

CS/IT Honours Project

Final Paper 2023

Title: Interactive Python Code Explainer

Author: Mabilo Mufhulufheli

Project Abbreviation: PYCODEX

Supervisor(s): Gary Stewart

Category Min Max Chosen

Requirement Analysis and Design 0 20 15

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 10

System Development and Implementation 0 20 15

Results, Findings and Conclusions 10 20 10

Aim Formulation and Background Work 10 15 10

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

A Multimodal Approach to Introductory Coding
Mufhulufheli Mabilo
University of Cape Town
Cape Town, South Africa
MBLMUF001@myuct.ac.za

Abstract
Introductory programming can pose challenges for numer-
ous first-year Computer Science students, often leading to
feelings of difficulty and being overwhelmed. Skills like us-
ing for-loops, creating algorithms, and thinking logically are
fresh abilities that programmers must cultivate. This growth
takes time and requires continuous interaction with Com-
puter Science materials. An increase in engagement levels
can be accomplished by integrating strategies that minimize
context switching, coupled with the capability to elucidate
code through the use of voice audio capabilities. However,
despite their frequent effectiveness, designing educational
systems with the capacity to reduce context switching and
provide code explanations through voice audio can pose in-
tricate challenges. This research paper is centered on the im-
provement of user-friendliness and the reduction of context
switching within the existing Python learning tool, Online
Python Tutor. It investigates various methods to enhance
the tool’s accessibility for Computer Science students by
incorporating reduced context switching and the capacity to
explain code concepts in a manner tailored for novice users
through voice audio presentations of the code. The results
indicate that reduced context switching benefits students
by consolidating all materials and learning content onto a
single page. Furthermore, in terms of the capacity to explain
code concepts, it is observed that the approach effectively
elucidates all relevant concepts comprehensively.

1 Introduction
In an era characterized by swift technological advancements
and pervasive digital transformation, there has been an un-
precedented surge in the global demand for computer scien-
tists. As industries spanning diverse sectors integrate tech-
nology into their fundamental operations, the role of a com-
puter scientist has transcended from a specialized expertise
to becoming a pivotal cornerstone of modern societal and
industrial progress[12].

While the enrollment of computer science undergraduate
has experienced significant growth, a stark contrast emerges
when examining the trajectory of computer science grad-
uates. The path of enrollment growth, evident at the un-
dergraduate level, encounters a formidable obstacle as it
progresses to the realm of graduates largely attributed to
elevated dropout and failure rates [1].

Upon a thorough examination of these heightened dropout
rates, a conspicuous pattern emerges, with the primary point
of attrition for computer science students being within their
first year of studies. This pivotal juncture functions as a
defining moment, essentially dictating whether students will
continue their pursuit of a computer science degree. The anal-
ysis reveals a concerning statistic, as approximately 67% [12]
of students exhibit the ability to successfully navigate their
introductory programming courses. The palpable disparity
between the number of students who pass these foundational
courses and those who encounter difficulties underscores a
significant challenge within the computer science curricu-
lum [12].

The core issue underlying this challenge is the inconsistency
in engagement demonstrated by a substantial number of
computer science students with course content. This lack of
consistent engagement hampers the assimilation of funda-
mental programming skills, ultimately leading to a decline
in their enthusiasm for the field of computer science. The
initial stages of programming present a formidable challenge,
demanding sustained effort for comprehension. A solution
to address this issue involves the implementation of a web
application that supports reduced context switching and of-
fers the capability to elucidate code through the integration
of voice audio capabilities[11].

1.1 Problem statement
Current computing tools provide users with the opportu-
nity to enhance their proficiency in Python by furnishing a
platform where they can execute their code incrementally,
allowing them to observe the outcomes of each line in a
step-by-step manner. While tools with these capabilities do
exist, their effectiveness in educating novice programmers in
the art of coding may have certain limitations. The learning
curve in programming is substantial, especially for individu-
als who are beginners in the field of Computer Science.While
these tools provide an interactive environment for code ex-
perimentation, they may not offer a comprehensive coverage
of the foundational concepts and intricacies required for a
holistic understanding of programming principles.

This paper presents the integration of Online Python Tutor,
an open-source platform that enhances code comprehension

A Multimodal Approach to Introductory Coding Mufhulufheli Mabilo

through the use of visual debugging. Through the provision
of a dynamic visualization of code execution, Online Python
Tutor enables individuals to acquire insights into program
behavior, pinpoint errors, and elevate their overall program-
ming proficiency.

While Online Python Tutor has not been implemented at the
University of Cape Town, its effectiveness is evident through
its adoption at prestigious institutions like MIT, the Univer-
sity of Washington, and UC Berkeley, where it assumes a
crucial role in teaching introductory computer science to
first-year students. This statistic serves as a compelling tes-
tament to the platform’s utility, with over 30,000 individuals
utilizing it on a monthly basis as of 2013[6]. Furthermore,
the tool’s integration into three web-based digital Python
textbook projects serves as strong evidence of its recognition
and relevance within educational contexts.

