
Using multimodality to teach introductory
programming

Mufhulufheli Mabilo
University of Cape Town

MBLMUF001@myuct.ac.za

Abstract
Most High School in South Africa do not offer Information
Technology related subjects in their curriculum, which has
challenges for first year’s students who are enrolled in Com-
puter Science. They do not maintain their engagement with
the work as it is difficult to understand. The goal of this pa-
per is two-structure, structuring reviews of related literature
with regards to learning programming and learning system
that incorporates multimodality to help first year students
understand programming code. Based on the findings in lit-
erature, there was a gap with regards to understanding the
basic concepts of programming code which includes syntax.
This review will examine such work by focusing on a learn-
ing system that allows students to step through the code
with the help of speech tools and subtitles will help students
understand programming code basic concepts.

1 Introduction
Computer Science courses require good abilities from a stu-
dent. It requires a student to understand syntax and seman-
tics of any desired programming language and use their
knowledge and creativity to solve problems and tasks. Com-
puter Science is a result of a combination of logical thinking
with creativity.Challenges regarding students learning pro-
gramming language include [14].

• Learning a new programming language.
• Not sure of how or where to start with a given task.
• Ability to be able to debug.
• Not understanding the task given and spending a lot
of time with no output.

• Lack of asking for help and being specific of the prob-
lem.

• Lack of consistency with regards to practicing coding.
• Lack of problem solving and breaking problems to
sub-problems.

The most important way to solve these challenges is through
practice over time. However with these challenges students
drop-out or change courses within their first year, as they
do not have support and motivation to continue with pro-
gramming.
An introduction programming language must suit the fol-
lowing requirements:

• Simplicity.
• Consistency.

• Typicality.
• Usability.
• Flexibility.
• Good documentation.
• Good IDE.
• Most importantly easy to setup.

With the requirements it will help students understand the
content [33].

2 Computer Science
2.1 What is Computer Science
Computer Science is defined to be the study of computer
hardware and software, with the development of software
that it is used in computer hardware to function together
with the computer hardware [27].
Programming can be defined as the process of converting a
mental plan or idea into a computer program. With the main
goal being to develop skills to create computer programs
that solve efficiently real problems [7].

2.2 Courses for programming for first years
Learning to program for most is difficult for the first time and
potentially many end up dropping out. Some problems may
include inability to decompose a problem into sub-problems,
lack of being able to read and understand your code, Under-
standing coding principles and synthesizing new knowledge.
The fundamental learning’s can include loops, variables, re-
cursion and variable parsing. Most importantly students
must be taught in a way that they don’t have issue with
or confuse learning programming with the learning of pro-
gramming language [25].
Factors that contribute to challenges with programming in-
clude, the increase of students diversity and poor attendance,
with poor teaching methodologies[13]

2.3 Learning’s that are considered when learning
Computer Science

2.3.1 Behaviourism
The view of how students approach the course is always
based on well the lecture treats the students[27]

2.3.2 Cognitive
It includes the ability of a student to logically think through
information when they are learning. Have students think
around about the information they are being taught [31].

2.3.3 Constructivism
It involves the combination of new ideas to existing ideas
with the understanding of the subject, and through that
conclusions are developed [17]. The attention to all students
should be taken into consideration.

2.3.4 Design
Design allows to construct a goal of finding a way to have a
way to have a balance between theoretical knowledge and
how the theoretical knowledge is used to teach [28].

2.3.5 Humanism
Humanism allows the development of creativity and interest
engagement in programming [35].

2.4 Role of fun in learning programming
Learning environment must at least be fun and enjoyable
towards students, as fun plays an important role towards
students.

2.4.1 Emotions, learning and attitudes
Learning something can be supported by ability of self report,
oral response, written response and direct observations [30].

2.4.2 Conceptualizing fun
Teaching through fun has allowed all age groups to learn
faster and better. Learning with lack of interesting informa-
tion has showed that people lose interest of what they’re
learning [20].

3 Learning the basic principles of
programming

3.1 Basic programming learning support systems
A literature review of the International Conference on Com-
puter Systems and Technologies showed that they have been
many tools that help solving the challenges of learning pro-
gramming, with many of this tools using animation and
simulation techniques, with the help of taking into consider-
ation the human visual system potential. Animation by far
contributes to a clear and better understanding with com-
parison with static formats. There are visualisation systems
that are available which includes:

• There are systems that focus on algorithms and com-
plete programs.

