TempTing

A Template Development Environment for Abstract Wikipedia

Matthew Craig
University of Cape Town
Cape Town, South Africa

CRGMAT002@myuct.ac.za

ABSTRACT

A vision for a truly multilingual Wikipedia has been proposed, ar-
chitected, and specified. The vision, titled Abstract Wikipedia, aims
to generate Wikipedia articles from base, abstract representations
of content. Despite progress towards this goal, there exist practical
barriers preventing users from contributing. This report details the
development of a software tool that broadens the accessibility and
functionality of Abstract Wikipedia. This tool provides a web-based
development environment for template creation. These templates
are necessary for realising abstract content in natural language. A
custom parser was developed for the template syntax. The parser
provides context-aware diagnostics, syntax highlighting, and au-
tocompletion capabilities to the development environment. This
paper covers the tool’s purpose, design, implementation, and suc-
cesses. It was demonstrated that the system could adequately handle
valid and invalid user submissions. The system was designed to
allow for its components can be repurposed in future efforts within
the Abstract Wikipedia project.

CCS CONCEPTS

« Software and its engineering — Parsers; Designing software;
Computing methodologies — Natural language generation.

KEYWORDS
Abstract Wikipedia, templates, parsing, templatic NLG

1 INTRODUCTION

1.1 Context

Abstract Wikipedia is a much broader project, of which this project
forms only a small part. Abstract Wikipedia envisions a system of
open collaboration between people of diverse, multilingual back-
grounds [16]. Its goal is to leverage Wikidata [15] and Wikifunctions
[16] to facilitate the creation of language-agnostic representations
of content. Natural Language Generation (NLG) techniques will be
utilised to produce articles from these abstract representations in
human languages.

Abstract Wikipedia aims to deterministically generate Wikipedia
articles from the knowledge stored in Wikidata, an established
knowledge graph [15]. The content is to be composed in language-
independent representations called constructors [2]. A constructor
specifies content to be extracted from Wikidata. Each of these
constructors is to have, associated with it, a set of language-specific
templates [6]. A template acts as a function that transforms selected
content into natural language. Constructors pass selected Wikidata
content to a template as arguments. A template details the language-
specific arrangement of this content. The templates arrange this

content with use of dependency-relation labelling, lexical function
calls, and sub-template invocations [6].

Constructors and templates serve as representations within the
natural language generation (NLG) pipeline [2]. Templates, after
receiving content from a constructor, can be realised as a natural
language article. The project discussed in this report focuses on
improving the process of writing templates for use in the realisation
process.

M wikicata

Content
Selection Templates

iaati French
10 French F Realisation > llArticIe

B= isiZulu
Article

Constructor

Abstract
Representation

P B=isiZulu } Realisation }-»

- = ish
2= Swedish —# Realisation }-} "Er‘g;g's ‘

Figure 1: Simplified Abstract Wikipedia NLG Pipeline

1.2 Problem Statement

This project seeks to address some Abstract Wikipedia’s current
shortcomings, particularly those pertaining to templates. These
can be loosely categorised into two categories: Functionality and
Accessibility.

1.2.1 Problem: Functionality. The template functionality required
by Abstract Wikipedia is largely absent. Partial implementations -
discussed in section 2.2 - have been attempted, but progress towards
a production-ready system has not yet begun. This project focuses
on the issue of absent template validation and parsing. Templates
are unable to be realised as natural language without a system that
can handle these tasks.

1.2.2 Problem: Accessibility. Significant technical barriers are pre-
venting the general public from contributing to and benefiting from
Abstract Wikipedia. Even if templates were to be fully functional
in selecting and realising content, there persist significant hurdles
in interacting with them. There are no existing tools that improve
the ease of use, accessibility, or comprehensibility of the project.
The template creation process is complex and unintuitive with-
out guidance. This deters a majority of potential users. It is infeasible
to expect users to devote time to understanding the syntax and func-
tionality. As it stands, the only means by which users can acquire

knowledge of templates is through reading the specification [6].
These accessibility problems with template creation are a priority
of this project.

1.3 Project Overview and Aims

The project proposed here aims to solve many of the problems
that currently affect Abstract Wikipedia’s templates. To solve these
problems, a web tool has been developed. This tool, titled TempTing
is a featureful development environment specialising in template
management and creation.

TempTing was developed in parallel with two other projects. The
first of which is a system for optimally extracting relevant Wikidata
content for use in constructors. The second is a tool similar to
TempTing but for managing the creation of constructors. Ideally, all
three components will eventually be integrated. This project focuses
entirely on templates, as the other two projects have covered the
constructor and Wikidata aspects.

TempTing is a user-facing tool that aims to streamline template
creation. The tool allows users of various languages to create tem-
plates necessary for realising constructors in natural language.
Realisation (NLG) falls outside of the scope of this project. The
components of this project have, however, been designed modu-
larly such that they can be easily integrated into future realisation
efforts. This will be discussed further in section 4.5.

The project aimed to produce a robust user interface and suite
of tools that improve the template creation experience. These tools
are seamlessly integrated into the web app and include:

e A custom parser

A syntax validator

A linter with in-line diagnostics
Syntax highlighter
Autocompletion

A template browser

This web app intends to reduce friction and barriers that currently
disincentivize engagement with Abstract Wikipedia.

2 BACKGROUND AND RELATED WORK
2.1 Abstract Wikipedia

The project will be developed with influence from the work of
Denny Vrandeéi¢. Vrandeci¢ justified [14] and proposed [16] the
Abstract Wikipedia project. As discussed in section 1.1, Abstract
Wikipedia is a project that aims to develop a process by which
Wikipedia articles can be generated from base, abstract represen-
tations of content [14]. The ability to deterministically generate
Wikipedia articles is particularly beneficial for low-resourced lan-
guages. isiXhosa Wikipedia, for example, has 2 092 articles and
only a single admin [11]. This contrasts with English’s 6 873 087
articles and 854 admins [11]. Low-resourced languages often lack
in article quantity, quality, and recency. A single language agnostic
representation would allow for the generation of articles in all sup-
ported languages, ensuring that they are immediately substantive
and up-to-date.

Upon initial inspection, such a system may feel unnecessary.
Why not simply use machine translation to make English content
available in all other languages? The problem is that doing so risks a

Matthew Craig

form of cultural imperialism. English, and by extension the culture
of the Anglosphere, would be asserted as the core source of truth.
Abstract content has the distinct benefit of supporting contributions
from anyone, regardless of language or culture [14].

