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ABSTRACT
This literature review explores the integration and optimisation

of CoSMo with Wikidata for efficient content retrieval in Abstract

Wikipedia. By delving into the critical role of structured data and

natural language generation techniques, the review highlights the

challenges in achieving uniform content coverage across differ-

ent language editions of Wikipedia. The introduction of Abstract

Wikipedia by the Wikimedia Foundation is examined as a step

towards automating content creation and ensuring consistency

and accuracy across articles. Strategies such as optimised SPARQL

queries, caching mechanisms, and heuristics are discussed for im-

proving query response times and system performance within the

Abstract Wikipedia ecosystem. The significance of Wikidata as a

collaborative knowledge graph and its integration with Wikipedia

for data enrichment and cross-language knowledge sharing are

emphasised. Overall, this review provides insights into enhancing

content retrieval efficiency and addressing scalability challenges in

the context of Abstract Wikipedia.
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1 INTRODUCTION
Wikipedia stands as an achievement in global knowledge sharing,

striving to democratise access to comprehensive information across

languages and disciplines [14]. Despite its success, disparities in

knowledge representation across different language editions per-

sist, highlighting challenges in achieving uniform content coverage.

The introduction of Abstract Wikipedia by the Wikimedia Foun-

dation marks a step towards automating content creation using

structured data and natural language generation techniques [15].

This structured approach not only aims to enhance the efficiency of

content creation but also ensure consistency and accuracy across

articles. It promises enhanced multilingual coverage, facilitating

article generation in any natural language based on structured data

inputs from Wikidata. [13] This literature review delves into the

critical role of Wikidata within the Abstract Wikipedia pipeline and

explores methods for optimising content retrieval from Wikidata

for efficient article generation.

2 BACKGROUND
2.1 Wikidata and its Significance
Wikidata, established in 2012, serves as a collaborative knowledge

graph within the Wikimedia Foundation ecosystem, housing a vast

repository of structured data [15]. Wikidata currently consists of

about 400million statements and 5 billion triples. [14] Its integration

with Wikipedia provides support for data enrichment and cross-

language knowledge sharing. However, the scale and complexity

of Wikidata’s knowledge graph pose challenges in efficient data

retrieval and utilisation.

2.2 Wikidata’s RDF Triple Structure and
SPARQL

The structured nature of Wikidata’s RDF triples facilitates data in-

teroperability and query capabilities through the SPARQL (SPARQL

Protocol and RDFQuery Language) query language. [14]Wikidata’s

Resource Description Framework (RDF) triples consist of subject-

predicate-object statements that represent relationships between

entities in a structured manner. Additionally, Wikidata allows for

the inclusion of qualifiers in its triples, providing additional con-

textual information and enhancing the richness of the data model.

This structured format enables efficient storage and retrieval of

data, making complex queries across Wikidata’s knowledge graph

feasible. SPARQL plays a role in this ecosystem by allowing users to

formulate queries that target specific properties, qualifiers, and rela-

tionships within the RDF triples. This level of granularity provides

users with fine-grained control over data retrieval.

2.3 Public SPARQL Endpoint
Wikidata exposes a public SPARQL endpoint, enabling researchers,

developers, and enthusiasts to interact programmatically with its

rich dataset [15]. This public endpoint allows for real-time querying

and exploration of Wikidata’s structured data. The SPARQL end-

point enforces a query answering timeout of 60 seconds, after which

queries exceeding this duration are terminated. [8]In addition, each

client is restricted to a maximum of five concurrent queries and

is subject to constraints on processing time and query errors. To

manage this, a token bucket protocol is used, granting clients an

initial allowance of 120 seconds of processing time and a quota of 60

allowable query errors. These allowances are replenished at a rate

of 60 seconds/30 errors per minute, ensuring clients can maintain a

consistent query workload within the specified limits. [8]
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2.4 Abstract Wikipedia Pipeline and Content
Determination