However, it’s important to acknowledge that the learning
tool may not provide optimal user-friendliness for first-year
computer science students. Notably, the tool primarily caters
to individuals who prefer visual and text-based learning
styles. Both in the code visualization tool and the error mes-
sages, the use of complex terminology, which might be unfa-
miliar to beginners, could pose challenges to effective com-
prehension. Despite the inclusion of a visual debugger within
Online Python Tutor, its clarity might be limited, as it mainly
highlights the current line in a program, omitting a clear
display of altered and referenced variables[6].

In order to improve the usability and advantages of the On-
line Python Tutor web application for first-year students,
the following features have been incorporated:

• Reduced Context Switching. - Context switching,
defined as the frequent toggling between two inter-
faces during task execution, can exert a significant
impact on the learning process. This phenomenon car-
ries the potential to impose a formidable cognitive
load introduced by context switching can disrupt con-
centration and divert attention away from the code
itself. By mitigating this cognitive load, distractions
are minimized, providing learners with the capacity to
engage in a more profound immersion with the code.
This reduction in cognitive burden subsequently con-
tributes to expediting the process of comprehending
complex coding structures. In response to this chal-
lenge, a noteworthy feature is introduced. An interface
window is designed to minimize the need for disrup-
tive context switching. This supplementary window
accommodates a comprehensive array of content, in-
ducing elucidations of essential coding concepts and
practical tasks that necessitate the application of code.
By centralizing these resources within the interface,

the feature enhances the fluidity of the learning ex-
perience. This strategic integration serves to create a
seamless environment wherein learners can engage
deeply with coding concepts and tasks without the
impediments posed by the constant back-and-forth
context switching. Ultimately, the reduced cognitive
load resulting from this feature empowers learners to
devote more focused time and attention to unraveling
the intricacies of coding, intimately accelerating the
mastery of code comprehension.

• Code Audio Explanations - Recognizing that not all
students adhere to visual, reading or writing learning
styles, we introduce an audio explanation feature. The
tool predominantly caters to the learning modalities,
potentially leaving a subset of students underserved.
This disparity underscores the need for diversity in
pedagogical approaches. The proposed audio feature
fills this void by embracing an alternative learning
style. This learning approach resonates who grasp
content most effectively when presented in an audio
format. Consequently, the introduction of audio expla-
nations represents a concerted effort to cater for this
learning style. Loops, if-statements, variable assign-
ments, and pivotal coding structures are encompassed
within the scope of this feature.With the integration of
this feature, learners can expect more comprehensive
explanations for intricate code segments that might
otherwise prove challenging to comprehend. When a
student submits code for compiling, the audio feature
generates a succinct yet informative summary of the
entered code. This verbal elucidation breaks down the
code’s intricacies, offering insights into the underly-
ing logic and facilitating the development of a deeper
understanding.

The aims of the project are:

• The development of an innovative audio feature aims
to enhance the educational experience within the web
application. This feature is designed to provide explicit
and coherent explanations for Python code input by
students, with the overarching goal of ensuring height-
ened clarity and improved comprehension during code
compilation and execution. By implementing this fea-
ture, the research seeks to explore how audio-based
explanations can facilitate a more effective learning ex-
perience, particularly for those who may benefit from
auditory learning modalities. Ultimately, this enhance-
ment aims to contribute to more successful learning
outcomes among the user base.

• The implementation of reduced context switching in
the web application which will serves as a strategic
objective. This aim is directed towards enhancing the
user experience by minimizing the need for users to
switch between multiple pages or interfaces when

A Multimodal Approach to Introductory Coding Mufhulufheli Mabilo

working with the application. The research aims to in-
vestigate how this reduction in context switching can
benefit students by facilitating a more streamlined and
focused interaction with the tool. The ultimate goal
is to improve the overall usability and effectiveness
of the web application as an educational resource for
students, contributing to their learning outcomes and
comprehension of Python programming concepts.

2 Background
2.1 Computer Science
Computer Science is a multidimensional field encompassing
a wide array of phenomena intrinsic to the realm of computa-
tion. It constitutes the systematic exploration of algorithmic
processes, encompassing their theory, analysis, design, ef-
ficiency, implementation, and practical application. At its
core, computer science delves into the intricate world of in-
formation structures, investigating how data is organized,
stored, retrieved, and processed. Furthermore, the discipline
addresses the formidable challenge of complexity, with the
aim of comprehending and managing intricate systems. Cen-
tral to computer science is the mechanization of abstraction,
where intricate concepts find translation into computational
procedures. This synthesis of knowledge culminates in a
discipline that not only facilitates problem-solving and inno-
vation but also forms the foundational framework underpin-
ning the trajectory of modern technological advancement
[4].