2.1.1 Wikidata. Wikidata is an open, collaborative knowledge base
[15]. Wikidata houses a large collection of labelled entities and the
relationships they have with other entities. Its goal is to provide
a diverse collection of machine-readable knowledge that anyone
may contribute to and benefit from [15]. The content is, however,
largely inaccessible to the broader public. This is due to the technical
barrier prohibiting interaction with the content. Abstract Wikipedia
intends to solve this problem by producing human-readable natural
language from the knowledge housed in Wikidata. [16].

Each concept stored in Wikidata is associated with a unique iden-
tifier prefixed with Q. For example, Douglas Adams is identified
with Q42 [2]. These concepts are related to each other by prop-
erty identifiers (prefixed with P) such as has occupation (P106).
Constructors, the abstract representations (section 2.1.2), specify
content through use of these Q and P identifier.

2.1.2 Constructors. The abstracted representations of content are
given the term constructors [16]. Constructors are declarative state-
ments of content to be selected from Wikidata. The declarations
can be conceptualised as expressive arrangements of language-
independent Wikidata identifiers. They are modular representa-
tions of content that can be composed to form an article [2]. A
modelling language for constructors, CoSMo, has been formally
specified [2].

2.1.3 Templates. Constructors are inherently multilingual [2] and
thus require an intermediary language-specific representation be-
fore they can be realised as natural language. These representa-
tions, called templates, are specific to a constructor and language.
Each template describes how constructor-specified content is to
be arranged in a particular language [6]. Natural language, such
as Wikipedia articles, is to be generated from the realisation of
these templates. The specifics of the template structure and syn-
tax is discussed in section 2.3. Earlier work, such as a Vrandeéi¢’s
proposals [14] [16], use the term “renderer” to refer to a concept
roughly equivalent to templates. These renderers were only given
a pseudo-syntax and existed as a placeholder concept.

2.1.4 Wikifunctions. Wikifunctions, another project by the Wiki-
media Foundation, has recently launched [10]. Wikifunctions pro-
vides a platform that aims to democratise access and contribution
to functions [16]. Currently, only functions written in the Javascript
and Python programming languages are supported. It is intended
that the templates, lexical functions, constructors, and NLG func-
tionality of Abstract Wikipedia are to be hosted on Wikifunctions
[6]. This prospect aims to broaden Abstract Wikipedia’s potential
for open collaboration.

2.2 Existing Implementations

2.2.1 Ninai/Udiron. Morshed (2023) [12] outlines the specification
and development of an NLG system for Abstract Wikipedia titled
Ninai/Udiron. Ninai/Udirion consists of two core components:

TempTing

(1) Ninai: Searches Wikidata for items and lexemes for concepts
relating to a constructor. It processes the results into syntax
trees.

(2) Udiron: Manipulates the syntax trees and converts them
into natural language.

Ninai/Udiron serves as a demonstration that NLG within Abstract
Wikipedia is viable. The system is, however, highly coupled to
the Python programming language. Constructors, rather than us-
ing the CoSMo syntax [2], are defined as nested Python functions.
Templates, as discussed in sections 2.1.3 and 2.3 do not exist in
Ninai/Udiron. Instead, reminiscent of Vrandeci¢’s proposals [16],
Python functions called renderers are used to realise constructors.
This reliance on Python-implemented representations is less acces-
sible than the combination of CoSMo [2] and templates.

2.2.2 Scribuntu Implementation. A prototype implementation of
the template system has been created [5]. It is integrated within
Scribuntu, Wikipedia’s embedded Lua-based scripting environment.
This prototype demonstrates that the proposed template system
is adequate for realising natural language from Wikidata content.
The implemention was not, however, designed to be a robust final
system. The parser takes concessions such omitting support for
multiple function arguments or nested function calls [5]. Addition-
ally, the system is not equipped to handle invalid templates. No
diagnostic information is provided to guide users through template
creation.

2.3 Template Syntax

A syntax for templates, which this project adheres to, has recently
been proposed ([6]). In this syntax, templates are composed of
slots (enclosed in braces: { }) interspersed with free text. Slots can
represent interpolations of arguments, lexical function calls, or sub-
templates [6]. Slots are to be given dependency labels which identify
their grammatical role and relation to other syntactic elements. The
specific role (dependency label) identifiers used here are based
on those provided by Universal Dependencies [18]. Free text is
simply a string of text in the chosen language; typically used when
dependency labelling does not affect its realised output. A full
specification of the grammar can be found in the appendix (table
6).

2.3.1 Template Example 1. For example, take a template for the
English language titled item-in-container (fig. 2). The appendix
includes a figure (fig. 8) demonstrating the template within the
context of the TempTing editor. The template takes an item and
a container as arguments from a constructor. When given the
arguments item = "ant" (Q115705859) and container = "box"
(Q188075), the template would be realised as “There is an ant in
the box”.

It’s worth noting a few aspects of this template’s presentation
in fig. 2. Each slot (enclosed in braces { }) is presented on its own
line. This does not affect the output but is useful for demonstration.
Free text and strings and highlighted normal-weighted black. The
arguments that the template will receive from a constructor are
highlighted in green. Roles, part of a template’s dependency label,

«

are highlighted in purple and suffixed with “:”. These roles state

{expl:"There"}
{root:"is"}
{det<nsubj:Lexeme("a")}
{nsubj:item}

in the

{obj:container}

Figure 2: Template: item-in-container
Arguments: item, container

@ 2

the dependency relation a slot has; here, “is” is the root of the tem-
plate. Some roles are succeeded by a “<” symbol which indicates
their dependency relation with another syntactic element. For ex-
ample, the Lexeme("a") slot has the dependency label det<nsubj.
This indicates that the slot has the role det (determiner) and de-
pends on the the nsubj (nominal subject). In this case, the nsubj
is an invocation of the container argument. For slots where “<”
is omitted, it is inferred to be dependent on the root. In the case
of role-identifier conflicts, the role must be followed by an index.
Indexes are prefixed with “_” (eg. expl_2).

Function invocations can either be lexical functions or sub-
template invocations. In fig. 2, function invocations are highlighted
with bold black. In this example, the lexical function Lexeme is in-
voked with “a” (the indefinite article) as an argument. The template
syntax specification indicates that the Lexeme function would ac-
tually take the Lexeme identifier L2767 (English indefinite article),
however, “a” has been used for demonstrative clarity. This Lexeme
function is used so that the lexeme (lexical unit) can be realised
as either the “a” or “an” lemmas (dictionary forms). The choice
between “a” and “an” resolved by the det<nsubj dependency label.
The indefinite article (det) is dependent on the item argument
(nsubj).