• There are systems that focus on low level details, that
display data structures and their growth during a pro-
gram.

• There are systems that focus on high detail level, dis-
playing behaviour of program, component relation
and methodologies.

• Some systems animate predefined programs and data
structures.

• Some systems accept students programs and allows
them to see they’re work and allows them to make
necessary corrections.

• Some systems like MRUDs(Multiple Representation
for Understanding Data Structures) [12], have used
multiple visual representations to demonstrate linear
data structures such as tables, stacks, queues, and lists,
with these representations suitable for students with
less or no knowledge of data structures.

• Some systems were proposed using either represen-
tation or algorithm animation which include , BALSAII
[3] , VIP [21] , Xtango [34], Jeliot 2000 [16], Trackla[15].

With the use of knowledge and understanding, new program-
ming languages were developed, including:

• Iconic programming language which include BACII
[4] and BlueJ [14].

• Design languages which include G2 [10].
• Web-based environments which include Jhavé [23].

Also techniques of artificial intelligence that support pro-
gramming teaching and learning were developed which were
mainly tutoring systems which includes Lisp-Tutor [2], C-
Tutor [33] and Cimel ITS [22].

3.2 Problem associated with the learning support
systems

The support systems were designed to support academia
with regards to supporting programming teaching and learn-
ing. With the acknowledgment that there are many systems
designed to support programming learning, there is still a
continuation of reports for difficulty in learning program-
ming. With the answers being that the systems may not be
well known by teachers and learners, and some systems are
not well suited for students that need support with regards to
learning programming. However they are factors that results
in student difficulties:

• Insufficient learning study methods..
• Students difficulty in solving problems.

With the factors mentioned, the major reason behind stu-
dents difficulty in learning programming is low problem
solving capabilities, with regards to every basic problem as
programming requires critical thinking and creative think-
ing, therefore an improve in problem solving would benefit
students with understanding programming.

2

3.3 Characteristics essential for the development of
basic programming learning support systems

3.3.1 Taking into consideration preferred learning
styles

It influences the type of action that will be presented to
students for learning. It requires knowledge about learning
styles.

3.3.2 Using patterns of programming
When students are unable to solve a particular problem or a
part of the problem, they should be presented with incom-
plete programs with necessary components for solving the
program and it allows students to write programs not from
scratch, but it basically allows them to build from existing
problems, with a better understanding of the program.

3.3.3 The use of games
The idea with the use of games is to develop generic problem
solving abilities, through attractive and stimulant activities,
with the main reason being attracting students to the learn-
ing environment and an engaging learning environment [5].

4 Using robots for introductory
programming

A literature review at the Aubun University [8] have devel-
oped a secondary component to an introductory program-
ming course that focuses on problem solving. They made
use of LEGO mind storms robot kits as an added application
towards problem solving techniques. Students learn to write
simple and easy programs for robots, so they can solve pro-
gramming problems they’re given.
The benefits of programming a robot includes:

• The visuals, aural and kinetic feedback of a robot is
found to make students engage in the course, rather
than a simple text based program.

• The interest towards robots allows students to spend
more time on the program [9].

• It is easier for students test and debug their programs.
• Making use of the robots allowed students to be intro-
duced to real world programs [29].

• Lastly it allowed students to think of the robot as an
object, which is a great benefit towards understanding
object-oriented programming.

However with the benefits, there was a major disadvantage
which was students have limited access to the robot, as the
robot was expensive [32].
However the problem was solved through developing a web
interface that allows students to remotely program the robot
and review the results via webcam. Teams were able to refine
their solution within class meetings [8].

5 Using gaming for introductory
programming

A game can be described as a system based on formal rules,
with quantifiable and variable outcomes, the outcomes are
linked to different values and the player feels attached and
cares mostly about the outcome [26]. Games have features
present:

• They have rules.
• They have a win stage.
• They have outcomes and feedback.
• They require critical thinking and problem solving.
• They follow a form of a play.
• They are adaptive.
• There is social interaction within a game.

Every game is based on the fact that it provides feedback
which makes players to be committed as feedback is in the
form of score or levels [11].

5.1 Using board game for introductory
programming

Board games includes board, card and dice game. Many com-
puter scientists have a natural affinity for board games, and
most board games have similar trait with computer program-
ming, with few rules giving rise to deep and fascinating
complexities [6].