2.2 Navigating Challenges in Computer Science
Education

In themidst of an ever-evolving integration into a technology-
driven world, universities are confronted with heightened
expectations to consistently produce computer science grad-
uates equipped with a profound understanding of the field.
However, the prevailing reality is that universities often grap-
ple with the challenge of keeping pace with the burgeoning
demand. This heightened demand has led to a conspicuous
scarcity of qualified computer science professionals, con-
tributing to one of the most pressing labor shortages within
the South African Computer Science Sector [2]. This critical
shortage has a cascading impact, as the number of computer
science graduates emerging from higher education institu-
tions is in decline.[9].

The primary cause of the disparity between the demand for
computer science graduates and the available supply can be
traced back to the early stages of computer science education.
The substantial challenge posed by high dropout and failure
rates in first-year introductory computer science courses
becomes evident. This attribution phenomenon significantly

disrupts the pipeline of prospective computer science gradu-
ates. Consequently, initiatives aimed at increasing the num-
ber of qualified professionals are impeded by the difficulty
in retaining students in these foundational courses.[7]

2.3 Cultivating Ongoing Student Engagement in
Computer Science

The domain of introductory programming places students in
direct contact with the challenge of familiarizing themselves
with programming concepts such as ’for-loops,’ all the while
refining their problem-solving skills by methodically inte-
grating these unfamiliar concepts to craft functional code.
For a significant number of students, grasping these princi-
ples proves to be a formidable task. When students lack the
motivation to consistently engage with these concepts and
make an effort to comprehend them, it frequently results in a
reluctance to pursue further studies in Computer Science. [9].

Scholarly insights highlight the paramount importance of
sustained practice in the development of programming skills.
Law et al [8] emphasize that programming proficiency flour-
ishes through persistent practice, underscoring the notion
that mastery evolves through ongoing application. Hawi’s
research underscores the necessity for active engagement
in grasping course content, suggesting that students deeply
invested in their studies tend to achieve superior learning out-
comes [6]. A similar perspective is echoed by Tan and asso-
ciates, who assert that introductory programming demands
the cultivation of high-order thinking skills—a pursuit reliant
on unwavering practice and unwavering determination.[6]

2.4 Online Python Tutor
Online Python Tutor traces its origins back to January 2010
when it began as a side project of a graduate student. The
project was inspired by the creator’s own experiences in
teaching Python using complex stack and heap diagrams on
a whiteboard [5]. This endeavor was fueled by the advent
of progressively advanced web browsers and technologies,
opening up possibilities for the creation of an educational
program visualization tool that could seamlessly function
within a web browser environment. [5].

The primary objective behind the design of Online Python
Tutor was to create a tool that Python instructors and stu-
dents would prefer to use, either independently or in con-
junction with traditional whiteboard and PowerPoint dia-
gram methods. Their journey began by distilling common
attributes from prevalent program visualization tools and
then adapting these features to align with the constraints
of a web browser. Over the course of three years, the user
base for Online Python Tutor experienced organic growth,
largely propelled by word-of-mouth endorsements[7].

A Multimodal Approach to Introductory Coding Mufhulufheli Mabilo

During their evolution, they systematically refined their ini-
tial design, introducing innovative features such as support
for nested functions and lambda expressions. Their devel-
opment process was profoundly influenced by their vibrant
user community, which consisted of diverse computer sci-
ence instructors, including teaching assistants and professors
from institutions of varying sizes. It even extended to instruc-
tors overseeing free online computer science courses that
collectively attracted over 200,000 enrolled students[7].

3 Design
The role of design in achieving the project’s objectives is
paramount. To fulfill its aims, the project builds upon the
foundation of an existing Python tool, Online Python Tutor.
This web application enables user interaction by offering a
text editor where Python code can be input, resulting in code
outputs and audio explanations. Additionally, learners have
the opportunity to access video lessons covering both coding
and theoretical aspects. Importantly, the design ethos also
focuses on reducing context switching, allowing students to
maintain their focus on a single page during their interac-
tion with the tool. The design philosophy revolves around
strengthening fundamental programming concepts. Through
this thoughtful design approach, the project aims to provide
a comprehensive and engaging platform for acquiring a deep
understanding of basic programming concepts.

3.1 Educational Aspects
Central to the educational aspect of the project is the selec-
tion of Python as the programming language for the web
application. This decision is grounded in Python’s distinctive
attributes that align with effective teaching methodologies.
Renowned for its clear and concise syntax, Python is cele-
brated for its user-friendly nature, making it accessible even
to first-year students. Its global prevalence further solidifies
its suitability as a teaching tool for introductory program-
ming.

Importantly, this choice is in alignment with the University
of Cape Town (UCT) first-year computer science courses,
where Python serves as the designated introductory lan-
guage. Notably, participants for the web application testing
phase will be recruited from the University of Cape Town,
specifically in the Computer Science module CSC1010H or
CSC1011H, ensuring a targeted and contextually relevant
evaluation process.

