interest.

To emphasise, the main objective of this project was to create a

backend system that implements the functionality of CoSMo. This

paper will demonstrate how we accomplished this objective and

explain the reasoning behind our conclusions. We will begin by

reviewing related works and providing background information.

Next, we will outline the design process of the application and

its implementation. Subsequently, we will describe the evaluation

of each component of the project and present the results of these

evaluations.

2 Background and Related Work

The CoSMo specification paper established that current content

selection tools often require considerable technical expertise, hin-

dering accessibility [1]. Existing tools, such as TexToData, offer

some multilingual capabilities, but they rely on translation meth-

ods that are not inherently multilingual [1]. In addition, while

graphical query builders like VSB and RDF Explorer facilitate query

construction, they lack modularity and multilingual support[1].

Furthermore, they do not accept conceptual data models, which are

necessary for a constructor implementation [1]. These limitations,

therefore, made it necessary to develop a novel content selection

tool for use in Abstract Wikipedia.

The development of CoSMo was driven by the recognition that

existing modelling languages do not adequately support the unique

requirements of multilingual content selection and representation

[1]. The language is specifically tailored to function within the Ab-

stract Wikipedia project, which aims to create a truly multilingual

Wikipedia by generating articles from data stored in Wikidata [10].

This project necessitates a modeling language that can integrate

with the diverse linguistic and functional needs of the Wikipedia

ecosystem.

To achieve this, CoSMo incorporates several features that distin-

guish it from traditional modeling languages. It embeds multilin-

guality directly into the language, allowing users to declare content

in their preferred natural language [1]. This is achieved through a

modular approach where modules, referred to as ’constructors’, can

be defined at both the class and instance levels, enabling flexible

and dynamic content selection. In addition, CoSMo supports the

inclusion of both static content and functions, allowing for the

computation of derived content, such as calculating a person’s age

from their date of birth [1].

The rigorous design process of CoSMo involved a comprehensive

analysis of requirements, stakeholder consultations, and iterative

refinements. This process ensured that the language not only meets

the technical needs of content selection but also aligns with the col-

laborative and open nature of the Wikimedia community. CoSMo’s

specification includes a formal syntax and semantics, graphical

notation, and a preliminary evaluation that demonstrates its effec-

tiveness in real-world applications [1].

Ninai/Udiron is a notable attempt at implementing a natural lan-

guage generation (NLG) system for Abstract Wikipedia [3]. How-

ever, Ninai currently only makes use of constructors on a surface

level, which limits its flexibility in content selection and generation

[3].

The NLG pipeline for Abstract Wikipedia involves several steps,

including content selection, discourse planning, and linguistic re-

alisation [7, 10]. CoSMo addresses the content selection stage by

providing a language that allows users to specify what information

should be verbalised from structured data. This is a critical step in

the pipeline, as it determines the content that will be included in

the generated text.

In summary, while existing tools and systems provide some func-

tionality for content selection and NLG, they do not fully meet the

requirements of the Abstract Wikipedia project. CoSMo fills this

gap by offering a multilingual, modular, and user-friendly language

for content selection, enabling the generation of articles in multiple

languages from structured data.

3 Design

The design of the backend for the CoSMo language was informed

by a comprehensive requirements analysis conducted by Keet et

al. during the development of CoSMo [1]. This analysis identified

several critical requirements that CoSMomust fulfill in order to sup-

port the Abstract Wikipedia project [1]. We designed the backend

to fulfill as a many of these requirements as possible.

3.1 Requirements Analysis

Using the CoSMo paper [1] as a base, the requirements for this

initial backend were then further refined in face-to-face meetings

with the project supervisor. Through this process the following

requirements were identified:

(1) The backend must support multilinguality, enabling the re-

trieval and display of labels in the user’s preferred language

[1]. In addition, the backend must be platform-independent,

capable of functioning regardless of the underlying data-

base technology.

(2) The backend should allow for the reuse and combination

of constructors. [1]. It must also enable the specialisation

and generalisation of constructors, including creating sub-

constructors and refining or generalising existing ones.