For example, let container = "box" (Q188075):
e When item = "ant" (Q115705859) — “There is an ant in
the box.”
e When item = "person" (Q215627) — “There is a person
in the box.”

2.3.2 Template Example 2. The previously discussed example can

be modified to facilitate numbered items. The new template, i tems-in-container,

would take in the arguments count, item, and container. Through
dependency labelling and the use of the Cardinal function, the
chosen lemmas are dependant the plurality of count.

Letitem = "person" (Q215627) and container = "box" (Q188075):

e When count = 1 — “There is one person in the box.”
e When count = 2 — “There are two people in the box.”

To achieve the aforementioned pluralised template, a sub tem-
plate invocation will be used. In fig. ??, the template invokes the
sub-template items 4. The items template (4) takes in an item
and a count and transforms them into a numbered singular or
plural form. items(2, "person") — “two people”. The nummod
dependency label identifies Cardinal (2) as a numeric modifier.

While equivalent realisation could achieved with a single tem-
plate, this example demonstrates the utility of template nesting.

{expl:"There"}
{root:Lexeme("is")}
{nsubj:items(count, item)}
in the

{obj:container}

Figure 3: Template: items-in-container
Arguments: count, item, container

{nummod: Cardinal (count)}
{root:item}

Figure 4: Template: items
Arguments: count, item

Templates are composable, modular, and reusable. This property
intends to accelerates template development.

3 REQUIREMENTS AND DESIGN

3.1 Requirements

Requirements were determined and prioritised through analysis the
current state of Abstract Wikipedia and existing implementations.
This revealed that two primary components would be required:

o A web application that aids in the editing and management
of templates.
o A custom-built parser for the template syntax.

3.1.1 Web App Requirements. Wikimedia projects, such as Wiki-
functions [10], are typically typically distributed via the web. To
align with adjacent projects, it was considered a requirement that
TempTing be implemented as a web app.

Vrandeci¢’s Proposal states a need for editing tools within Ab-
stract Wikipedia [16]. These tools must make it easy to “create,
refine, and change” [16] content. The proposal gives a hypothetical
example of a tool which gives contributors immediate feedback
[16]. This feedback that would help them learn to “express them-
selves in the constrained language the system understands” [16].
Based on these statements, it was concluded that TempTing should
provide an integrated template-editing environment with features
that enable immediate feedback. The following editing features
were chosen to achieve this:

o Detailed diagnostic and linting information. Contributors
receive real-time feedback on template validity.

e Syntax highlighting of the elements of template syntax.

o Autocompletion for dependency labels and argument invo-
cations.

Screenshots of each features of these within the TempTing editor
can be found in the appendix (fig. 9, 11, ??). Additionally, to aid in
the refinement and modification of existing templates, a template
management system was deemed a requirement.

While the template syntax could accommodate any dependency-
labelling system, Universal Dependencies prioritised. Both Ninai/Ud-
iron [12] and the template-syntax specification [6] make use of
Universal Dependencies. Thus, TempTing’s editor was required to
support Universal Dependencies.

Matthew Craig

3.1.2 Parser Requirements. Requirements for the parser centered
around the template language specification [6]. In particular, adher-
ence with the provided grammar (fig. 6) was considered essential.
There are some discrepancies between the provided grammar and
provided examples. Notably, the suggested functions accept atypi-
cal invocations such as lexeme identifiers, Wikidata Q-items, and
integers [6]. These invocations do not exist in the grammar. Ad-
ditionally, the Hebrew examples make use of the | character for
conditional elision [6]. This is despite its absence in the grammar.
It was decided that adherence to the grammar was preferable, and
thus TempTing’s parser did not require support for these edge
cases. Comparable functionality can, however, still be achieved
with the more minimal syntax. Lexeme and Q-item identifiers could
be wrapped as strings. Conditionals could be achieved through
function nesting, rather than with dedicated syntax.

The parser’s requirements were influenced by the shortcom-
ings of the Scribuntu prototype [5]. TempTing’s parser was re-
quired to offer full support of the syntax specified in the grammar.
This includes multiple function arguments and function nesting.
The parser was required to emit context-specific error messages
when encountering invalid syntax. To improve editing feedback,
the parser would need to be fault-tolerant. This means that each
slot must be parsed independently, resulting in the production of a
list of error messages. This contrasts with a parser that would fail
upon encountering its first error.

It is idealised that components of Abstract Wikipedia, such as
the parser, would eventually run on Wikifunctions. This means that
the implementation’s programming language must be supported by
Wikifunctions. Additionally, in order for the parser to be integrated
with the web app, it must be able to run in a browser.

3.2 System Overview

The web app has been designed with a separate frontend and back-
end. The frontend, accessible via a browser, communicates with
the backend via its REST API. The parser, detailed in section 3.3, is
designed to be integrated in the frontend. The parser communicates
with the editor so that it may provide the required features (section
3.1.1). A high-level overview of this system can be seen in figure

(fig. 5).

3.3 Parser Design

3.3.1 Parser Prototype. During the parser design process, an ex-
ploratory prototype was developed. This prototype was rapidly
implemented with unified lexing and parsing stages. It was created
to determine an adequate design that would accommodate the re-
quired parsing features (section 3.1.2). This aided in designing a
modular system that could support contextual error messages, fault
tolerance, and nested function calls.

3.3.2 Parser Pipeline. The parser was designed as a pipeline (fig.
??). A template is transformed, by the lexer stage, into a stream of to-
kens. The tokens are processed by the parser stage to produce either
an abstract syntax tree or list of errors. The exploratory prototype
revealed that an additional error handling stage would be useful.
The error handling stage produces formatted error messages from
the information in error list. Thus far, the term “parser” has referred
to the entire parsing pipeline. The “parser stage” is considered to

TempTing

Figure 5: System Overview

be a sub-component of the parsing pipeline. The parsing pipeline
was designed with inspiration from Ball’s interpreter textbook [3].

3.3.3 Pipeline Stages. The design for the pipeline stages is visu-
alised in fig. 6.

The lexer stage exists to convert a plain-text template into la-
belled tokens. These labels include information about the token’s
line and column number. This is necessary so that the produced
errors may include positional details.

The parser stage receives tokens from the lexer. Using slot-
delimiter tokens, a list of slots is produced. Each slot is parsed
independently so that the required fault-tolerance can be achieved.
The parser, depending on the context in which an error is encoun-
tered, produces a constructed error-entity. These errors are later be
unpacked, by the error handler, as formatted error messages. Free
text is also be parsed to identify punctuation marks.