5.2 Gaming for introductory programming
Everyone tends to find gaming to be massively engaging
and most people are motivated to keep playing [37]. The
engagement is of great benefit as it allows students to be
more engaged in the coursework.
Game based learning systems gives a visual medium inwhich
to apply practical and puzzle based problem solving. The vi-
sual component of these learning systems has been notified
to help interpret abstract concepts and helps with student
engagement [24].
The game based systems are found to be fun and enjoyable,
hence learning through having fun leads to a higher degree
of effort by students with regards to practicing the course-
work and a positive approach towards the course.
With regards to student cognition and learning systems, stu-
dents using game based learning systems have the freedom
of interaction with regards to approaching the game and the
content within their on pace and desire. Which is important
as it allows students who are learning programming to use
their own learning styles and adjust the pacing and emphasis
of what they are learning for a better understanding [36].
Some game based learning systems are said to be effective
tool for learning introductory programming. They are many
educational games, but there is lack of evidence of their im-
pact on academics, as games vary and the games can have a
no effectiveness on some students[37].

3

6 Using ADRI model system for
introductory programming

The ADRI (Approach, Deployment, Result, and Improve-
ment) [19] model is an analytic tool, it is a quality assurance
model for self review and external review. It was developed
from the Plan-To-Do-Check-Act model. They are four ap-
proaches of ADRI model:

• Approach-problem solving strategies - It consists
of the development of goals, strategies and plans with
regards to learning programming.

• Deployment - programming knowledge - The steps
for achieving goals must be clear, proper planning
must in place to ensure there’s sufficient programming
knowledge .

• Results - Shows the process to solve problem state-
ments and helps with understanding programming in
a different way.

• Improvement - Recommendations for students with
regards to

The four stages helps new students to understand basic pro-
gramming in a simpler way. It also helps with balancing
problem solving strategies and programming knowledge
[19].

7 Mobile application development for
introductory programming

Every University student has a smart phone around Uni-
versity campus, as they spend more time on their phones.
Introducing mobile application development at an introduc-
tory level would be of great use, as they would be engaging
[18].

Students can be able to test their work through actual de-
vices or emulators, which gives an advantage to be able to
debug and test their code quicker and easy, as they know the
desired outcome.
With the mobile platform for which applications are being
developed there’s a great of planning and consideration that
students have to undergo. However mobile applications have
characteristics that differ from desktop platforms which in-
clude:

• Bandwidth .
• Processor.
• Speed.
• Screen size and resolution.
• Memory consumption.
• battery life.
• user input.

Hence with the characteristics students learns how to be
mindful of how mobile applications handles memory for in-
stance, and would be able to apply the knowledge to other
fields.

Computer Science students with experience in mobile appli-
cation development can be in native or cross platform, can
use the knowledge they have gained through mobile appli-
cation development and use the knowledge in traditional
development which gives an advantage of creating more
flexible students developer and allows them to learn faster
with better understanding[18].

8 Conclusion
This survey has examined a larger body of literature related
to tools for helping teach introductory programming. The
research shows the importance of learning computer sci-
ence and programming, which includes developing a better
critical and creative approach to real life problems in the
software industry. With the main reason of developing this
skills for developing skills for creating computer programs
to solve real life problems. There are however challenges
with learning programming which includes, the increase of
poor attendance of classes and activities, with poor teaching
methodologies and lack of motivation to learn programming
as learning programming is considered to be difficult to un-
derstand [1].
Using robots to teach introductory programming showed a
great effectiveness, as it allows students to learn program-
mingmore simpler as they learn to write simple and easy pro-
grams for robots, so they can solve programming problems
they’re given easier and faster, with a better understanding[8].
Using games to teach introductory programming however
does not show enough effectiveness as games may vary and
some games are not created for everyone specially.
The ADRI based approach promotes problem solving strate-
gies, programming knowledge demonstration with a pro-
gramming example and problem, which helps shift the un-
derstanding of programming to a different way that easier
to understand [19].
The most effective approach to help create a system for
teaching introductory programming, is to have a system
that will allow students to have fun while learning, as learn-
ing through fun allows students to be more engaged with
the coursework.

References
[1] Ozgur Aktunc. 2013. A teaching methodology for introductory pro-

gramming courses using Alice. International Journal of Modern Engi-
neering Research (IJMER) 3, 1 (2013), 350–353.