(3) Roles are integral to the CoSMo language [1], and the back-

end must support roles as first-class citizens. This includes

the ability to name and manage roles within constructors

[1]. To allow detailed and precise content selection, the

backend should also support declarations at both the in-

stance and type levels, allowing users to retrieve specific

instances or types from Wikidata.

(4) The backend should support the specification of value con-

straints and mandatory participation for elements within

constructors which ensures that the selected content meets

specific criteria and requirements [1]. Facilitating join or

merge operations between elements is necessary for com-

bining similar or related items.

(5) The backend should be capable of being used by other appli-

cations within the Abstract Wikipedia project. This interop-

erability ensures that the CoSMo language can be effectively

integrated into the broader ecosystem of Wikimedia tools

and applications.

(6) The backend should also allow the discovery of related

Wikidata data that may be of interest to the user based on

their initial CoSMo query.

The requirements were then transformed into software objectives

with certain tasks prioritised based on the project goals. Using an

iterative waterfall method, weworked on achieving these objectives.

The iterative waterfall method allowed a structured approach to

completing tasks whilst allowing iteration within a phase, if needed.

2

Therefore we determined that we needed to develop a system that

fulfills the following objectives:

(1) Processes Constructors.

(2) Produces queries.

(3) Interfaces with Wikidata.

(4) Provides access though an API Endpoint

3.2 System Components

The CoSMo backend system is structured using a layered archi-

tecture, a design approach that organises the system into distinct

layers, each with a specific responsibility. This architecture is cho-

sen for its ability to separate concerns, enhance modularity, and

improve maintainability and scalability. Each layer focuses on a spe-

cific function. Layers interact sequentially and they communicate

with adjacent layers.

The rationale for adopting a layered architecture is multifaceted.

Separation of concerns allows focused development. Debugging

becomes easier. Modularity is a key advantage as each layer can be

developed, tested, and maintained independently. This modularity

facilitates updates and integration with other systems, as changes

in one layer do not necessarily impact others. The architecture

supports scalability by enabling individual layers to be optimised

or expanded as needed without affecting the entire system. This

flexibility is crucial for accommodating future enhancements with-

out disrupting existing functionality. Furthermore, the architecture

ensures seamless interaction with external applications, particu-

larly within the Abstract Wikipedia project, thereby enhancing

interoperability.

Overall, the backend system is designed as an HTTP API to facili-

tate integration with other applications in the Abstract Wikipedia

project. By receiving CoSMo statements and returning responses

in JSON format, the system meets the requirement for interoper-

ability with external applications. This design choice abstracts the

internal workings of the backend from users, who only need to

know the appropriate endpoint for sending their statements and

the expected response format; users do not need to understand

the underlying modules that comprise the backend. The layers of

the CoSMo backend system, in the order they interact with each

other, are: the HTTP API Layer, the Parser Layer, the Semantic

Analysis Layer, the Mapping Layer, the Execution Layer, the Result

Processing component, and finally back to the HTTP API Layer to

return the response.

3.2.1 Parser Layer

This layer is responsible for interpreting CoSMo syntax. It uses

ANTLR (Another Tool for Language Recognition) to generate a

parser from a BNF (Backus-Naur Form) notation [4, 5]. ANTLR

provides a robust framework for building language parsers [?],

which are essential for converting CoSMo’s high-level constructs

into a form that can be processed by the backend system.

3.2.2 Semantic Analysis Layer

After the parser layer has parsed the constructors and determined

they are syntactically correct, this layer will conduct a few basic

semantic checks. First, that variables are not referenced before they

have been declared. Secondly, that variables are not any CoSMo

keywords.

3.2.3 Mapping Layer

Once the CoSMo syntax is confirmed to be semantically and syntati-

cally correct, themapping layer translates the parsed constructs into

SPARQL or SQL queries. This involves mapping CoSMo’s declara-

tive elements to equivalent query constructs. The engine ensures

that the multilingual and modular aspects of CoSMo are preserved

in the query output.

3.2.4 Execution Layer

This layer handles the execution of the generated queries against

the target database. It interfaces with RDF triple stores for SPARQL

queries or relational databases for SQL queries, ensuring that the

data retrieved is consistent with the specifications outlined in the

CoSMo constructors.