The Abstract Wikipedia initiative introduces a novel approach to

content creation by using structured data from Wikidata and em-

ploying natural language generation (NLG) techniques [15]. A stage

in this NLG pipeline is content determination [12], where structured

data from Wikidata guide the assembly of article components. [2]

However, the interconnectivity of Wikidata’s RDF triples can pose

performance challenges during content retrieval. This is primarily

due to RDF stores prioritising flexibility in information structuring

over performance, compounded by Wikidata’s vast scale, compris-

ing 400 million statements and 5 billion triples. [8]

2.5 Need for Optimisation in Content Retrieval
fromWikidata

Optimising content retrieval from Wikidata is imperative due to

scalability challenges inherent in querying large RDF datasets. Com-

plex queries and data traversal operations can result in increased

query times.[8]. Coupled with the aforementioned 60-second query

answering timeout, optimising strategies become imperative to en-

sure efficient data fetching, timely content assembly, and improved

user experiences within the Abstract Wikipedia ecosystem.

3 PERFOMANT SPARQL QUERIES
3.1 Heuristics
Due to the flexibility of RDF combined with the expressiveness of

SPARQL, it is easy to create queries that strain even the most opti-

mised RDF stores. The paper "On the Formulation of Performant

SPARQL Queries" by Loizou and Groth provides an exploration of

heuristics for optimising SPARQL queries. [7] The authors address

the challenges faced by application developers in formulating cor-

rect, complex, and performant SPARQL queries due to the flexibility

of RDF. The paper introduces 5 heuristics that can be applied to

create optimised SPARQL queries. The heuristics proposed in the

paper are inspired by formal results found in the literature and

hands-on experience in developing an end-user focused data inte-

gration system, the Open-PHACTS Platform. They are intended to

help developers formulate SPARQL queries that can be effectively

optimised by RDF stores. The heuristics propose minimising op-

tional triple patterns, localising SPARQL subpatterns, using dataset

statistics, including necessary graph patterns, and enabling pagi-

nated views. [7] The paper also provides an empirical comparison

of the performance of six state-of-the-art RDF storage systems with

respect to the various heuristics, using large real-world pharmaceu-

tical datasets and queries. The experimental results demonstrate

improvements in performance across 6 state-of-the-art RDF stores.

The average query response time showed from 1 to 5 orders of mag-

nitude improvement across all heuristics. [7] This being observed

using state-of-art RDF stores on large real-world dataset showcases

the practical impact of applying the heuristics.

3.2 Wikidata Optimisations Documentation
The Wikidata documentation provides strategies for optimising

SPARQL query performance when using their SPARQL endpoint.

This advice is speicifically tailored to the Wikidata RDF structure

and their RDF engine, Blazegraph. While their approach may not be

as empirical as the paper by Loizou and Groth, it provides practical

evidence and theoretical explanations for the effectiveness of their

strategies. The improvement is highlighted in the documentation

by queries that get terminated before, running to completion with a

rewrite using their strategies. For example, by leveraging fixed val-

ues and ranges within queries, users can target specific data subsets,

minimising the amount of data the system needs to traverse. Prop-

erty paths offer an efficient navigation method, guiding queries

directly to relevant sections. However, maintaining conciseness

and avoiding overly complex inverse paths is crucial for optimal

performance. Experimentation with the order of query clauses al-

lows for prioritising critical tasks for more efficient execution. [16]

Additionally, decomposing complex queries into smaller, manage-

able subqueries enhances both readability and potentially improves

query performance. Lastly, when retrieving counts, employing opti-

mised aggregate functions like "fast range counts" instead of generic

functions like ‘COUNT(*)‘ can yield superior results. [16] The doc-

umentation states that applying the strategies leads to faster data

retrieval, improved query execution plans, and quicker calculations,

ultimately leading to a significant enhancement in overall query

performance within the Wikidata knowledge base.