[2] John R Anderson. 1996. ACT: A simple theory of complex cognition.
American psychologist 51, 4 (1996), 355.

[3] Marc H. Brown. 1988. Exploring algorithms using Balsa-II. Computer
21, 5 (1988), 14–36.

[4] Ben Anthony Calloni. 1992. BACCII: An iconic, syntax-directed windows
system for teaching procedural programming. Ph. D. Dissertation.

[5] Carla Delgado, José Antonio Moreira Xexeo, Izabel F SOUZA, Marcio
Campos, and Clevi Elena Rapkiewicz. 2004. Uma abordagem pedagóg-
ica para a iniciação ao estudo de algoritmos. In XII Workshop de Edu-
cação em Computação.

4

[6] Peter Drake and Kelvin Sung. 2011. Teaching introductory program-
ming with popular board games. In Proceedings of the 42nd ACM tech-
nical symposium on Computer science education. 619–624.

[7] José Figueiredo and Francisco García-Peñalvo. 2021. Teaching and
Learning Tools for Introductory Programming in University Courses.
In 2021 International Symposium on Computers in Education (SIIE). 1–6.
https://doi.org/10.1109/SIIE53363.2021.9583623

[8] Aaron Garrett and David Thornton. 2005. A web-based programming
environment for lego mindstorms robots. In Proceedings of the 43rd
annual Southeast regional conference-Volume 2. 349–350.

[9] Michael Goldweber, Clare Congdon, Barry Fagin, Deborah Hwang,
and Frank Klassner. 2001. The use of robots in the undergraduate
curriculum: experience reports. In Proceedings of the thirty-second
SIGCSE technical symposium on Computer Science Education. 404–405.

[10] Anabela Gomes and António José Mendes. 2007. An environment to
improve programming education. In Proceedings of the 2007 interna-
tional conference on Computer systems and technologies. 1–6.

[11] Juho Hamari, Jonna Koivisto, and Harri Sarsa. 2014. Does gamification
work?–a literature review of empirical studies on gamification. In 2014
47th Hawaii international conference on system sciences. Ieee, 3025–
3034.

[12] Biffah Hanciles, Venky Shankararaman, and Jose Munoz. 1997. Mul-
tiple representation for understanding data structures. Computers &
Education 29, 1 (1997), 1–11.

[13] Bassey Isong. 2014. A Methodology for Teaching Computer Program-
ming: first year students’ perspective. International journal of modern
education and computer science 6, 9 (2014), 15.

[14] Michael Kölling, Bruce Quig, Andrew Patterson, and John Rosenberg.
2003. The BlueJ system and its pedagogy. Computer Science Education
13, 4 (2003), 249–268.

[15] Ari Korhonen, Lauri Malmi, and Panu Silvasti. 2003. TRAKLA2: a
framework for automatically assessed visual algorithm simulation
exercises. In Kolin Kolistelut-Koli Calling, Oct. 3-5, 2003 in Koli Finland.
University of Joensuu and University of Helsinki, 48–56.

[16] Ronit Ben-Bassat Levy, Mordechai Ben-Ari, and Pekka A Uronen. 2003.
The Jeliot 2000 program animation system. Computers & Education 40,
1 (2003), 1–15.

[17] Philip Machanick. 2007. A social construction approach to computer
science education. Computer Science Education 17, 1 (2007), 1–20.

[18] Qusay H. Mahmoud and Pawel Popowicz. 2010. A mobile application
development approach to teaching introductory programming. In 2010
IEEE Frontiers in Education Conference (FIE). T4F–1–T4F–6. https:
//doi.org/10.1109/FIE.2010.5673608

[19] Sohail Iqbal Malik and Jo Coldwell-Neilson. 2017. A model for teaching
an introductory programming course using ADRI. Education and
Information Technologies 22 (2017), 1089–1120.

[20] IC McManus, Adrian Furnham, et al. 2010. “Fun, fun, fun”: Types of
fun, attitudes to fun, and their relation to personality and biographical
factors. Psychology 1, 03 (2010), 159.

[21] A Mendes and Teresa Mendes. 1988. VIP-A tool to VIsualize Program-
ming examples. Proc. of the EACT (1988).

[22] Sally H Moritz, Fang Wei, Shahida M Parvez, and Glenn D Blank.
2005. From objects-first to design-first with multimedia and intelligent
tutoring. ACM SIGCSE Bulletin 37, 3 (2005), 99–103.