The errors handled by the parsing pipeline are limited to syntax
errors. The linter integrated into TempTing will use parser output,
provided arguments, and chosen language to produce post-parsing
€errors.

3.4 UI Design

Effective user interface design was deemed a priority for the project.
An inviting user interface can often be the determining factor in
ensuring that a user adequately engages with a system. The burden
of learning the template syntax poses a significant user-retention
hurdle that a good UI could help alleviate.

3.4.1 Ul Views. The Ul was designed to include three distinct views.
The template creator, template browser, and account manager. Fig.
?? presents their context within the broader system. The template
creator includes the template editing panel and inputs for specifying
template arguments, title, description, and language. The template
browser displays existing templates and allows users to edit them.

3.4.2 Responsive Design. The Ul is intended to be used on a desk-
top, however, it has been designed to support mobile. The entire
application utilises responsive design to adapt to differing screen
sizes. Some components, such as the template creator, are given

Frontend (Client) Backend (Server)
Web App < Response Response Content
Business Logic
Layer
Q Sign up e
A Account Manager T Routed (B
Sign in Requests
= Template Browser —Fetch Templates){ RE=T ?:I LavEl Data Access Enities
o Request
Publish Template
| or
Save Draft Data Access
Layer
Lo
Abstract Syntax Tree
or
Raw Template List of Errors Records|
[Parser)
Y
[0 Lexer]
I \
Tokens
[,ﬁ Parser]

Raw Template

(Lexer)

More . [create
‘—bchﬂ,ade,so Yes» Whitespace? —No | Token I

Y P 2
T Yes Create newl
\) Lexer state

w/ b g

Parser
Construct
Error
. . Yes
[List of slots Determine
split S\ors“ Svore, ve: ‘ lement [—Context
— : { Context okens

J

\ Tokens
expected?
More

Tokens?

T ‘ Construct

‘ Element

Parsed)
Output (

Error Handler)

ErrovL\sL_>{ Unpack
|_Emors |

Contains
Errors?

A 4

Abstract Syntax Tree Error Messages

Figure 6: Parsing Pipeline

unique layouts that cater towards smaller screens. Mobile compati-
bility was targeted to broaden the potential user base.

3.5 Backend Design

The backend intends to be relatively simple, existing primarily
to manage user authentication, template storage, and template
retrieval. Template and user information is stored in a relational
database that is managed by the backend.

The backend, visualised in fig. ??, uses a simple three-tiered
architecture. The REST API layer acts as the presentation layer.
This layer receives requests from the frontend and routes them to
processing functions in the business logic layer. The business logic
layer processes the provided information and requests data from
the data access layer. The data access layer constructs the necessary
SQL queries and communicates with the database.

3.6 Database Design

Data management does not make up a significant portion of this
project’s capabilities or focus. The database design, thus, prioritises
simplicity and stability. Only data regarding users and templates are

stored. The database follows a relational schema that is portrayed
in fig. 7.

The users table information about user accounts. Passwords are
hashed before they are stored, protecting the user in the event of
a leak. Upon login, a session key is generated, hashed, and stored
in the sessionKeys table. The client is sent a copy of the session
key to store locally. The client must send a valid session key when
attempting to perform actions such as publishing a template.

The published table uniquely identifies each published template.
Multiple language implementations of a template, stored within
the versions table, can associate with a single published entry.
The actual content and metadata of a template implementation is
stored within the templates table. The content (template table)
is decoupled from the versions table so that it may be referenced
from the drafts table.

The database does not store the available roles for each language.
These roles are delivered directly to the client. This is articulated
in section 4.4.

templates drafts
PK | id PK|id
versions ;Ue FK | template_id
PK|id description
FK | template_id With: args With
FK | user_id language
FK | published_id raw
date
Associated with FK | user_id sessionKeys
T PK | key
published Created by Last edited by rFO" FK | user id
PK|id JF
numArgs users
PK | id
usemame
password
icon

Figure 7: Crow’s Foot ER Diagram

4 IMPLEMENTATION

4.1 Parser Implementation

4.1.1 Programming Language Choice. To provide the desired text-
editing functionality, the parser needs to run on the client. Ideally,
the parser would also be able to run on Wikifunctions. It is for these
reasons that the parser must execute as Javascript code. The parser
was not, however, written in vanilla Javascript. The parser was
written in Gleam, a modern, statically-typed, functional language
that can transpile to Javascript [13]. This transpilation, works simi-
larly to Typescript. Gleam uses a Hindley-Milner type system [13],
which is particularly well-suited to parser development. Gleam’s
control flow is handled exclusively through exhaustive pattern
matching. In the context of parser development, this type-system
and control flow forces one to handle all possible execution paths.
It was concluded that Gleam would be an ideal fit for developing
the parser as it offers assurance that all edge cases are covered.

4.1.2 Parser Justification. A significant portion of this project’s
development focused on the development of a custom parser for the

Matthew Craig

template syntax. This was done despite the availability of parser
generators. A custom parser was developed because it provides
significantly more control over what contextual information is
” is used in
“ina

returned in the event of a syntax error. For example, “_

slots to prefix a role index. New users may attempt to use
snake_cased function name. Given the following slot:

{

myRole:example_function()

}

e TempTing’s parser produces the following syntax error:

Syntax Error:

Function name: example_function

o«

is not a valid character for Function name.

Invalid Function name format:

Format must be in the form:

One-word identifier.

It can be the name of another template,
which will invoke it as a sub-template

TIP: ~_° is prefixed before role indexes.
Separation of multi-word identifiers can be done with:
camelCase (capitaliseEachWord)

or kebab-case (put-a-hyphen-between-each-word).

e A parser generator, such as Nearley [1], would produce the
following syntax error:

Line 2, column 13: Expected ![{}_<:(), \n\r\t"],
end of input, or whitespace but "_" found.

The error returned by the parser generator is unable to provide
adequate feedback to the user. TempTing’s parser gives instructions
to resolve the issue.

4.1.3 Parser Algorithm. The lexer and parser were written in a pure
functional style. Reflecting on section 3.3.2, the lexer transforms
an input string into a list of Tokens. The parser transforms the
list of Tokens (produced by the lexer) into a Template. The role
of the lexer is to produce a token list that ignores whitespace and
to assign positioning (line and column number) information to
each token. The parser produces a tree (AST) from these tokens
and returns a contextual error message when an unexpected token
is encountered. The parser is implemented as a recursive descent
parser [3] but with heavy reliance on Gleam’s type system.