3.3 Motivation
The motivation for writing optimised SPARQL queries for Abstract

Wikipedia’s reliance on Wikidata stems from the tangible impact

on system performance and scalability. By leveraging heuristics

from research literature and platform-specific optimisation strate-

gies from Wikidata’s documentation, significant improvements in

query response times can be achieved. What makes query opti-

misation highly feasible is that it uses the current hardware and

infrastructure; it primarily involves rewriting queries sent to the ex-

isting infrastructure. [7] This approach minimises additional costs

and complexities while directly enhancing the efficiency of data

retrieval processes. This would help ensure a faster and less time-

out prone data fetching experience for users within the Abstract

Wikipedia ecosystem.

4 CACHING
Caching refers to storing the results of a query or parts of it in

a temporary storage location. This helps speed up future execu-

tions of the same or similar queries by retrieving the results from

the cache instead of re-executing the query against the SPARQL

endpoint. The public Wikidata public SPARQL endpoint already

implements some caching, but additional methods are reviewed

below. [9]

4.1 Content Aware Caching
Akhtar et al. propose an Adaptive Cache Replacement (ACR) ap-

proach to improve SPARQL query processing. The ACR algorithm

parallelises the task to calculate the access frequencies and uses

the edit distance to identify similar querying patterns. [1]It places

frequently accessed queries in the cache to reduce the burden on

SPARQL endpoints. The approach achieves better query response

time, less space overhead, and a cache hit rate of 80.66 percent,

accelerating the querying speed by 6.34 percent. ACR outperforms
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existing cache replacement approaches such as Least Recently Used,

Least Frequently Used, and SPARQL Query Caching in terms of

space efficiency and hit rates. [1] The approach is content-aware

because it considers the content of the queries in addition to their

structural similarity. This is important because two queries may

have the same structure but differ in their content, and treating

them as similar can lead to incorrect caching decisions. This means

it can. The approach is content-aware because it considers the con-

tent of the queries in addition to their structural similarity when

checking the cache. This is important because two queries may have

the same structure but differ in their content, and treating them

as similar can lead to incorrect caching decisions. Content aware

caching (CAC) is used by systems such as DBproxy and MTCache.

[11] When a query is run, the CAC system verifies if it matches

any cached data; if so, it generates the result based on that data or

sends the query to the database server. This increases performance

4.2 Content Blind Caching
Martin et al. implement a content blind cache. [9] That is the cache

is not aware of its contents. They achieve this by computing the

md5 hash of every query. This is approach is very quick and compu-

tationally inexpensive, but could result in many false cache misses

due to slight syntatic differences in the queries that would give the

same result. [9]

4.3 Client-side and Server-side Caching
Caching on the client-side, like Akhtar et al., involves storing cached

data on the client’s device or browser. [1] This can reduce network

calls, improving performance and reducing server load. However, it

may require additional resources and storage capacity on the client’s

end, impacting device performance or storage limits. Server-side

caching, like implemented by Martin et al., stores cached data on

the server or an intermediary caching server. [9] This can benefit

all clients accessing the server, reducing overall response times and

server load. Server-side caching can be more easily managed and

controlled but may not be as effective for personalised or dynamic

content as client-side caching. Both client-side and server-side

caching strategies can be used together to optimise performance

based on specific application requirements and resource constraints.

5 QUERY EXPANSION
Query expansion refers to the process of augmenting a user’s ini-

tial search query with additional terms or concepts to improve

information retrieval accuracy and relevance. This expansion aims

to capture a broader range of relevant documents or data points

that may not have been explicitly captured by the original query,

thereby enhancing the comprehensiveness and precision of search

results. [3]

5.1 Nearest Neighbour
Guisado-Gámez et al. explore the use of a graph-based approach

to represent the intricate relationships between Wikipedia articles.

[5] Here, each article is conceptualised as a node within the graph,

interconnected by edges that signify links between these concepts.