3.2.5 Result Processing Layer

After query execution, the results are processed to fit the require-

ments of the natural language generation pipeline. This includes

formatting the data and integrating it with other components of the

system to produce coherent and contextually appropriate outputs.

3.2.6 Relational Database Design

The relational database design for storing Wikidata data is deter-

mined by thewd2sql tool we are using. This schema includes several

key tables: a meta table that contains the English label and descrip-

tion for each entity, with columns for the entity ID, label, and

description; and separate tables for different types of claim values,

such as string, entity, coordinates, quantity, and time, where each
table corresponds to a property’s value type and includes columns

for the subject entity ID and the property ID. In addition, none and
unknown tables store claims with "no value" and "unknown value,"

respectively, identified by their entity and property IDs. Therefore,

all property (P) and Wikidata entity (Q) values are stored in the

entity table. Althpug

The wd2sql tool encodes Wikidata IDs, which consist of a type

prefix (Q/P/L) followed by an integer, into a single integer format.

That is, entity IDs are represented simply by the integer part of

their ID, so Q42 becomes 42. Property IDs are adjusted by adding an

offset of 1 billion to differentiate them. For example, P271 becomes

1000000271.

4 Implementation

4.1 Development Environment and Tools

The backend was developed using Python, with FastAPI [6]. serving

as the framework for building the HTTP API. Python was chosen

due to its simplicity, large ecosystem and currently being one of

three languages supported by Wikifunctions [?]. FastAPI was se-

lected due to its high performance and ease of use when building

HTTP APIs. The parser layer was developed using ANTLR4 [5],

which generated a Python parser and lexer for CoSMo. This en-

sured robust syntax interpretation for both shorthand and long

form CoSMo language constructs. Docker was used to containerise

3

Figure 1: Entity Relationship Diagram of SQLite instance

the application, providing a consistent environment across develop-

ment and testing. For data storage and query execution, the publicly

available Wikidata SPARQL endpoint was used for interfacing with

the RDF triple store. A local SQLite instance, created by the wd2sql

tool, was used as the relational database.

4.2 CoSMo Parser

ANTLR v4 [5] was chosen for its ability to generate native Python

parser and lexer and that it separates the grammar from the actual

logic, allowing the grammar to be reused inmore contexts [4]. In our

case, this means that we can use the exact same grammar for both

SPARQL and SQL. A Python parser is beneficial because the Python

FastAPI HTTP server can directly use the parser. The CoSMo parser

to interpret language statements was designed according to the

Backus-Naur Form (BNF) written by Keet et al [1]. The BNF was

converted into the ANTLR eBNF grammar language. This eBNF

is what ANTLR used to generate the Python parser. A few lexical

rules, shown in Listing 2, were also added to the initial BNF from [1]

to allow the syntax (or parser) rules to work on actual statements.

The parser was implemented to work with both shorthand and

long form notation of the CoSMo language. In order to meet the

multilingual goal, the parser uses the pivot with CSMxxx identifiers

[1]. This allows the compiler to work correctly, even as more natural

languages are supported by CoSMo. CSMxxx identifiers are used

to map each CoSMo language construct that would appear in the

natural language of the constructor.

PItem: 'P' DIGIT+;
QItem : 'Q' DIGIT+;
ZItem : 'Z' DIGIT+;
VARIABLE : [a-zA-Z][a-zA-Z0-9]*;
DIGIT : [0-9];
COMMA : ',';
NUMBER : [0-9]+ ('.' [0-9]+)?;
STRING : '"' .*? '"';
WS : [\t\r\n]+ -> skip;

Figure 2: CoSMo Lexer rules

TypeConstructor:C1(
Property(P40(r1,r2)),
r1:ObjectType(Q7566),
r2:ObjectType(Q29514218)

Figure 3: Example CoSMo Parse Tree

4.3 Mapping Layer

The mapping layer uses the parse tree (as shown in figure 3) created

by ANTLR parser after successfully interpreting a statement. The

ANTLR Visitor pattern is then used to walk the tree, progressively

generating the appropriate SQL or SPARQL query. The visitor pat-

tern is unguided tree traversal as ANTLR performs a depth first

search, ultimately visiting every node in the tree. To do this a class

that inherits from ANTLR’s ParseTreeVisitor is generated by the

library. In this class, there is a method associated with every CoSMo

language type defined in the eBNF. We completed these methods

to adhere to our mapping algorithm. Each construct and variable

in the CoSMo statement is directly available in code according to

the labelx it was given in the ANTLR eBNF grammar.