3.2 Error Management
Managing errors constitutes a fundamental aspect of the web
application’s design. It is presumed that first-year computer
science students possess familiarity with elementary Python
syntax and the ability to construct code that adheres to the

language’s conventions. The code they input undergoes rig-
orous examination by a standard debugger module (bdb).
This debugger methodically scans for and identifies the fol-
lowing basic types of errors, pinpointing the line numbers
containing syntactic inaccuracies:

• Syntax Errors - These encompass violations of Python’s
grammar rules.

• Indentation Errors - Occur when code is not correctly
aligned.

• Variable Name Errors - Arise from referencing unde-
fined or misspelled variables.

• Function Name Errors - Stem from calling undefined
or incorrectly spelled functions.

• Runtime Errors - Occur during code execution due to
issues like division by zero or invalid data operations.

With its comprehensive coverage, the debugger adeptly han-
dles this spectrum of errors that students may encounter
during their coding endeavors.

3.3 Core Programming Concepts
The web application is primarily designed for users with
limited programming exposure, specifically targeting stu-
dents in their first year of introductory computer science
courses. Due to the project’s time constraints, a carefully
selected subset of fundamental programming concepts has
been identified for inclusion in the web application:

• Functions and parameter passing.
• Variables and primitive data types.
• Recursion calls.
• For-loops and While-loops.
• Expression and assignments.
• Code Execution.

3.4 Learning Curve
The incorporation of new features into Online Python Tutor
was not devoid of challenges. The tool’s open-source nature
necessitated a comprehensive understanding of its architec-
ture and functionality before augmentations could be intro-
duced. This preliminary phase of familiarization demanded
time and effort to grasp the intricacies of the existing system.

Moreover, in addition to addressing the architectural intri-
cacies, the project embarked on the complex journey of en-
hancing code explanations. This involved the exploration
of various Natural Language Processing (NLP) models to
ensure that the code explanations generated by the web
application were clear and coherent in a natural language.
Additionally, the project aimed to introduce voice libraries
that delivered explanations in a human-like manner, steer-
ing clear of the typical robotic voice associated with many
text-to-speech systems. Achieving this required a meticulous
search for voice libraries and technologies that could provide
a more natural and understandable voice audio component

A Multimodal Approach to Introductory Coding Mufhulufheli Mabilo

to the code explanations.Subsequently, the task involved
devising strategies to seamlessly integrate the proposed en-
hancements, both in terms of code explanations and voice
audio, into the framework while ensuring compatibility and
cohesion with the existing system.

This learning curve was essential to guarantee that the addi-
tions harmonized with the tool’s overarching objectives and
user experience.The dual challenges of grasping the tool’s ar-
chitecture and enhancing code explanations with human-like
voice audio were emblematic of the project’s commitment
to providing users with a rich and user-friendly educational
experience.

3.5 Streamlined Development Framework and
Architecture

The development of the web application strictly adhered to
the guiding principles of simplicity andmodularity, primarily
driven by the constraints of time. This approach was instru-
mental in expediting the debugging process and elevating
the overall efficiency of the development effort. Embracing
a modular structure played a pivotal role in ensuring that
the codebase retained its clarity, thus facilitating the rapid
identification and resolution of issues as they arose.

Furthermore, the adoption of modularity bestowed a signifi-
cant advantage in terms of seamless scalability, permitting
the integration of new features and components with mini-
mal disruption. This architectural choice not only cultivated
ease of maintenance but also facilitated the allocation of
responsibilities among the research team during the develop-
ment phase. The commitment to simplicity and modularity,
even within the confines of time constraints, was instrumen-
tal in ensuring the project’s success, streamlining develop-
ment processes, and preserving the project’s adaptability for
accommodating future enhancements.

One noteworthy enhancement within the web application
is the audio feature, which elucidates user-inputted code.
This feature leverages the open-source Natural Language
Processing model called Spacy, the architecture digram in
Figure 8. This model harnesses the execution trace to trans-
late code results into human-readable text. Subsequently,
this interpretive text is seamlessly processed through the
Google Text-to-Speech Python library (commonly known as
gTTS), the architecture digram in Figure 6 of gTTS, culmi-
nating in an auditory synergy that underpins the develop-
ment framework, harnessing diverse tools to create a unified
and effective learning experience.

4 Implementation
At the core of the project’s realization lies the Online Python
Tutor, a web application intricately woven together with a

Python-powered backend and a frontend elegantly crafted
using standard web technologies: HTML, CSS, and Javascript.
The working of the web application is on Figure 5.

4.1 Backend
The Online Python Tutor backend serves as a critical com-
ponent of the system, taking the source code of a Python
program as input and producing an execution trace as output.
This backend executes the input program under the supervi-
sion of the standard Python debugger module (bdb). It halts
execution after each executed line, meticulously recording
the program’s runtime state. The resulting trace is an or-
dered list of execution points, with each point containing
essential information, including:

• The line number about to execute.
• The type of instruction (ordinary single step, exception,
function call, or function return).