This structural representation not only aids in identifying intercon-

nected concepts but also facilitates query expansion based on these

interrelations, enhancing the search process’s contextual depth. [5]

This is akin to a rudimentary Wikidata. Central to this approach

is the construction of the graph using knowledge bases such as

Wikipedia, Yago, or DBPedia, which inherently provide a structured

graph of concepts along with their relations. This incorporation of

semantic knowledge into the query expansion process significantly

enhances the system’s ability to suggest relevant and semantically

connected phrases, thereby enriching the search experience for

users. Furthermore, the graph-based methodology contributes to

query disambiguation by analysing the topological properties of

the graph. It can discern related articles, redirects, and even terms

that may not have been explicitly introduced by the user but hold

relevance to the query context, it does by exploring how closely the

nodes are linked. [5] This comprehensive analysis enables the sys-

tem to not only expand queries effectively but also to provide more

accurate and contextually relevant search results, ultimately im-

proving the overall search quality and user satisfaction. In addition

to discussing the graph-based techniques, the paper also highlights

the potential synergies with linked data techniques like anchor

analysis, offering complementary strategies for query expansion

and information retrieval. By leveraging semantic knowledge and

exploiting the inherent relationships within knowledge graphs, the

graph-based approach emerges as a powerful tool for enhancing

search relevance and quality in information retrieval systems in

Wikidata as it is already a knowledge graph with many relation-

ships.

5.2 Synonym Predicate
The paper "Enhancing Query Answer Completeness with Query Ex-

pansion based on Synonym Predicates" delves into strategies aimed

at improving query answer completeness by employing query ex-

pansion techniques based on synonym predicates. [10] One notable

methodology proposed in the paper involves leveraging community-

based knowledge graphs to identify synonym predicates, thereby

expanding queries to enhance answer completeness. As a result,

an assumption that community-based knowledge graphs consist

of synonym predicates that complement knowledge graph triples

required to raise query answering completeness has been made.

Central to this approach is the use of knowledge graph embed-

ding techniques such as TransD, TransH, and RDF2vec, which

extract embeddings. Knowledge graph embedding is a technique

that aims to represent entities and relations of knowledge graphs

into low-dimensional semantic spaces. [10] The experimental vali-

dation of this methodology showcases its superiority over baseline

techniques, including frequent item set mining and alternative em-

bedding methods like RDF2vec, TransD, and TransH, particularly

in terms of query completeness. Using their proposed method, the

recall increases from 0.3 to 0.8 and using the reformulated query

increases the results found from 6 to 45 in an example provided in

the paper. [10] Although this approach has been shown to improve

results, it remains to be seen whether expanding queries on syn-

onyms can work on Wikidata. In addition, extracting embeddings

adds more work in fetching from the SPARQL endpoint. That is,

the completeness of information retrieved may increase, but at the

cost of speed.
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6 MIDDLEWARE
A middleware is a software layer or component that acts as an

intermediary between different applications, systems, or services,

facilitating communication and data exchange between them. [4]

The BASIL middleware framework bridges the gap between Web

APIs and SPARQL endpoints, leveraging the advantages of both

paradigms while addressing their limitations. Web APIs are widely

adopted among web developers for their stable interfaces, promot-

ing loose coupling and interoperability. They serve as the founda-

tion for BASIL’s API development approach. Although the paper

highlights a critical drawback of traditional Web APIs: their limited

ability to harness SPARQL’s robust data integration capabilities.

Unlike Web APIs, SPARQL offers unmatched querying and RDF

data integration abilities. However, integrating SPARQL into tra-

ditional API architectures can lead to challenges such as violating

loose coupling principles and creating strong dependencies between

data models and client software. BASIL’s middleware architecture

mediates interactions between SPARQL endpoints and consumer

applications, ensuring loose coupling and facilitating seamless API

operations while preserving SPARQL’s data integration benefits.