4.4 Execution Layer

SQLModel is used as the object relational mapper (ORM) for SQLite.

The ORM, in combination with FastAPI’s ‘Depends()‘ method, al-

lows us to perform dependency injection with the database. This

results in cleaner, more easily testable code. The SPARQL queries

are made using the SPARQLWrapper library, which provides a

simple interface to query the Wikidata public SPARQL endpoint.

This approach abstracts the details of making HTTP requests and

parsing responses, resulting in more streamlined and maintainable

code.

4.5 HTTP API Layer

Two main endpoints were implemented. /sparql/query using the

public Wikidata SPARQL endpoint and /sql/query using the local

SQLite instance. The Both these endpoints are HTTP POST end-

points and accept the the CoSMo syntax in the payload which is

then decoded and passed to the parser.

4.6 Algorithms

4.6.1 Mapping

The algorithm for mapping CoSMo constructs to SPARQL queries

efficiently parses CoSMo statements while tracking the usage of

type constructors by instance constructors and ensuring that each

triple is associated with its corresponding constructor. The process

begins with initialising a visitor class, ‘CoSMoToSPARQLVisitor‘,

4

Figure 4: High level system diagram

which includes data structures: a list for ‘Triple‘ objects, a dictionary

for CoSMo variable mappings, a dictionary for type constraints,

and a set for tracking type constructor usage.

As the visitor traverses the parse tree, it processes CoSMo constructs

like type constructors, instance constructors, and properties. The

focus is on tracking information, not immediate SPARQL mapping.

When visiting type constructors, the visitor records expected object

types in the ‘subject_type_constraints‘ dictionary. The dictionary

has a constructor variable name as a key and then the value itself

is another dictionary. In the sub-dictionary, the key is a role or

variable identifier, and the value is the expected object type. This

ensures subjects in the SPARQL query match specified types. The

visitor also tracks type constructor usage. For instance constructors,

it checks role conformity and updates the set of referenced type

constructors.

The algorithm maintains a set, ‘used_type_constructors‘, to track

referenced type constructors. Each time an instance constructor

references a type constructor, its identifier is added to this set. RDF

triples are constructed by identifying the subject, predicate, and

object from the CoSMo statement. These are stored as instances of

the ‘Triple‘ class, which includes fields for the subject, predicate, ob-

ject, and constructor association. This class encapsulates necessary

information for SPARQL queries.

The ‘getSPARQLQuery‘ method assembles the SPARQL query after

processing all constructs. It iterates over stored triples, constructing

the ‘SELECT‘ and ‘WHERE‘ clauses. Type constraints are added

using ‘wdt:P31‘, based on the ‘subject_type_constraints‘ dictionary.

This ensures results match specified types. After processing, the

algorithm checks for unused type constructors. If a type constructor

is not used to create an instance-level constructor, the algorithm

generates a SPARQL query to fetch all objects that match that type

constructor. Conversely, if a type constructor is used to create an

instance-level constructor, the query is tailored to fetch only those

objects that match the specific instance constructor. This distinction

ensures that the query results are accurate and relevant, reflect-

ing the intended scope of the CoSMo constructs. The algorithm

finalises the SPARQL query, ensuring all patterns and constraints

are included. The pseudo code for this algorithm is depicted in

Algorithm 1.

The above was simplified to only explain the more general case

– to convery the big idea. In the actual implementation, we also

keep track of Joins, IsMandatory and SubConstructor. Join and

SubConstructor are both dictionaries where the key is one part of

the relationship and the value is the other. IsMandatory is simply a

set of all the mandatory variables.