• A mapping of global variable names to their current
values at the execution point.

• An ordered list of stack frames, with each frame con-
taining a map of local variable names to their current
values.

• The current state of the heap.
• The program’s output up to that execution point.

The backend encodes this trace in JSON format, leveraging
Python data types serialized into native JSON types with
additional metadata tags [3]. To prevent infinite loops and
overly long traces, the backend terminates execution after
300 executed lines. While this limit may appear small for
real-world programs, it suffices for pedagogical code exam-
ples targeted by students. Notably, the trace can be verbose
due to its storage of complete snapshots of the stack and
heap at every execution point. Traces from pedagogical code
examples typically range from 10KB to 200KB in size.

The backend supports both Python 2 and 3, a critical fea-
ture given that courses are taught using both of these major
language variants. It can be hosted on any web server capa-
ble of running CGI scripts (using Python 2 or 3) or on the
Google App Engine platform (Python 2.7). When a user’s
web browser initiates an HTTP GET request to the backend
and submits the Python program for visualization, the back-
end generates the trace and returns it to the browser in JSON
format.

To ensure security, particularly when running untrusted
Python code from the web, the backend implements sand-
boxing. This safeguard prevents the execution of potentially
harmful constructs like eval, exec, file I/O, and most mod-
ule imports (except for a customizable whitelist of modules
such as math). Additionally, many web servers implement
"defense in depth" measures to provide extra layers of pro-
tection.

A Multimodal Approach to Introductory Coding Mufhulufheli Mabilo

4.1.1 Audio Explanation Generation
The educational aspect of the web application relies on the
processes within spaCy NLP, a proficient library renowned
for its linguistic analysis capabilities. SpaCy plays a pivotal
role in dissecting user-provided Python code, unraveling its
syntactic structure and grammatical intricacies. This process
begins with spaCy’s exceptional ability to perform linguistic
dissection, meticulously breaking down the code lines into
tokens, providing a comprehensive understanding of each
line’s textual essence. This detailed linguistic analysis forms
a solid foundation for subsequent enhancements.

The culmination of spaCy’s analysis results in insightful ex-
planations, enhancing the linguistic analysis with contextual
depth and enabling the elucidation of code intricacies that
might elude casual observation. As the process progresses
within the spaCy module, the intricate logic woven into the
code is unveiled, peeling back the layers to offer an intricate
portrayal of how code components interact. Users are not
only provided with an understanding of the code’s outcome
but also with insights into the intricacies of its execution.

Alongside spaCy, the Text-to-Speech (TTS) technology gTTS
assumes a vital role in the transformation of textual expla-
nations into auditory elucidations, promoting a multi-modal
learning approach. The resulting audio summaries enable
learners to grasp the code’s nuances through auditory im-
mersion. This collaborative effort between spaCy NLP and
gTTS enriches the educational experience of the web applica-
tion, catering to diverse learning preferences and enhancing
code comprehension.

The generated audio explanations, crafted through the col-
laboration of spaCy NLP and gTTS, are seamlessly integrated
into the web application’s frontend. This integration ensures
that students have convenient access to the audio elucida-
tions, which can be played at their discretion. Furthermore,
the web application empowers students with control over
the audio experience, providing the capability to adjust the
playback speed. This feature allows students to tailor the au-
dio explanations to their preferred pace of learning, whether
they prefer a slower, more detailed explanation or a quicker
overview. By returning the audio explanations to the fron-
tend with speed control options, the web application en-
hances the overall educational experience, promoting per-
sonalized and effective code comprehension.

4.2 FrontEnd
The frontend of the Online Python Tutor is a user-friendly
website located at pythontutor.com. It is designed to be com-
patible with all modern web browsers without requiring
students to install any extensions or plugins. The user in-
terface is straightforward, presenting users with a text box

where they can type or paste Python programs. In informal
testing, the webpage loads quickly, with examples similar
to Figure 11 loading in approximately 5 seconds on a fast
Wifi and around 10 seconds on a slow Wi-Fi. Once the initial
webpage is loaded, all interactions take place in the browser,
and there are no additional server calls. Therefore, stepping
forwards and backwards through code execution refreshes
the display instantaneously.

One of the primary technical challenges in the frontend is
rendering objects in a clear and aesthetically pleasing man-
ner. Since the heap can be a complex graph of objects, a
naive rendering approach could result in a tangled mess of
boxes and pointers. To address this, the frontend employs
several layout heuristics inspired by diagrams in textbooks
and lecture slides:

• Each frame variable and heap object is stacked ver-
tically in the order of their creation during program
execution.

• Objects remain in the same location relative to other
objects until there are no more pointers to them.

• Compound objects that contain pointers to other com-
pound objects are nested inside the outer one.

• Linked lists are rendered specially by laying out node
objects horizontally.

