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ABSTRACT

This literature review explores the integration and optimisation
of CoSMo with Wikidata for efficient content retrieval in Abstract
Wikipedia. By delving into the critical role of structured data and
natural language generation techniques, the review highlights the
challenges in achieving uniform content coverage across differ-
ent language editions of Wikipedia. The introduction of Abstract
Wikipedia by the Wikimedia Foundation is examined as a step
towards automating content creation and ensuring consistency
and accuracy across articles. Strategies such as optimised SPARQL
queries, caching mechanisms, and heuristics are discussed for im-
proving query response times and system performance within the
Abstract Wikipedia ecosystem. The significance of Wikidata as a
collaborative knowledge graph and its integration with Wikipedia
for data enrichment and cross-language knowledge sharing are
emphasised. Overall, this review provides insights into enhancing
content retrieval efficiency and addressing scalability challenges in
the context of Abstract Wikipedia.
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1 INTRODUCTION

Wikipedia stands as an achievement in global knowledge sharing,
striving to democratise access to comprehensive information across
languages and disciplines [14]. Despite its success, disparities in
knowledge representation across different language editions per-
sist, highlighting challenges in achieving uniform content coverage.
The introduction of Abstract Wikipedia by the Wikimedia Foun-
dation marks a step towards automating content creation using
structured data and natural language generation techniques [15].
This structured approach not only aims to enhance the efficiency of
content creation but also ensure consistency and accuracy across
articles. It promises enhanced multilingual coverage, facilitating
article generation in any natural language based on structured data
inputs from Wikidata. [13] This literature review delves into the
critical role of Wikidata within the Abstract Wikipedia pipeline and
explores methods for optimising content retrieval from Wikidata
for efficient article generation.

2 BACKGROUND
2.1 Wikidata and its Significance

Wikidata, established in 2012, serves as a collaborative knowledge
graph within the Wikimedia Foundation ecosystem, housing a vast
repository of structured data [15]. Wikidata currently consists of
about 400 million statements and 5 billion triples. [14] Its integration
with Wikipedia provides support for data enrichment and cross-
language knowledge sharing. However, the scale and complexity
of Wikidata’s knowledge graph pose challenges in efficient data
retrieval and utilisation.

2.2 Wikidata’s RDF Triple Structure and
SPARQL

The structured nature of Wikidata’s RDF triples facilitates data in-
teroperability and query capabilities through the SPARQL (SPARQL
Protocol and RDF Query Language) query language. [14] Wikidata’s
Resource Description Framework (RDF) triples consist of subject-
predicate-object statements that represent relationships between
entities in a structured manner. Additionally, Wikidata allows for
the inclusion of qualifiers in its triples, providing additional con-
textual information and enhancing the richness of the data model.
This structured format enables efficient storage and retrieval of
data, making complex queries across Wikidata’s knowledge graph
feasible. SPARQL plays a role in this ecosystem by allowing users to
formulate queries that target specific properties, qualifiers, and rela-
tionships within the RDF triples. This level of granularity provides
users with fine-grained control over data retrieval.

2.3 Public SPARQL Endpoint

Wikidata exposes a public SPARQL endpoint, enabling researchers,
developers, and enthusiasts to interact programmatically with its
rich dataset [15]. This public endpoint allows for real-time querying
and exploration of Wikidata’s structured data. The SPARQL end-
point enforces a query answering timeout of 60 seconds, after which
queries exceeding this duration are terminated. [8]In addition, each
client is restricted to a maximum of five concurrent queries and
is subject to constraints on processing time and query errors. To
manage this, a token bucket protocol is used, granting clients an
initial allowance of 120 seconds of processing time and a quota of 60
allowable query errors. These allowances are replenished at a rate
of 60 seconds/30 errors per minute, ensuring clients can maintain a
consistent query workload within the specified limits. [8]