SELECT ?entityId _subject_ ?label
WHERE {

// triples generated going here
// followed by type checking of subjects here

BIND(STRAFTER
(STR(?r1), "http://www.wikidata.org/entity/")
AS ?entityId)

SERVICE wikibase:label {
bd:serviceParam wikibase:language "[AUTO_LANGUAGE],
language" .
subject rdfs:label ?label .

}
}

Figure 5: Base query used to fetch data specificed in construc-

tors

Algorithm 1

CoSMo to SPARQL Mapping Algorithm (Partial)

initialize 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 ← list of Triple objects

initialize 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡_𝑡𝑦𝑝𝑒_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ← dictionary of CoSMo

variable mappings

initialize 𝑢𝑠𝑒𝑑_𝑡𝑦𝑝𝑒_𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟𝑠 ← set of type constructors

initialize 𝑠𝑝𝑎𝑟𝑞𝑙_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 ← empty dictionary

function getSPARQLQueries

for all 𝑡𝑟𝑖𝑝𝑙𝑒 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 do

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 ← getSubject(𝑡𝑟𝑖𝑝𝑙𝑒)

𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 ← getConstructor(𝑡𝑟𝑖𝑝𝑙𝑒)

if 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 ∉ 𝑠𝑝𝑎𝑟𝑞𝑙_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 then

𝑠𝑝𝑎𝑟𝑞𝑙_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 [𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟] ← "SELECT * WHERE
{\n"

end if

𝑠𝑝𝑎𝑟𝑞𝑙_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 [𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟] ←
𝑠𝑝𝑎𝑟𝑞𝑙_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 [𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟]+ " " + str(𝑡𝑟𝑖𝑝𝑙𝑒) + "\n"

end for

for all 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡, 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑡𝑦𝑝𝑒 in

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡_𝑡𝑦𝑝𝑒_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.𝑖𝑡𝑒𝑚𝑠 () do
𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 ← getConstructorFrom-

Type(𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑡𝑦𝑝𝑒)

𝑠𝑝𝑎𝑟𝑞𝑙_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 [𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟] ←
𝑠𝑝𝑎𝑟𝑞𝑙_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 [𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟]+ " ?" + 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 + " p:P31
?" + 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑡𝑦𝑝𝑒 + " .\n"

end for

return 𝑠𝑝𝑎𝑟𝑞𝑙_𝑞𝑢𝑒𝑟𝑖𝑒𝑠

end function

5

4.6.2 Semantic Analysis

The semantic analysis algorithm for this language is designed to

ensure that all variables are declared before they are used and that

each variable is declared uniquely. The process begins by initialising

a set, DeclaredVariables, which will store the names of all declared

variables. The use of a set is advantageous due to its constant

time, or O(1), lookup performance, and its inherent property of

disallowing duplicate entries. This ensures efficient management

of variable declarations and prevents the same variable from being

declared multiple times for different purposes.

As the algorithm traverses the parse tree generated by ANTLR, it

identifies nodes that represent variable declarations and usages,

thanks to the explicit labeling in the grammar. When a variable

declaration node is encountered, the algorithm extracts the variable

name and checks if it is already in the declared_variables set. If not,
the variable is added to the set, marking it as declared. This step

ensures that each variable is declared only once. Conversely, when

a variable usage node is encountered, the algorithm checks if the

variable is present in the declared_variables. If the variable is not
found, a semantic error is reported, indicating that the variable

has been used without prior declaration. The pseudo-code for this

algorithm is depicted in Algorithm 2.