To achieve these layout heuristics, the frontend uses two
main JavaScript libraries: D3 to map execution trace objects
to corresponding HTML elements and jsPlumb to draw point-
ers as arrows. The entire visualizer GUI is encapsulated in
a JavaScript ExecutionVisualizer class, making it easy to
embed within a webpage.

4.2.1 Video lessons
In the pursuit of simplifying code comprehension, Online
Python Tutor harnesses a valuable resource - video tutorials.
These videos serve as guiding lights, assisting students in
navigating the complexities of programming. By seamlessly
integrating video tutorials, the platform offers a unique ad-
vantage, enabling students to grasp concepts even before
embarking on coding.

The integration of video tutorials entails a meticulously de-
signed process, with these videos finding their home in Fire-
base Database Storage, forming a harmonious ensemble of
educational content. At the core of this educational experi-
ence, the "videoPlayer" component takes center stage. This
dedicated space serves as the canvas where educational con-
tent comes to life, providing the platform upon which the
journey of knowledge gracefully unfolds. When a user in-
teracts with the dropdown menu to select a different video,
as shown in Figure 10 , a seamless transition in content
occurs. The chosen video takes center stage, and its content
is seamlessly loaded into the video player.

A Multimodal Approach to Introductory Coding Mufhulufheli Mabilo

The intricately orchestrated integration of video lessons and
code snippets creates an environment that nurtures optimal
learning conditions. Theory video lessons and code frag-
ments coexist seamlessly, elevating the learning experience
for students. As users explore diverse coding scenarios, video
tutorials act as guiding beacons, shedding light on the path
to mastery. These videos, elegantly stored within Firebase
Database Storage, transcend their role as mere visual aids.
They empower students with a profound understanding even
before they embark on their coding journey, enriching and
enhancing the entire learning process.

4.2.2 Context Switching
The development of the web application was strategically de-
signed with a focus on reducing context switching for users.
Context switching refers to the cognitive effort required
when transitioning between different tasks or environments.
In the context of programming and learning, excessive con-
text switching can be disruptive and hinder the learning
process.

To mitigate context switching, the web application offers
a seamless and integrated learning experience. It provides
users with a unified platform where they can not only write
and visualize Python code but also access explanatory au-
dio and video content without the need to switch between
multiple tools or websites. This consolidation of resources
ensures that learners can maintain their focus on the task at
hand, which is understanding and writing Python code.

Additionally, the integration of audio explanations directly
within the application reduces the need for users to switch
to external resources for clarifications. They can listen to
detailed explanations while viewing the code, creating a syn-
chronized and uninterrupted learning experience. Overall,
the deliberate design choice to minimize context switching
enhances the user’s ability to concentrate on learning pro-
gramming concepts effectively within the web application,
ultimately improving the learning outcomes for students,
which is shown in Figure 10.

5 USER TESTING
During the user testing phase, a total of 10 participants
were thoughtfully recruited from the University of Cape
Town’s computer science modules, specifically CSC1010H
and CSC1011H, 5 participants from CSC1010H and 5 partici-
pants from CSC1011H. These participants were selected due
to their foundational knowledge in Python programming,
aligning with the web application’s target audience. The test-
ing process was meticulously organized, with participants
booking 30-minute testing slots in advance, and reminders
were thoughtfully sent to ensure their timely participation.

Prior to interacting with the web application, participants
digitally signed informed consent forms to ensure they were
fully aware of the testing procedure.

An instructional video served as a guide, explaining the ef-
fective usage of the web application. Participants were given
the freedom to copy and paste Python code from W3Schools
into the application’s code segment, with the caveat of a
30-minute time constraint to manage the testing sessions
efficiently. Feedback collection played a pivotal role, with
participants sharing their experiences and insights through
surveys. To incentivize their valuable participation, partici-
pants were entered into a raffle for a chance to win a R250
Takealot voucher. The insights and feedback gathered during
this user testing phase were instrumental in shaping the final
form of the educational web application, ensuring its compet-
itiveness and effectiveness within the targeted educational
landscape.

6 Survey
The post-user testing survey was comprehensive in its ap-
proach, encompassing both quantitative and qualitative as-
pects to gain valuable insights into participants’ engagement
and experiences with the web application. In the quantita-
tive section of the survey, the refined User Engagement Scale
(UES) was utilized. This abbreviated version of the original
scale introduced by O’Brien [10] was chosen to ensure that
participants feedback was collected efficiently, considering
the potential for participant fatigue due to the concise nature
of the refined UES.

By employing this mixed-methods approach, the survey
aimed to provide a holistic understanding of how users en-
gaged with the web application and their overall satisfaction
with its features and functionalities. The combination of
quantitative data from the UES and qualitative insights from
open-ended questions that are in Figure 12, allowed for a
comprehensive evaluation of the web application’s effective-
ness and user-friendliness. This feedback is invaluable for
further refining and enhancing the educational web appli-
cation, ensuring it meets the needs and expectations of its
users.