2.4 Abstract Wikipedia Pipeline and Content
Determination

The Abstract Wikipedia initiative introduces a novel approach to
content creation by using structured data from Wikidata and em-
ploying natural language generation (NLG) techniques [15]. A stage
in this NLG pipeline is content determination [12], where structured
data from Wikidata guide the assembly of article components. [2]
However, the interconnectivity of Wikidata’s RDF triples can pose
performance challenges during content retrieval. This is primarily
due to RDF stores prioritising flexibility in information structuring
over performance, compounded by Wikidata’s vast scale, compris-
ing 400 million statements and 5 billion triples. [8]

2.5 Need for Optimisation in Content Retrieval
from Wikidata

Optimising content retrieval from Wikidata is imperative due to
scalability challenges inherent in querying large RDF datasets. Com-
plex queries and data traversal operations can result in increased
query times.[8]. Coupled with the aforementioned 60-second query
answering timeout, optimising strategies become imperative to en-
sure efficient data fetching, timely content assembly, and improved
user experiences within the Abstract Wikipedia ecosystem.

3 PERFOMANT SPARQL QUERIES

3.1 Heuristics

Due to the flexibility of RDF combined with the expressiveness of
SPARQL, it is easy to create queries that strain even the most opti-
mised RDF stores. The paper "On the Formulation of Performant
SPARQL Queries" by Loizou and Groth provides an exploration of
heuristics for optimising SPARQL queries. [7] The authors address
the challenges faced by application developers in formulating cor-
rect, complex, and performant SPARQL queries due to the flexibility
of RDF. The paper introduces 5 heuristics that can be applied to
create optimised SPARQL queries. The heuristics proposed in the
paper are inspired by formal results found in the literature and
hands-on experience in developing an end-user focused data inte-
gration system, the Open-PHACTS Platform. They are intended to
help developers formulate SPARQL queries that can be effectively
optimised by RDF stores. The heuristics propose minimising op-
tional triple patterns, localising SPARQL subpatterns, using dataset
statistics, including necessary graph patterns, and enabling pagi-
nated views. [7] The paper also provides an empirical comparison
of the performance of six state-of-the-art RDF storage systems with
respect to the various heuristics, using large real-world pharmaceu-
tical datasets and queries. The experimental results demonstrate
improvements in performance across 6 state-of-the-art RDF stores.
The average query response time showed from 1 to 5 orders of mag-
nitude improvement across all heuristics. [7] This being observed
using state-of-art RDF stores on large real-world dataset showcases
the practical impact of applying the heuristics.

3.2 Wikidata Optimisations Documentation

The Wikidata documentation provides strategies for optimising
SPARQL query performance when using their SPARQL endpoint.
This advice is speicifically tailored to the Wikidata RDF structure
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and their RDF engine, Blazegraph. While their approach may not be
as empirical as the paper by Loizou and Groth, it provides practical
evidence and theoretical explanations for the effectiveness of their
strategies. The improvement is highlighted in the documentation
by queries that get terminated before, running to completion with a
rewrite using their strategies. For example, by leveraging fixed val-
ues and ranges within queries, users can target specific data subsets,
minimising the amount of data the system needs to traverse. Prop-
erty paths offer an efficient navigation method, guiding queries
directly to relevant sections. However, maintaining conciseness
and avoiding overly complex inverse paths is crucial for optimal
performance. Experimentation with the order of query clauses al-
lows for prioritising critical tasks for more efficient execution. [16]
Additionally, decomposing complex queries into smaller, manage-
able subqueries enhances both readability and potentially improves
query performance. Lastly, when retrieving counts, employing opti-
mised aggregate functions like "fast range counts" instead of generic
functions like ‘COUNT(*)‘ can yield superior results. [16] The doc-
umentation states that applying the strategies leads to faster data
retrieval, improved query execution plans, and quicker calculations,
ultimately leading to a significant enhancement in overall query
performance within the Wikidata knowledge base.