Algorithm 2

Semantic Analysis for Variable Declaration and Usage

initialize 𝑑𝑒𝑐𝑙𝑎𝑟𝑒𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ← {} ⊲ An empty set

function declareVariable(𝑣𝑎𝑟𝑁𝑎𝑚𝑒)

if not 𝑣𝑎𝑟𝑁𝑎𝑚𝑒 ∈ 𝑑𝑒𝑐𝑙𝑎𝑟𝑒𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 then
add 𝑣𝑎𝑟𝑁𝑎𝑚𝑒 to 𝑑𝑒𝑐𝑙𝑎𝑟𝑒𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

else

print "Semantic Error: Variable ’" + 𝑣𝑎𝑟𝑁𝑎𝑚𝑒 + "’ already

declared"

end if

end function

function isVariableDeclared(𝑣𝑎𝑟𝑁𝑎𝑚𝑒)

return 𝑣𝑎𝑟𝑁𝑎𝑚𝑒 ∈ 𝑑𝑒𝑐𝑙𝑎𝑟𝑒𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
end function

function traverseParseTree(𝑛𝑜𝑑𝑒)

if 𝑛𝑜𝑑𝑒 is a variable declaration node then

𝑣𝑎𝑟𝑁𝑎𝑚𝑒 ← getVariableName(𝑛𝑜𝑑𝑒)

declareVariable(𝑣𝑎𝑟𝑁𝑎𝑚𝑒)

end if

if 𝑛𝑜𝑑𝑒 is a variable usage node then

𝑣𝑎𝑟𝑁𝑎𝑚𝑒 ← getVariableName(𝑛𝑜𝑑𝑒)

if not isVariableDeclared(𝑣𝑎𝑟𝑁𝑎𝑚𝑒) then

print "Semantic Error: Undeclared variable ’" +

𝑣𝑎𝑟𝑁𝑎𝑚𝑒 + "’ at line " + getLineNumber(𝑛𝑜𝑑𝑒)

end if

end if

for all 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 in children(𝑛𝑜𝑑𝑒) do

traverseParseTree(𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒)

end for

end function

This approach efficiently ensures that the program adheres to

the language’s semantic rules regarding variable declarations and

uniqueness, leveraging the properties of the set data structure for

optimal performance.

4.6.3 Query expansion

The query expansion algorithm fetches all nodes directly connected

to the entity of interest. The SPARQL query used for this is shown

in figure 6. The same process is followed for the SQL database,

but without ordering by sitelinks as those are not available. We

then order the results by the number of sitelinks because a higher

number of sitelinks suggests that a piece of information is widely

used across Wikimedia projects. This widespread usage implies

that the information is likely highly relevant to the entity in ques-

tion. By prioritising data with more sitelinks, the algorithm helps

users discover on the most significant and commonly referenced

attributes of the entity, providing a more relevant overview of its

characteristics and associations.

SELECT ?property ?propertyLabel
?value ?valueLabel ?sitelinks

WHERE
{

Replace Qxxx with the Wikidata ID of interest
wd:Qxxx ?property ?value .

Get the property label
?prop wikibase:directClaim ?property ;

rdfs:label ?propertyLabel .
FILTER(LANG(?propertyLabel) = "_language_")

Get the number of sitelinks for the value
OPTIONAL { ?value wikibase:sitelinks ?sitelinks }

Service to add labels and descriptions
SERVICE wikibase:label {

bd:serviceParam wikibase:language "_language_,
[AUTO_LANGUAGE]".
?value rdfs:label ?valueLabel .
?prop rdfs:label ?propertyLabel .

}
}
ORDER BY DESC(?sitelinks)

Figure 6: SPARQL Query used for Query Expansion

5 Testing

The testing phase of this project encompassed a comprehensive

approach to validate the backend system, language parsing, and

API components. A combination of unit testing, integration testing,

functional testing methodologies was used to ensure the robustness

and reliability of the system. Unit tests were developed to verify the

correct functionality of individual components in isolation. These

tests focused on validating specific functions, methods, and classes

within each module.

We used the constructors given through the CoSMo [1] paper to

test the parser and overall system. Th

6

After development was completed, we conducted manual integra-

tion tests to assess the interaction between different components

of the system. These tests ensured that the parser, other backend

logic, and API worked cohesively. Functional testing validated that

the system met its specified requirements and produced expected

outputs for given inputs.

The testing process used several tools and frameworks to streamline

and automate the validation procedures. Pytest, a popular Python

testing framework, was used for writing and executing unit tests.

HTTPie was used for manual integration testing by allowing the

creation and automation of API requests.