7 Ethical Considerations and Legal
Compliance

Ethical considerations and legal compliance were paramount
throughout the development of the educational web applica-
tion and the user testing process. These aspects were metic-
ulously addressed to safeguard the rights and well-being of
participants while adhering to legal regulations.

During the user testing phase, participants were recruited
from the CSC1010H and CSC1011H courses at the University

A Multimodal Approach to Introductory Coding Mufhulufheli Mabilo

of Cape Town, and their participation was entirely volun-
tary, without any monetary compensation. Participants were
provided with comprehensive information regarding the re-
search purpose, their roles, the expected testing duration
(maximum 45 minutes), and their right to withdraw con-
sent at any point. Informed consent forms were presented
to the students, and their signatures were required before
participation. These consent forms outlined data collection
and storage procedures, as well as the intended use of the
collected data. To protect confidentiality, no personal details
were recorded.

The development of the web application adhered to open-
source software practices, with appropriate credit given to
the original authors for any source code used. Additionally,
the videos integrated into the web application were carefully
selected to be royalty-free, ensuring full compliance with
copyright regulations. These ethical and legal measures were
diligently implemented to uphold transparency, safeguard
participants’ rights, and ensure adherence to applicable laws
and regulations throughout the development and testing
phases of the educational web application.

8 Results and Analysis

Figure 1. Graph for Quantitative questions

The quantitative feedback received from the first-year stu-
dents who experienced the audio feature within the web
application provides valuable insights into its effectiveness.
In terms of audibility, the feature received a high rating
of 5, indicating that the audio explanations were clear and
easily understandable. However, when it comes to under-
standing, the rating was 3.3, suggesting that while the audio
was audible, there may be room for improvement in terms
of comprehensibility. The rating of 4 for the realism of the
audio indicates that students found the audio explanations
to be authentic and in line with their expectations. In assess-
ing usability, the feature received a rating of 3, indicating
that there may be aspects of the user interface that could be

further optimized for a more user-friendly experience. No-
tably, the refresh button’s usability received a high rating of
4, suggesting that students found it effective for controlling
and replaying the audio explanations.

The qualitative feedback provided by the students regard-
ing the audio feature in the web application sheds light on
several important aspects of its usability and effectiveness.

8.1 Realism of the Audio Voice

Figure 2. Realism of the Audio Voice(X-Axis(Students)
and Y-Axis(Scale 1-5))

Many students expressed that they found the audio voice
to be less realistic and more robotic in nature. This feedback
highlights the importance of improving the naturalness of
the audio voice to create a more immersive and engaging
learning experience.

8.2 Ease of Navigation

Figure 3. Ease of Navigation(X-Axis(Students) and Y-
Axis(Scale 1-5))

Students generally found the audio feature to be user-
friendly in terms of navigation. They appreciated the ability

A Multimodal Approach to Introductory Coding Mufhulufheli Mabilo

to rewind and replay the audio explanations multiple times.
Additionally, the control over playback speed was considered
a valuable feature, allowing students to adapt the audio to
their preferred pace of learning, as shown in Figure 7. This
feedback indicates that the navigation aspects of the audio
feature are well-received.

8.3 Clarity of the Audio Refresh Button

Figure 4. Clarity of the Audio Refresh Button(X-
Axis(Students) and Y-Axis(Scale 1-5))

Students mentioned that the tutorial video effectively
helped them understand the purpose and functionality of
the audio refresh button. This suggests that providing clear
instructional resources or tooltips can enhance users’ com-
prehension of various features within the web application.

Overall, the qualitative feedback provides valuable insights
into areas for improvement, particularly in enhancing the
realism of the audio voice. Additionally, it highlights the
success of user-friendly navigation features such as rewind,
playback control, and the tutorial video in clarifying the
functionality of the refresh button. These insights can guide
further refinements to the audio feature, aiming to create a
more immersive and intuitive learning experience for stu-
dents.

9 Conclusion
In conclusion, this research has made significant advance-
ments in addressing the challenge of student engagement
in introductory programming courses. By exploring the in-
tegration of audio and video lesson features, coupled with
reduced context switching, into a web application, we sought
to understand their impact on user engagement. While the
findings provide valuable insights into the potential bene-
fits of such features, it’s important to acknowledge that the
results may not be entirely conclusive due to the limited
number of participants involved in the study.

Nonetheless, the feedback from students was largely positive,
with many expressing that the video lessons were valuable
for following along while coding. Additionally, the audio
feature received appreciation, particularly when students
encountered difficulties in understanding the code they were
inputting. These findings indicate that incorporating multi-
media elements and reducing context switching within the
learning environment can enhance student engagement and
comprehension.

Moving forward, further research with a larger and more
diverse participant pool could provide deeper insights into
the effectiveness of these features. Additionally, continuous
refinements to the audio and video components, including
addressing the realism of the audio voice, can contribute to
an even more enriching educational experience. Ultimately,
this research serves as a promising step toward improving
the learning outcomes of introductory programming stu-
dents.