3.3 Motivation

The motivation for writing optimised SPARQL queries for Abstract
Wikipedia’s reliance on Wikidata stems from the tangible impact
on system performance and scalability. By leveraging heuristics
from research literature and platform-specific optimisation strate-
gies from Wikidata’s documentation, significant improvements in
query response times can be achieved. What makes query opti-
misation highly feasible is that it uses the current hardware and
infrastructure; it primarily involves rewriting queries sent to the ex-
isting infrastructure. [7] This approach minimises additional costs
and complexities while directly enhancing the efficiency of data
retrieval processes. This would help ensure a faster and less time-
out prone data fetching experience for users within the Abstract
Wikipedia ecosystem.

4 CACHING

Caching refers to storing the results of a query or parts of it in
a temporary storage location. This helps speed up future execu-
tions of the same or similar queries by retrieving the results from
the cache instead of re-executing the query against the SPARQL
endpoint. The public Wikidata public SPARQL endpoint already
implements some caching, but additional methods are reviewed
below. [9]

4.1 Content Aware Caching

Akhtar et al. propose an Adaptive Cache Replacement (ACR) ap-
proach to improve SPARQL query processing. The ACR algorithm
parallelises the task to calculate the access frequencies and uses
the edit distance to identify similar querying patterns. [1]It places
frequently accessed queries in the cache to reduce the burden on
SPARQL endpoints. The approach achieves better query response
time, less space overhead, and a cache hit rate of 80.66 percent,
accelerating the querying speed by 6.34 percent. ACR outperforms
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existing cache replacement approaches such as Least Recently Used,
Least Frequently Used, and SPARQL Query Caching in terms of
space efficiency and hit rates. [1] The approach is content-aware
because it considers the content of the queries in addition to their
structural similarity. This is important because two queries may
have the same structure but differ in their content, and treating
them as similar can lead to incorrect caching decisions. This means
it can. The approach is content-aware because it considers the con-
tent of the queries in addition to their structural similarity when
checking the cache. This is important because two queries may have
the same structure but differ in their content, and treating them
as similar can lead to incorrect caching decisions. Content aware
caching (CAC) is used by systems such as DBproxy and MTCache.
[11] When a query is run, the CAC system verifies if it matches
any cached data; if so, it generates the result based on that data or
sends the query to the database server. This increases performance

4.2 Content Blind Caching

Martin et al. implement a content blind cache. [9] That is the cache
is not aware of its contents. They achieve this by computing the
md5 hash of every query. This is approach is very quick and compu-
tationally inexpensive, but could result in many false cache misses
due to slight syntatic differences in the queries that would give the
same result. [9]

4.3 Client-side and Server-side Caching

Caching on the client-side, like Akhtar et al., involves storing cached
data on the client’s device or browser. [1] This can reduce network
calls, improving performance and reducing server load. However, it
may require additional resources and storage capacity on the client’s
end, impacting device performance or storage limits. Server-side
caching, like implemented by Martin et al., stores cached data on
the server or an intermediary caching server. [9] This can benefit
all clients accessing the server, reducing overall response times and
server load. Server-side caching can be more easily managed and
controlled but may not be as effective for personalised or dynamic
content as client-side caching. Both client-side and server-side
caching strategies can be used together to optimise performance
based on specific application requirements and resource constraints.

5 QUERY EXPANSION

Query expansion refers to the process of augmenting a user’s ini-
tial search query with additional terms or concepts to improve
information retrieval accuracy and relevance. This expansion aims
to capture a broader range of relevant documents or data points
that may not have been explicitly captured by the original query,
thereby enhancing the comprehensiveness and precision of search
results. [3]