The combination of these testing methodologies, tools, and frame-

works resulted in a thorough validation of the system. It allowed

for the identification and resolution of issues at various levels of

the application stack. This comprehensive testing approach signifi-

cantly contributed to the overall quality and reliability of the final

product.

6 Results and Discussion

6.1 Results

All promised functionality was achieved with some caveats. Wiki-

functions could not be integrated with as it is not yet functional [9].

Although we demonstrated that CoSMo is platform-independent

by also integrating with a SQL database. The SQL database was

working on a much simpler schema with no qualifiers and also only

in English.

The backend’s layered architecture enhances modularity, facilitat-

ing easy maintenance and future expansion. This was shown by

the SQL addition made to the originally SPARQL only system.

As can be seen in figure 7, the parser is able to parse CoSMo con-

structors with 0 ambiguities in milisecond speeds.

6.2 Discussion

The development of CoSMo presented several challenges. One sig-

nificant challenge was ensuring that the constructors accurately

reflected the data representation in Wikidata. For instance, when

designing a constructor to fetch locations where capybaras are en-

demic, it was discovered that the initial assumptions about data

structure did not match Wikidata’s representation. Locations were

categorised as instances of "country" rather than a general "region"

or "location" QID. This discrepancy highlighted the importance of

understanding and adapting to the actual data structures in Wiki-

data to ensure the effectiveness of CoSMo.

Another challenge was the absence of certain data entries in Wiki-

data, which are crucial for constructing accurate content selection

models. A specific example was the attempt to create a constructor

for Edith Eger’s parentage, only to find that her parents were not

listed in Wikidata. Such data gaps pose significant obstacles, as

they prevent the creation of complete and accurate constructors.

Although, this could be fixed by using IsMandatory() notation [1]

which requires the data to exist for the constructor to fetch data,

data not being present may hinder non-expert users.

Figure 7: ANTLR Profiler with Figure 8 as input

In addition, the compatibility of CoSMo’s formal syntax with dif-

ferent parser generators posed a technical challenge. Initially, the

CoSMo BNF specification did not work with the lightweight Lark

parser generator[4], which is often preferred for its simplicity, due

it raising to many ambiguities. However, it was successfully imple-

mented using ANTLR [5], a more robust parser generator capable of

handling complex grammar specifications. While ANTLR provided

the necessary support for CoSMo’s complex BNF, it also required

a greater investment in learning due to its complexity compared

to Lark. This means that making changes to the existing code may

require more time and effort if other maintainers were needed to

oversee such a system, as ANTLR is generally more complicated to

use.

The current system was completely developed and tested on a local

machine. Although, it met all the requirements, this is not the same

environment that it would encounter if it is was to be integrated

into the Abstract Wikipedia project. This current system also did

not integrate with Wikifunctions as it was not yet.

Overall, this work lays a solid foundation for achieving Abstract

Wikipedia’s multilingual goals, contributing to the vision of provid-

ing free access to the sum of all human knowledge across languages.

7 Conclusion and Future Work

In conclusion, the development of a multilingual backend system

for the CoSMo language marks a significant advancement in tack-

ling the challenges of content selection and representation within

the Abstract Wikipedia project. The system effectively implements

CoSMo’s core functionalities, such as parsing, query generation,

and data retrieval, demonstrating its platform independence and

multilingual capabilities. Although integration with Wikifunctions

is pending due to its current unavailability, the backend’s ability

to interface with both SPARQL and SQL databases highlights its

versatility. The project underscores the necessity of understanding

Wikidata’s data structures for accurate constructor creation and

addresses the challenges posed by data gaps. The backend’s layered

architecture enhanced modularity, facilitating easy maintenance

and future expansion. Future efforts should focus on integrating

with Wikifunctions, addressing Wikidata’s data gaps, and deploy-

ing the system in a production environment to ensure successful

integration into the Abstract Wikipedia project.