This approach also improves caching solutions for users, a crucial

aspect given the syntactic variations in queries with identical se-

mantics in SPARQL, as they can just based on the HTTP route. [4]

Standardised interfaces through Swagger specifications and cus-

tomisable API outputs empower developers to leverage SPARQL

efficiently within their API ecosystems. Insights from the paper

regarding embedding SPARQL queries directly into applications

emphasise the importance of BASIL’s middleware in maintaining

loose coupling and mitigating dependencies. This approach enables

agility in response to schema evolutions and allows data providers

to optimise query performance, enhancing efficiency, reliability, and

sustainability in data-driven applications using RDF and SPARQL

technologies. [4] BASIL’s middleware ultimately aims to integrate

Web APIs and SPARQL to data access and integration in modern

web clients. This would work well in Abstract Wikipedia because

the constructor management and templating frontend clients and

engineers ( would never have to interact directly interact with

SPARQL and would only have to worry about their main tasks.

7 SUBSETTING
Subsetting refers to the process of extracting specific and relevant

subsets of data from a larger dataset or knowledge graph, such as

Wikidata, to meet particular research, operational, or analytical

needs. [6] Beghaeiraveri et al. undertake a comprehensive litera-

ture survey of emerging tools designed for Wikidata subsetting,

including WDSub, KGTK, WDumper, and WDF. [6] These tools of-

fer functionalities aimed at extracting precise subsets of data from

Wikidata, addressing the challenges posed by its massive scale.

The evaluation framework employed by the paper encompasses

key metrics such as execution performance, extraction accuracy,

and flexibility in defining subsets, revealing insights into the ef-

ficacy of these tools. The evaluation results demonstrate that all

four tools exhibit high accuracy in extracting defined items and

statements from Wikidata subsets. This accuracy is crucial for en-

suring the reliability and validity of extracted data, especially in

research and analytical contexts. Moreover, the paper discusses

the advantages and disadvantages associated with these subsetting

approaches, offering valuable insights for researchers and users

alike. It also emphasises the potential of subsetting tools in creating

topic-oriented knowledge graphs by populating new knowledge

graphs based on extracted subsets, catering to specific thematic

or domain-focused research requirements. One notable advantage

of this is the ability of subsetting to help circumvent challenges

related to size and computational power inherent in working with

massive knowledge graphs like Wikidata, thereby enhancing over-

all efficiency (e.g. average response time) and reducing resource

overheads. [6] Despite these advantages, the paper acknowledges

certain challenges and limitations associated with Wikidata sub-

setting. These include difficulties in ensuring uniform coverage of

references across all Wikidata subsets and identifying variations

between contributor communities, which can impact data quality

and reliability. Moreover, securing necessary funds for infrastruc-

ture to host a complete copy of Wikidata may pose challenges,

making subsetting a more viable option in resource-constrained

environments. Furthermore, existing subsetting approaches exhibit

limitations such as the need to define the ontological structure

and data model of Wikidata, along with the inability to extract

contextual metadata like references, which are crucial for compre-

hensive data analysis and interpretation. [6] Although subsetting

reduces the query overhead inherent to large RDF stores, it is not

not feasible for Abstract Wikipedia for 2 reasons. First, Abstract

Wikipedia requires the entire sum of knowledge stored in Wiki-

data as contributors write a wide variety of topics. Second, Data

on Wikidata is consistently being updated and with the need of

Abstract Wikipedia to be accurate reconcilling these updates with

the subset would introduce overheads.

8 CONCLUSION
The literature review highlights the importance of structured data

and natural language generation techniques in automating content

creation in Abstract Wikipedia through CoSMo integration with

Wikidata. Challenges persist in achieving consistent content cover-

age across Wikipedia’s different language editions, underscoring

the necessity for innovative solutions like Abstract Wikipedia. Util-

ising heuristics, caching strategies, and optimised SPARQL queries

can significantly improve query response times and system perfor-

mance, enhancing user experiences. Many of these performance im-

provement strategies can also be combined to achieve even greater

efficiency. Strategies such as leveraging heuristics for optimised

SPARQL queries and implementing various caching techniques can

work synergistically within the same middleware. Combining these

approaches allows for a comprehensive optimisation framework to

enhance query response times, reduce server load, and ultimately

improve user experiences within the Abstract Wikipedia ecosystem.
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