The Lexer type is a product type containing a list of previously
lexed tokens, the current position, and a context function. The
Lexer’s context function takes in a lexer and a character and pro-
duces a new lexer. The lex function folds the list of input characters
with a Lexer as an accumulator. For each input character, the cur-
rent Lexer’s context function is called to produce the subsequent
Lexer. A context function pattern matches based on the input char-
acter and returns a new Lexer which may have an added Token
and new context function. For example, in the label context, “_”
would add an IndexPrefix token to the token list and change the

TempTing

context function to index. The core lexing function is as follows
(note that |> is the pipe operator in gleam):

fn lex_with_lexer(input: tok.Chars, lexer: Lexer) {
input
|> fold(lexer, fn(l, char) {
1 |> l.context(char) |> update.increment
b
3

The Template type models a template as a tree of sum and prod-
uct types. The parse function takes the output list of tokens out-
putted by the lex function and transforms them into a Template. A
Template is treated as a list of Results so that it may be fault-tolerant.
Each slot is parsed independently and can produce its own errors.
This is useful for linting purposes as it allows for multiple slots in
a template to separately display diagnostic information. A syntax
error in one slot will not prevent another from being parsed. Each
slot is parsed recursively to create a S1ot constructor. Recursive de-
scent parsing is necessary because function calls are nestable. The
parsing operations recursively call contextual parsing functions (eg.
parse_slot or parse_invocation) until an element is returned.
Gleam’s monadic bind operations such as try and guard are used.
These operation ensure that the parser short-circuits in the event
of a syntax error and returns the contextual error type. The error
types are themselves constructed as a tree and are unwrapped to
produce their context-aware descriptions. This is the error handler
stage of the pipeline discussed section 3.3.2.

The subsequent block is the Template type definition in tem-
plate.gleam. In Gleam, the type keyword, when followed by =
denotes a type alias. When followed by a { } block, the type key-
word denotes a set of type constructors. The types are implicitly
sum types with each type constructor being a product type. Here,
an Element is constructed with either Slot(dependency_label,
invocation) or FreeText(text).

A Gleam instance of this Template type is produced as parser
output. A final step is employed to convert this Template instance
into JSON, so that it may integrate with other system more seam-
lessly.

pub type Template =
List(Result(Element, err.Syntax))

pub type Element {
Slot (dependency_label: DependencylLabel,
invocation: Invocation)
FreeText (text: FreeText)
}

pub type FreeText {
LexemeOrString(lexeme_or_string: String)
Punctuation(punctuation: String)

}

pub type DependencylLabel {
DependencylLabel (label: Label, source: SourcelLabel)
Root

}

pub type SourcelLabel {
SourcelLabel (label: Label)
SourceRoot

}

pub type Label {
Label(role: String, index: Int)

}

pub type Invocation {
Function(name: String, args: Array(Invocation))
Interpolation(interpolation: String)
StringInvocation(string: String)

}

4.2 Frontend Implementation

4.2.1 Frontend Language and Libraries. The frontend was imple-
mented as a Typescript React single-page application. React, like
other Javascript frameworks, enables structured and efficient dec-
larations of web Uls [4]. React shines due to its popularity and
ecosystem. Shadcn [9], a React component library was the partic-
ular standout which solidifed React as the framework of choice.
Ideally, the frontend would’ve also been built in Gleam but it does
not yet support any libraries comparable to Shadcn.

Shadcn is a collection of flexible pre-built React components [9].
Unlike other component libraries, Shaden components are inserted
directly into the project’s src/ directory and can be modified at
will. Shaden components are styled with TailwindCSS, a CSS util-
ity class framework [17]. Tailwind improves the consistency and
development efficiency of component styling. Through Shadcn and
Tailwind, TempTing was able to greatly improve the look and feel
of its UL

The template editor was implemented with the use of the CodeMir-
ror library. CodeMirror is an extensible in-browser text-editing
library [7]. CodeMirror facilitated the development of the linting,
syntax highlighting, and autocompletion functionality. The integra-
tion of CodeMirror into TempTing is discussed further in section
4.3.

4.2.2 Web App Features. The editor, discussed in section 4.3, is
embedded within a web app that aims to complement the editing
experience. The template creation page offers several enhancements.
Users may give their templates a title, description, language, and
arguments. The supported languages are, currently, based on those

with Universal Dependency treebanks [18]. The editor frame exists
within a dynamic split-screen view. The user can adjust the portion
dedicated to the editor or the utilities panel. The utilities panel
displays collapsible menus for diagnostics, and parser output.

The editor panel is overlayed with zoom and maximise buttons.
The zoom buttons allow the user to change the font size in the editor,
irrespective of their browser zoom-level. The maximise button
moves the editor into an isolated floating panel so that editing may
be done free from the distractions of a complete interface.

Once users have created an account and logged in, they can
save and publish their templates. Templates can be saved as drafts,
prior to publication, if they wish to revisit it later. Publishing a tem-
plate makes it accessible to all other users for viewing, editing, are
composition as a sub-template. Existing templates can be explored,
filtered, and searched through the template browser. Users may cre-
ate new language variations of existing templates from the template
browser. The associations between template language variations
indicate a common constructor. These associations have not yet
been linked with a constructor implementation. It is enforced that
associated templates have the same number of arguments to ensure
future constructor compatibility. The name of a template and its
arguments, however, can vary by language implementation.

4.3 Editor Implementation

4.3.1 Text Editor Features. The application’s core features are pro-
vided through a text-editing interface. The user is guided through
the template creation process through the additional IDE-like fea-
tures that the editor provides. Screenshots of the features are found
in the appendix (fig. ??, 72, ??).

One prominent template-creation aid is the included linter. The
linter is capable of detecting syntax errors and invalid identifier
usage. The user is provided diagnostic information that describes
their error as well as hints that suggest fixes. Problematic areas
of the user’s template are given a red, wavy underline. This bor-
rows from the spell-checker idiom that users are likely exposed
to through word-processing software. The diagnostic descriptions
are displayed to the user upon mouse hover. Additionally, the user
can browse a list of errors in the resizable utility panel discussed in
section 4.2.2. The linter provides feedback to the user that directs
them towards writing valid templates.

The linter calls the parser once the user pauses typing for 200ms.
In the event of parser failure, a detailed syntax error is produced
based on the failure’s context. The AST produced through parser
success is further validated by the linter. It is ensured that invo-
cations match the arguments provided to the template. Addition-
ally, roles are compared with the language-specific dependency-
relations provided by Universal Dependencies [18]. Specifically, the
revised v2 Universal Dependency relations were used. The parser
is not dependent on this set, however, and thus the linter could
accommodate alternate roles.