7

TypeConstructor:C1(
Property(P40(r1,r2)),
r1:ObjectType(Q7566),
r2:ObjectType(Q29514218))

InstanceOf(C2, C1)

InstanceConstructor:C2(
Property(P40(r1,r2)),
r1:ObjectType(Q7566),
r2:ObjectType(Q29514218),
ObjectType(Q29514218)={Q62070381})

SubConstructorOf(C3, C1)

TypeConstructor:C3(
Property(P40(r1,r2)),
r1:ObjectType(Q7566),
r2:ObjectType(Q29514218),
Function(Z12345(Q29514218)))

Figure 8: Profiled constructors used in figure 7

References

[1] K. Arrieta, P.R. Fillottrani, and C.M. Keet. 2024. CoSMo: A multilingual modular

language for Content Selection Modelling. ACM/SIGAPP Symposium on Applied
Computing (SAC ’24) 39 (2024). https://doi.org/10.1145/3605098.3635889

[2] L. Martinelli. 2023. Wikifunctions FAQ. https://www.wikifunctions.org/wiki/

Wikifunctions:FAQ

[3] M. Morshed. 2023. Using Wikidata Lexemes and Items to Gen-

erate Text from Abstract Representations. Semantic Web (2023).

https://www.semantic-web-journal.net/content/using-wikidata-lexemes-

and-items-generate-text-abstract-representations-0

[4] Francisco Ortin, Jose Quiroga, Oscar Rodriguez-Prieto, and Miguel Garcia. 2022.

An empirical evaluation of Lex/Yacc and ANTLR parser generation tools. Plos
one 17, 3 (2022), e0264326.

[5] Terence Parr. 2013. The Definitive ANTLR 4 Reference (2nd ed.). Pragmatic

Bookshelf, 17–20.

[6] Sebastián Ramírez. [n. d.]. FastAPI. https://github.com/fastapi/fastapi

[7] EHUD REITER and ROBERT DALE. 1997. Building applied natural language

generation systems. Natural Language Engineering 3, 1 (1997), 57–87. https:

//doi.org/10.1017/S1351324997001502

[8] D. Vrandecic. 2020. Collaborating on the Sum of All Knowl-

edge Across Languages. (10 2020). https://doi.org/10.7551/

mitpress/12366.003.0016 arXiv:https://direct.mit.edu/book/chapter-

pdf/2247832/9780262360593_c001200.pdf

[9] D. Vrandečić and M. Krötzsch. 2014. Wikidata: a free collaborative knowledge-

base. Commun. ACM 57, 10 (sep 2014), 78–85. https://doi.org/10.1145/2629489

[10] D. Vrandečić. 2020. Architecture for a multilingual Wikipedia. (2020). https:

//doi.org/10.48550/arXiv.2004.04733 arXiv:2004.04733 [cs.CY]

8

https://doi.org/10.1145/3605098.3635889
https://www.wikifunctions.org/wiki/Wikifunctions:FAQ
https://www.wikifunctions.org/wiki/Wikifunctions:FAQ
https://www.semantic-web-journal.net/content/using-wikidata-lexemes-and-items-generate-text-abstract-representations-0
https://www.semantic-web-journal.net/content/using-wikidata-lexemes-and-items-generate-text-abstract-representations-0
https://github.com/fastapi/fastapi
https://doi.org/10.1017/S1351324997001502
https://doi.org/10.1017/S1351324997001502
https://doi.org/10.7551/mitpress/12366.003.0016
https://doi.org/10.7551/mitpress/12366.003.0016
https://arxiv.org/abs/https://direct.mit.edu/book/chapter-pdf/2247832/9780262360593_c001200.pdf
https://arxiv.org/abs/https://direct.mit.edu/book/chapter-pdf/2247832/9780262360593_c001200.pdf
https://doi.org/10.1145/2629489
https://doi.org/10.48550/arXiv.2004.04733
https://doi.org/10.48550/arXiv.2004.04733
https://arxiv.org/abs/2004.04733

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Design
	3.1 Requirements Analysis
	3.2 System Components

	4 Implementation
	4.1 Development Environment and Tools
	4.2 CoSMo Parser
	4.3 Mapping Layer
	4.4 Execution Layer
	4.5 HTTP API Layer
	4.6 Algorithms

	5 Testing
	6 Results and Discussion
	6.1 Results
	6.2 Discussion

	7 Conclusion and Future Work
	References