5.1 Nearest Neighbour

Guisado-Gamez et al. explore the use of a graph-based approach
to represent the intricate relationships between Wikipedia articles.
[5] Here, each article is conceptualised as a node within the graph,
interconnected by edges that signify links between these concepts.
This structural representation not only aids in identifying intercon-
nected concepts but also facilitates query expansion based on these

interrelations, enhancing the search process’s contextual depth. [5]
This is akin to a rudimentary Wikidata. Central to this approach
is the construction of the graph using knowledge bases such as
Wikipedia, Yago, or DBPedia, which inherently provide a structured
graph of concepts along with their relations. This incorporation of
semantic knowledge into the query expansion process significantly
enhances the system’s ability to suggest relevant and semantically
connected phrases, thereby enriching the search experience for
users. Furthermore, the graph-based methodology contributes to
query disambiguation by analysing the topological properties of
the graph. It can discern related articles, redirects, and even terms
that may not have been explicitly introduced by the user but hold
relevance to the query context, it does by exploring how closely the
nodes are linked. [5] This comprehensive analysis enables the sys-
tem to not only expand queries effectively but also to provide more
accurate and contextually relevant search results, ultimately im-
proving the overall search quality and user satisfaction. In addition
to discussing the graph-based techniques, the paper also highlights
the potential synergies with linked data techniques like anchor
analysis, offering complementary strategies for query expansion
and information retrieval. By leveraging semantic knowledge and
exploiting the inherent relationships within knowledge graphs, the
graph-based approach emerges as a powerful tool for enhancing
search relevance and quality in information retrieval systems in
Wikidata as it is already a knowledge graph with many relation-
ships.

5.2 Synonym Predicate

The paper "Enhancing Query Answer Completeness with Query Ex-
pansion based on Synonym Predicates" delves into strategies aimed
at improving query answer completeness by employing query ex-
pansion techniques based on synonym predicates. [10] One notable
methodology proposed in the paper involves leveraging community-
based knowledge graphs to identify synonym predicates, thereby
expanding queries to enhance answer completeness. As a result,
an assumption that community-based knowledge graphs consist
of synonym predicates that complement knowledge graph triples
required to raise query answering completeness has been made.
Central to this approach is the use of knowledge graph embed-
ding techniques such as TransD, TransH, and RDF2vec, which
extract embeddings. Knowledge graph embedding is a technique
that aims to represent entities and relations of knowledge graphs
into low-dimensional semantic spaces. [10] The experimental vali-
dation of this methodology showcases its superiority over baseline
techniques, including frequent item set mining and alternative em-
bedding methods like RDF2vec, TransD, and TransH, particularly
in terms of query completeness. Using their proposed method, the
recall increases from 0.3 to 0.8 and using the reformulated query
increases the results found from 6 to 45 in an example provided in
the paper. [10] Although this approach has been shown to improve
results, it remains to be seen whether expanding queries on syn-
onyms can work on Wikidata. In addition, extracting embeddings
adds more work in fetching from the SPARQL endpoint. That is,
the completeness of information retrieved may increase, but at the
cost of speed.



6 MIDDLEWARE

A middleware is a software layer or component that acts as an
intermediary between different applications, systems, or services,
facilitating communication and data exchange between them. [4]
The BASIL middleware framework bridges the gap between Web
APIs and SPARQL endpoints, leveraging the advantages of both
paradigms while addressing their limitations. Web APIs are widely
adopted among web developers for their stable interfaces, promot-
ing loose coupling and interoperability. They serve as the founda-
tion for BASIL’s API development approach. Although the paper
highlights a critical drawback of traditional Web APIs: their limited
ability to harness SPARQL’s robust data integration capabilities.
Unlike Web APIs, SPARQL offers unmatched querying and RDF
data integration abilities. However, integrating SPARQL into tra-
ditional API architectures can lead to challenges such as violating
loose coupling principles and creating strong dependencies between
data models and client software. BASIL’s middleware architecture
mediates interactions between SPARQL endpoints and consumer
applications, ensuring loose coupling and facilitating seamless API
operations while preserving SPARQL’s data integration benefits.
This approach also improves caching solutions for users, a crucial
aspect given the syntactic variations in queries with identical se-
mantics in SPARQL, as they can just based on the HTTP route. [4]
Standardised interfaces through Swagger specifications and cus-
tomisable API outputs empower developers to leverage SPARQL
efficiently within their API ecosystems. Insights from the paper
regarding embedding SPARQL queries directly into applications
emphasise the importance of BASIL’s middleware in maintaining
loose coupling and mitigating dependencies. This approach enables
agility in response to schema evolutions and allows data providers
to optimise query performance, enhancing efficiency, reliability, and
sustainability in data-driven applications using RDF and SPARQL
technologies. [4] BASIL’s middleware ultimately aims to integrate
Web APIs and SPARQL to data access and integration in modern
web clients. This would work well in Abstract Wikipedia because
the constructor management and templating frontend clients and
engineers ( would never have to interact directly interact with
SPARQL and would only have to worry about their main tasks.