TempTing provides contextual autocompletion functionality in
the editor. Within the editor window, it can complete argument
interpolations and roles.

The template writing process is significantly streamlined due to
the provided syntax highlighting. Each parsed symbol is displayed
with a unique colour, depending on its context. This can be seen

Matthew Craig

in fig. 8. The primary benefit of syntax highlighting is improved
template readability. Additionally, it gives immediate confirmation
to a user that a template adheres to their intent.

4.3.2 Text Editor Library. CodeMirror, the text editor library, is
highly configurable and offers support for custom language imple-
mentations. CodeMirror provides modular frontends for linting,
syntax highlighting, and autocompletion.

Initially, TempTing achieved syntax highlighting with the custom
parser. The parsed symbols were wrapped with tags and
given classes dependent on their token type. Each CSS class was
then given a colour. This approach was abandoned, however, as it
did not integrate natively with CodeMirror. While CodeMirror does
support custom parsers for syntax highlighting, it prioritises its
own bespoke parser-generator. CodeMirror’s Lezer parser system is
built specifically for syntax highlighting CFGs such as the template
syntax [7]. The primary benefit of a custom parser was the context-
aware diagnostics and thus, it was considered acceptable to use
CodeMirror’s Lezer system for syntax highlighting. A grammar,
found in the appendix, for the template syntax was written in
Lezer’s notation. Admittedly, this approach is inelegant. The editor
runs two independent parsers to achieve its required features. This
inelegance was considered to be a necessary tradeoff improved
integration with CodeMirror. This improved integration allows for
the syntax highlighting to be exported as a CodeMirror plugin,
which feature projects may utilise.

CodeMirror’s linting capabilities fit nicely with the custom parser’s
design. CodeMirror’s linter is simply a function that is called, with
a debounce, on editor change. Each time the editor changes, it’s
contents is passed to the parse_template function (section 4.1).
If any errors are returned, their positions ranges (start and end
positions) are returned to the linter with the designated diagnostic
messages.

4.4 Backend Implementation

Gleam, the language that the parser was implemented in, was also
used for the backend. Gleam is capable of transpiling to Erlang as
well as well Javascript [13]. Erlang transpilation allows the backend
to run on the BEAM VM. The choice of backend language was,
however, largely inconsequential. The backend is a simple REST
API which receives HTTP requests, performs necessary CRUD
operations, and returns an HTTP response. Gleam was chosen to
open the possibility of parsing templates on the server.

SQLite was the chosen relational database. SQLite has many
shortcomings; these include a minimal datatype set and relatively
poor scaling [8]. Despite this, however, SQLite was chosen due to
the database being contained entirely within an in-project binary.
This simplifies development and deployment when compared with
running a separate DB service. It is unlikely that TempTing will
ever need to scale beyond SQLite’s capabilities. If necessary, the
database can easily be migrated to a more featureful database in
future.

4.5 Modular Implementation

Each component of the system - backend, frontend, and parser -
exists within it’s own decoupled git repository. The parser is im-
ported into the frontend as a node_module. If the parser were to

TempTing

be needed on the backend, it could be imported via Gleam’s pack-
age manager. The parser includes an API wrapper that simplifies
Javascript interoperability.

The template editing features developed in this project could
be packaged as a CodeMirror extension. This would allow the
TempTing features to be embedded in other web apps, such as
Wikifunctions. Wikifunctions currently uses an older library, Ace,
for its editing functionality. If Wikifunctions were to integrate the
template syntax, it would either have to migrate to CodeMirror
completely or make an exception for the template syntax.

Due to being a web app, TempTing is highly portable. Deploy-
ment and scaling would not be major hurdles. The parser, in its
ability to target both the Javascript and Erlang runtimes, can be
utilised within multiple ecosystems.

4.6 Dependency Labels Implementation

Universal Dependencies provides language-specific treebanks which
are free to download and use [18]. Dependency Labels for the sup-
ported language were extracted from these treebanks. Most lan-
guages make use of a small subset of dependency labels. Thus, this
extraction was performed to provide more accurate dependency
label autocompletion and diagnostics.

Each treebank includes a stats.xml file in its route directory.
The stats.xml file includes a list of dependency relations that
were present in the language’s corpus. A simple Python script was
written to extract the list of unique relations for each language.
In the event that a language had multiple treebanks, the results
were merged. These lists are used as the basis for role validation
and autocomplete within the editor. Problematically, a significant
number of these role labels include “:” to denote subtyping. This
conflicts with template syntax specification; “:” is the separator
between dependency labels and invocations within a slot. To avoid
this collision, all “:” in subtyped roles were replaced with a “~”, an
otherwise unused symbol in the syntax.

The dependency labels that were extracted are not stored in
the database. Instead, the dependency labels are stored directly in
hashmap literals within Javascript delivered to the client. While
this does increase the frontend payload slightly, it is marginal when
compared to the entire bundled application. This approach was
followed to avoid additional network calls while the user edits
a template. Linting latency was prioritised over an incremental
difference in page-load times. It is imperative that the user receives
immediate feedback when they produce an invalid or valid template.
Relying on network requests and database communication risks
displaying stale data to the user.

5 DISCUSSION AND RESULTS
5.1 Evaluation

To ensure TempTing met the requirements, an evaluation was per-
formed. Separate evaluations were run to determine whether the
system could adequately handle valid and invalid templates.

To evaluate valid templates, 1000 template syntax trees were gen-
erated. From these generated ASTs, raw templates were produced.
These valid templates were then re-parsed and the outputs were
compared with the original ASTs. This strategy ensured coverage
over many possible template combinations.

To evaluate invalid templates, a minimally triggering template
for each possible error case was written. These templates were
written by hand to ensure expected errors were produced.

5.2 Comparison with Project Aims

TempTing aimed to solve the problems that currently affect Abstract
Wikipedia’s templates: Functionality and Accessibility.

5.2.1 Functionality. The TempTing project resulted in the success-
ful development of a custom parser. This parser validates templates
and transforms them into a machine-readable AST. The output
from this parser can be utilised within the realisation process of
the NLG pipeline. In section 2.3.1, a template example was intro-
duced. The functionality of TempTing’s parser supersedes that of
the Scribuntu prototype [5]. TempTing’s parser supports multiple
function arguments, nested function calls, and context-aware error
messages.

TempTing successfully covers the prioritised functionality prob-
lems it aimed to solve. However, this does not cover all functionality
required by Abstract Wikipedia. In particular, TempTing did not
cover realisation. Future efforts, as discussed in section 5.4, will
have to grapple with this.