References
[1] Theresa Beaubouef and John Mason. 2005. Why the high attrition rate

for computer science students: some thoughts and observations. ACM
SIGCSE Bulletin 37, 2 (2005), 103–106.

[2] Andres P Calitz, Jean H Greyling, and Margaret DM Cullen. 2014.
South African industry ICT graduate skills requirements. Southern
African Computer Lecturers’ Association (SACLA) 1 (2014), 25–26.

[3] Douglas Crockford. 2006. Json (javascript object notation). URL
http://www. json. org (2006).

[4] José Figueiredo and Francisco García-Peñalvo. 2021. Teaching and
Learning Tools for Introductory Programming in University Courses.
In 2021 International Symposium on Computers in Education (SIIE). 1–6.
https://doi.org/10.1109/SIIE53363.2021.9583623

[5] Philip J Guo. 2013. Online python tutor: embeddable web-based pro-
gram visualization for cs education. In Proceeding of the 44th ACM
technical symposium on Computer science education. 579–584.

[6] Nazir Hawi. 2010. Causal attributions of success and failure made by
undergraduate students in an introductory-level computer program-
ming course. Computers & Education 54, 4 (2010), 1127–1136.

[7] Bassey Isong. 2014. A Methodology for Teaching Computer Program-
ming: first year students’ perspective. International journal of modern
education and computer science 6, 9 (2014), 15.

[8] Kris MY Law, Victor CS Lee, and Yuen-Tak Yu. 2010. Learning motiva-
tion in e-learning facilitated computer programming courses. Com-
puters & Education 55, 1 (2010), 218–228.

[9] Sasha Nikolic, Montserrat Ros, and David B Hastie. 2018. Teaching
programming in common first year engineering: discipline insights
applying a flipped learning problem-solving approach. Australasian
Journal of Engineering Education 23, 1 (2018), 3–14.

[10] Heather L O’Brien, Paul Cairns, and Mark Hall. 2018. A practical
approach to measuring user engagement with the refined user engage-
ment scale (UES) and new UES short form. International Journal of
Human-Computer Studies 112 (2018), 28–39.

[11] Christopher Watson and Frederick WB Li. 2014. Failure rates in intro-
ductory programming revisited. In Proceedings of the 2014 conference
on Innovation & technology in computer science education. 39–44.

[12] Stuart Zweben, Jodi Tims, and Yan Timanovsky. 2020. ACM-NDC study
2019—2020: eighth annual study of non-doctoral-granting departments
in computing. ACM Inroads 11, 3 (2020), 26–37.

https://doi.org/10.1109/SIIE53363.2021.9583623

A Multimodal Approach to Introductory Coding Mufhulufheli Mabilo

10 Appendix

Figure 5. Working of the Web-Application

A Multimodal Approach to Introductory Coding Mufhulufheli Mabilo

Figure 6. Google Text-To-Speech Architecture Diagram

Figure 7. Audio Speed Selection

A Multimodal Approach to Introductory Coding Mufhulufheli Mabilo

Figure 8. Spacy Architecture Diagram

Figure 9. pipeline components

A Multimodal Approach to Introductory Coding Mufhulufheli Mabilo

Figure 10. Context Switch

A Multimodal Approach to Introductory Coding Mufhulufheli Mabilo

Figure 11. Videos Scroll Bar

Audio:

1. How Audible is the feature?

2. Does the feature assist you in understanding the code?

3. How realistic does the audio voice sound?

4. How easy is the audio feature to navigate?

5. How easy is the feature to use?

6. Is the button for audio refresh easy to understand?

Comments:

Overall Web Application:

1. Please rate the layout of the application.

2. Please rate the usability of the application.

3. Please rate the helpfulness of the application (would you use it?).

Comments:

A Multimodal Approach to Introductory Coding Mufhulufheli Mabilo

Figure 12. Survey Questions

	Title: Interactive Python Code Explainer
	Author: Mabilo Mufhulufheli
	Project Abbreviation: PYCODEX
	Supervisor(s): Gary Stewart

	Abstract
	1 Introduction
	1.1 Problem statement

	2 Background
	2.1 Computer Science
	2.2 Navigating Challenges in Computer Science Education
	2.3 Cultivating Ongoing Student Engagement in Computer Science
	2.4 Online Python Tutor

	3 Design
	3.1 Educational Aspects
	3.2 Error Management
	3.3 Core Programming Concepts
	3.4 Learning Curve
	3.5 Streamlined Development Framework and Architecture

	4 Implementation
	4.1 Backend
	4.2 FrontEnd

	5 USER TESTING
	6 Survey
	7 Ethical Considerations and Legal Compliance
	8 Results and Analysis
	8.1 Realism of the Audio Voice
	8.2 Ease of Navigation
	8.3 Clarity of the Audio Refresh Button

	9 Conclusion
	References
	10 Appendix