7 SUBSETTING

Subsetting refers to the process of extracting specific and relevant
subsets of data from a larger dataset or knowledge graph, such as
Wikidata, to meet particular research, operational, or analytical
needs. [6] Beghaeiraveri et al. undertake a comprehensive litera-
ture survey of emerging tools designed for Wikidata subsetting,
including WDSub, KGTK, WDumper, and WDF. [6] These tools of-
fer functionalities aimed at extracting precise subsets of data from
Wikidata, addressing the challenges posed by its massive scale.
The evaluation framework employed by the paper encompasses
key metrics such as execution performance, extraction accuracy,
and flexibility in defining subsets, revealing insights into the ef-
ficacy of these tools. The evaluation results demonstrate that all
four tools exhibit high accuracy in extracting defined items and
statements from Wikidata subsets. This accuracy is crucial for en-
suring the reliability and validity of extracted data, especially in
research and analytical contexts. Moreover, the paper discusses
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the advantages and disadvantages associated with these subsetting
approaches, offering valuable insights for researchers and users
alike. It also emphasises the potential of subsetting tools in creating
topic-oriented knowledge graphs by populating new knowledge
graphs based on extracted subsets, catering to specific thematic
or domain-focused research requirements. One notable advantage
of this is the ability of subsetting to help circumvent challenges
related to size and computational power inherent in working with
massive knowledge graphs like Wikidata, thereby enhancing over-
all efficiency (e.g. average response time) and reducing resource
overheads. [6] Despite these advantages, the paper acknowledges
certain challenges and limitations associated with Wikidata sub-
setting. These include difficulties in ensuring uniform coverage of
references across all Wikidata subsets and identifying variations
between contributor communities, which can impact data quality
and reliability. Moreover, securing necessary funds for infrastruc-
ture to host a complete copy of Wikidata may pose challenges,
making subsetting a more viable option in resource-constrained
environments. Furthermore, existing subsetting approaches exhibit
limitations such as the need to define the ontological structure
and data model of Wikidata, along with the inability to extract
contextual metadata like references, which are crucial for compre-
hensive data analysis and interpretation. [6] Although subsetting
reduces the query overhead inherent to large RDF stores, it is not
not feasible for Abstract Wikipedia for 2 reasons. First, Abstract
Wikipedia requires the entire sum of knowledge stored in Wiki-
data as contributors write a wide variety of topics. Second, Data
on Wikidata is consistently being updated and with the need of
Abstract Wikipedia to be accurate reconcilling these updates with
the subset would introduce overheads.

8 CONCLUSION

The literature review highlights the importance of structured data
and natural language generation techniques in automating content
creation in Abstract Wikipedia through CoSMo integration with
Wikidata. Challenges persist in achieving consistent content cover-
age across Wikipedia’s different language editions, underscoring
the necessity for innovative solutions like Abstract Wikipedia. Util-
ising heuristics, caching strategies, and optimised SPARQL queries
can significantly improve query response times and system perfor-
mance, enhancing user experiences. Many of these performance im-
provement strategies can also be combined to achieve even greater
efficiency. Strategies such as leveraging heuristics for optimised
SPARQL queries and implementing various caching techniques can
work synergistically within the same middleware. Combining these
approaches allows for a comprehensive optimisation framework to
enhance query response times, reduce server load, and ultimately
improve user experiences within the Abstract Wikipedia ecosystem.
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