5.2.2 Accessibility. The aforementioned parser confronts function-
ality problems directly. Additionally, TempTing leverages this parser
as an indirect boon for accessibility. The parser, through integration
with the web-based editor, is utilised for the provision of the text-
editing features. Validation, linting, autocompletion, and syntax-
highlighting give feedback to users in real-time. A caveat, explained
in section 4.3.2, is that the syntax-highlighter was implemented
with a separate parser.

This immediate feedback enables users to learn to “express them-
selves in the constrained language the system understands”, as
Vrandec¢i¢’s Proposal necessitates [16].

5.3 Problems Encountered

There only exists one source from which information about the
template syntax could be acquired [6]. This template specification
includes some inconsistencies mentioned in section 3.1.2. The ex-
ample lexical functions are shown to accept arguments that are not
supported by the grammar specification. Due to this discrepancy,
concessions had to be made regarding the parser’s implementation.

The introduction of a secondary parser for syntax highlight-
ing was not ideal (section 4.3.2). There is a risk of misalignment
between the two parsers. Such misalignment could lead to a situ-
ation whereby the syntax highlighting communicates differently
from error messages, potentially confusing users. If a reader wishes
to replicate this project, it is recommended that a compatibility
layer be written that bridges the parser with CodeMirror’s syntax
highlighter.

The choice to implement the parser in Gleam did improve its ro-
bustness. The type-system and pattern matching were of significant
value. However, if the parser were to be hosted on Wikifunctions,
the transpiled Javascript would need to be used. This could hurt
future maintainability as the transpiled output is less readable than
hand-written code.

5.4 Future Work

5.4.1 TempTing Developments. TempTing currently only offers sup-
port for the languages that have Universal Dependency treebanks.
Some language groups, such as the Niger-Congo B languages, have
limited inclusion. Future work may seek to broaden the sources
used for language integration.

The user interface, despite the goal of language-agnostic contri-
bution, is entirely in English. A future system would require the UI
to synchronise with the supported template languages.

The syntax highlighting and linting integration could be pack-
aged as a CodeMirror plugin. This would enable seamless embed-
ding in other projects.

5.4.2 Integration with Abstract Wikipedia. Future work should pri-
oritise deeper integration with the rest of the Abstract Wikipedia
project. As originally envisioned, the parser, templates, and lexical
functions could be integrated with Wikifunctions.

The two concurrent projects, mentioned in section 1.3, could be
unified with TempTing. This would help coordinate constructors
and templates.

While clear progress has been made regarding template func-
tionality, there is still work to be done building the complete NLG
pipeline. A realisation algorithm must be developed to utilise the
current parser implementation.

6 CONCLUSION

This paper presented the process of designing and implementing
TempTing, a template-editing software tool. TempTing was de-
veloped to address functionality and accessibility problems that
affected Abstract Wikipedia’s templates. A parser for the template
syntax was built and integrated into a web-based template develop-
ment environment. The produced web app facilitated the manage-
ment and editing of templates with real-time feedback.

TempTing design and requirements were influenced by previ-
ous contributions to Abstract Wikipedia, ensuring its relevance
and applicability. The parser component shows promise for fu-
ture integration within the Natural Language Generation pipeline,
potentially serving as a precursor to the realisation phase. The
implemented editing features streamline template creation and im-
prove the accessibility of the project. These features include syntax
highlighting, diagnostics, and autocompletion.

While TempTing successfully addresses the requirements set for
the project, there are opportunities for future work. This should
focus on broader language support and deeper integration with the
rest of Abstract Wikipedia, including constructors, Wikifunctions,
and the realisation.

TempTing represents a step forward in Abstract Wikipedia’s
template capabilities. By improving the accessibility and functional-
ity of template editing, the tool has potential to extend engagement
Abstract Wikipedia and contribute to its vision of creating a truly
multilingual Wikipedia.

REFERENCES

[1] 2024. Nearly. https://github.com/kach/nearley

[2] K. Arrieta, P.R. Fillottrani, and C.M. Keet. 2024. CoSMo: A multilingual modular
language for Content Selection Modelling. ACM/SIGAPP Symposium on Applied
Computing (SAC ’24) 39 (2024). https://doi.org/10.1145/3605098.3635889

[3] T.Ball. 2020. Writing an Interpreter in Go. Germany. https://interpreterbook.com/

10

e
&2

Matthew Craig

Facebook. 2024. React. https://github.com/facebook/react

A Gutman. 2022. Abstract Wikipedia/Template Language for
Wikifunctions/Scribunto-based implementation. https://meta.wikimedia.org/
wiki/Abstract_Wikipedia/Template_Language_for Wikifunctions/Scribunto-
based_implementation

A. Gutman and C.M. Keet. 2024. Abstract Wikipedia/Template Language for
Wikifunctions. https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template
Language_for Wikifunctions#Example_templates

M. Haverbeke. 2024. CodeMirror5 Github. https://github.com/codemirror/
codemirror5

R.D. Hipp. 2024. SQLite. sqlite.org

H. Johnston. 2024. Shadcn-Svelte Github. https://github.com/huntabyte/shadcn-
svelte

L. Martinelli. 2023. Wikifunctions FAQ. https://www.wikifunctions.org/wiki/
Wikifunctions:FAQ

Meno25. 2024. List of Wikipedias. https://meta.wikimedia.org/wiki/List_of
Wikipedias

Mahir Morshed. 2023. Using Wikidata Lexemes and Items to Gen-
erate Text from Abstract Representations. Semantic Web (2023).
https://www.semantic-web-journal.net/content/using-wikidata-lexemes-
and-items-generate-text-abstract-representations-0

Louis Pilfold. 2024. Gleam Language. https://github.com/gleam-lang/gleam

D. Vrandecic. 2020. Collaborating on the Sum of All Knowl-
edge Across Languages. (10 2020). https://doi.org/10.7551/
mitpress/12366.003.0016 arXiv:https://direct.mit.edu/book/chapter-
pdf/2247832/9780262360593_c001200.pdf

D. Vrande¢i¢ and M. Krétzsch. 2014. Wikidata: a free collaborative knowledge-
base. Commun. ACM 57, 10 (sep 2014), 78-85. https://doi.org/10.1145/2629489
D. Vrandeci¢. 2020. Architecture for a multilingual Wikipedia. (2020). https:
//doi.org/10.48550/arXiv.2004.04733 arXiv:2004.04733 [cs.CY]