[23] Thomas L Naps. 2005. Jhavé: Supporting algorithm visualization. IEEE
Computer Graphics and Applications 25, 5 (2005), 49–55.

[24] Thomas L Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf
Fleischer, Chris Hundhausen, Ari Korhonen, Lauri Malmi, Myles Mc-
Nally, Susan Rodger, et al. 2002. Exploring the role of visualization
and engagement in computer science education. In Working group
reports from ITiCSE on Innovation and technology in computer science
education. 131–152.

[25] Sasha Nikolic, Montserrat Ros, and David B Hastie. 2018. Teaching
programming in common first year engineering: discipline insights

applying a flipped learning problem-solving approach. Australasian
Journal of Engineering Education 23, 1 (2018), 3–14.

[26] Marc Prensky. 2001. Fun, play and games:Whatmakes games engaging.
Digital game-based learning 5, 1 (2001), 5–31.

[27] Jesús Ubaldo Quevedo-Torrero. 2009. Learning Theories in Computer
Science Education. In 2009 Sixth International Conference on Informa-
tion Technology: New Generations. 1634–1635. https://doi.org/10.1109/
ITNG.2009.294

[28] Armida Salazar. 2019. Design-Based Approach Learning Model for
Teaching Computer Programming. https://doi.org/10.13140/RG.2.2.
11062.11842

[29] Jerry Schumacher, Don Welch, and David Raymond. 2001. Teaching
introductory programming, problem solving and information technol-
ogy with robots at West Point. In 31st Annual Frontiers in Education
Conference. Impact on Engineering and Science Education. Conference
Proceedings (Cat. No. 01CH37193), Vol. 2. IEEE, F1B–2.

[30] Dale H Schunk. 2012. Learning theories an educational perspective.
Pearson Education, Inc.

[31] Dale Shaffer, Wendy Doube, and Juhani Tuovinen. 2003. Applying
Cognitive load theory to computer science education.. In PPIG, Vol. 1.
Citeseer, 333–346.

[32] Roland Siegwart and Patrick Saucy. 1999. Interacting mobile robots on
the web. In IEEE International Conference on Robotics and Automation
(ICRA).

[33] JS Song, SH Hahn, KY Tak, and JinHyung Kim. 1997. An intelligent
tutoring system for introductory C language course. Computers &
Education 28, 2 (1997), 93–102.

[34] John Stasko. 1992. Animating algorithmswith XTANGO. ACM SIGACT
News 23, 2 (1992), 67–71.

[35] Estelle Taylor, Marnus Breed, Ilette Hauman, and Armando Homann.
2013. Choosing Learning Methods Suitable for Teaching and Learning
in Computer Science. International Association for Development of the
Information Society (2013).

[36] Lynda Thomas, Mark Ratcliffe, John Woodbury, and Emma Jarman.
2002. Learning styles and performance in the introductory program-
ming sequence. ACM SIGCSE Bulletin 34, 1 (2002), 33–37.

[37] Michael F Young, Stephen Slota, Andrew B Cutter, Gerard Jalette,
Greg Mullin, Benedict Lai, Zeus Simeoni, Matthew Tran, and Mariya
Yukhymenko. 2012. Our princess is in another castle: A review of
trends in serious gaming for education. Review of educational research
82, 1 (2012), 61–89.

5

https://doi.org/10.1109/SIIE53363.2021.9583623
https://doi.org/10.1109/FIE.2010.5673608
https://doi.org/10.1109/FIE.2010.5673608
https://doi.org/10.1109/ITNG.2009.294
https://doi.org/10.1109/ITNG.2009.294
https://doi.org/10.13140/RG.2.2.11062.11842
https://doi.org/10.13140/RG.2.2.11062.11842

	Abstract
	1 Introduction
	2 Computer Science
	2.1 What is Computer Science
	2.2 Courses for programming for first years
	2.3 Learning's that are considered when learning Computer Science
	2.4 Role of fun in learning programming

	3 Learning the basic principles of programming
	3.1 Basic programming learning support systems
	3.2 Problem associated with the learning support systems
	3.3 Characteristics essential for the development of basic programming learning support systems

	4 Using robots for introductory programming
	5 Using gaming for introductory programming
	5.1 Using board game for introductory programming
	5.2 Gaming for introductory programming

	6 Using ADRI model system for introductory programming
	7 Mobile application development for introductory programming
	8 Conclusion
	References