A. Wathan. 2024. Tailwind Github. https://github.com/tailwindlabs/tailwindcss
D. Zeman. 2024. Universal Dependencies Github. https://github.com/
UniversalDependencies

https://github.com/kach/nearley
https://doi.org/10.1145/3605098.3635889
https://interpreterbook.com/
https://github.com/facebook/react
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template_Language_for_Wikifunctions/Scribunto-based_implementation
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template_Language_for_Wikifunctions/Scribunto-based_implementation
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template_Language_for_Wikifunctions/Scribunto-based_implementation
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template_Language_for_Wikifunctions#Example_templates
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template_Language_for_Wikifunctions#Example_templates
https://github.com/codemirror/codemirror5
https://github.com/codemirror/codemirror5
sqlite.org
https://github.com/huntabyte/shadcn-svelte
https://github.com/huntabyte/shadcn-svelte
https://www.wikifunctions.org/wiki/Wikifunctions:FAQ
https://www.wikifunctions.org/wiki/Wikifunctions:FAQ
https://meta.wikimedia.org/wiki/List_of_Wikipedias
https://meta.wikimedia.org/wiki/List_of_Wikipedias
https://www.semantic-web-journal.net/content/using-wikidata-lexemes-and-items-generate-text-abstract-representations-0
https://www.semantic-web-journal.net/content/using-wikidata-lexemes-and-items-generate-text-abstract-representations-0
https://github.com/gleam-lang/gleam
https://doi.org/10.7551/mitpress/12366.003.0016
https://doi.org/10.7551/mitpress/12366.003.0016
https://arxiv.org/abs/https://direct.mit.edu/book/chapter-pdf/2247832/9780262360593_c001200.pdf
https://arxiv.org/abs/https://direct.mit.edu/book/chapter-pdf/2247832/9780262360593_c001200.pdf
https://doi.org/10.1145/2629489
https://doi.org/10.48550/arXiv.2004.04733
https://doi.org/10.48550/arXiv.2004.04733
https://arxiv.org/abs/2004.04733
https://github.com/tailwindlabs/tailwindcss
https://github.com/UniversalDependencies
https://github.com/UniversalDependencies

TempTing

Table 1: Template Grammar [6]

Template — Element
Element — {Slot} | Text | Element Element
Text — lexeme | punctuation | string
Slot — DependencyLabel : Invocation | Invocation
DependencyLabel =~ — Label < SourceLabel | Label | root
Label — Role _ Index | Role
Role - ...
Index —1]2]...
SourceLabel — Label
Invocation — FunctionInvocation | Interpolation | String
Functionlnvocation ~— F(ArgumentList) | F()
ArgumentList — invocation | invocation
F — functionName | templateName
Interpolation — interpolation
String — "string"

{@} TempTing Templates « Help v Account v (]

Template Title Template Description Template Language
template-in-container Optional English s

Arguments
item X ‘ container X ‘
1 {expl : “Ther‘e”} ﬂ No errors.

2 {root: "is"}

3 {det<nsubj:Lexeme("a")}

4 {nsubj:item}

51in the

6 {obj:container} o [

New template. Save Draft Publish Template

Figure 8: Template: item-in-container

@top template { Elementx }
Element {"{" Slot "}" | text }

text {LexemeOrString | Punctuation }

Slot {DependencyLabel ":" invocation | invocation}
DependencylLabel {Label "<" Label | Label }

Label {Role "_" Index | Role}

Role {identifier}

11

{@} TempTing Templates ~
Template Title Template Description
invalid template name Optional
Arguments
example-for-completion X ‘ ‘ invalid X
1 {invalid template} E

Syntax Error:

Invocation: invalid_template
* ' is not a valid character for Invocation.

Invalid Invocation format:
Format must be in the form: E
Function (eg. sub-template)
or
Interpolation of argument
or
String

TIP: ° ° is prefixed before role indexes. ﬂ 100%

Separation of multi-word identifiers can be done with
camelCase (capitaliseEachiord)
or kebab-case (put-a-hyphen-between-each-word) .

New template.

Help « Account ~
Template Language
Select Language...
\v4 Title Errors

Matthew Craig

‘ "SPACE" is not allowed in template title.

v Language Errors

‘P'Lease select a language. Templates must be assigned a specifc language.

FAY Syntax Errors

Figure 9: TempTing Diagnostics

Save Draft Publish Template

Index {index}

invocation {Function | Interpolation | String}
Function {Fname"("Args")" | Fname"()"}

Fname {identifier}

Args{list<invocation>}
Interpolation{identifier}
LexemeOrString{lexOrStr}
Punctuation{punctuation}

@tokens {
String { '"' charx '"' }
char {!["1}
whitespace { $[\n\r\t] }
identifier {(![{3_<: (), \n\r\t"1)+}
index {@digit+}

punctuation{
SL.20:—O0\]'/\, | ~@#%R&*x" _<>«»- i, —]

}

lexOrStr{

L2V —O 0\ /\, | ~@H#%&X" _<>«»-Li,,, { \n\r\t-]+

@skip { whitespace }

list<item> { item ("," item)x }

12

TempTing

Templates ~ Help v Account v

{@} TempTing

Template Title Template Description

template-name Optional
Arguments
example-for-completion X ‘ example-2 X ‘ example-3

A -

1 {sub-template(exan) }

+ example-3
+ example-for-completion B

-

New template.

Figure 10: Argument Autocompletion

Template Language

German

Argument Errors

Save Draft Publish Template

Account +

Help v

Templates ~

{@} TempTing

Template Title Template Description

template-name Optional
Arguments
example-for-completion X ‘ example-2 X ‘ example-3

A -

1 {sub-template(exan) }

+ example-3
+ example-for-completion B

o

New template.

Figure 11: Role Autocompletion

13

Template Language

German

Argument Errors

Save Draft Publish Template

	Abstract
	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Project Overview and Aims

	2 Background and Related Work
	2.1 Abstract Wikipedia
	2.2 Existing Implementations
	2.3 Template Syntax

	3 Requirements and Design
	3.1 Requirements
	3.2 System Overview
	3.3 Parser Design
	3.4 UI Design
	3.5 Backend Design
	3.6 Database Design

	4 Implementation
	4.1 Parser Implementation
	4.2 Frontend Implementation
	4.3 Editor Implementation
	4.4 Backend Implementation
	4.5 Modular Implementation
	4.6 Dependency Labels Implementation

	5 Discussion and Results
	5.1 Evaluation
	5.2 Comparison with Project Aims
	5.3 Problems Encountered
	5.4 Future Work

	6 Conclusion
	References

