
DEE - Defeasible Entailment and Explanations
Project Proposal

Chipo Hamayobe
hmychi001@myuct.ac.za
University of Cape Town
Cape Town, South Africa

Orefile Morule
mrlore001@myuct.ac.za
University of Cape Town
Cape Town, South Africa

ABSTRACT
Defeasible entailment is a non-monotonic type of reasoning that
allows us to make conclusions with exceptions to general rules. It
is a way to formalize human reasoning where previous inferences
can be withdrawn when new knowledge is introduced. This ad-
dresses some of the limitations of classical reasoning. In any logical
system, explanations are important for presenting why a particular
entailment holds and are a key part of reasoning systems. Even
though explanations have been studied extensively in classical rea-
soning, such has not been the case for defeasible reasoning systems,
especially such as those proposed by Kraus, Lehmann, and Magi-
dor KLM. Apart from classical, our project also aims to implement
and determine entailment as advanced by the Rational Closure
algorithm and then develop tools that will provide justifications
for why those inferences hold within a particular knowledge. This
will enhance our comprehension of explanations in classical and
defeasible reasoning systems and could serve as a foundation for
practical explanation services, such as debugging tools for complex
and/or problematic knowledge bases.

CCS CONCEPTS
• Theory of computation→ Automated reasoning; • Comput-
ing methodologies → Nonmonotonic, default reasoning and
belief revision.

KEYWORDS
artificial intelligence, knowledge representation and reasoning,
propositional logic, klm framework, defeasible entailment, rational
closure, justifications, explanations

1 INTRODUCTION
One definition of Artificial Intelligence (AI) involves creating ma-
chines that can perform tasks requiring human-like intelligence.
While humans can naturally derive information from existing knowl-
edge, machines require more structured methods to represent and
manipulate information. For example, a simple statement like ‘it is
sunny today’ is easily understood by humans, but machines need
more rigorous ways to deduce its logical truthfulness and related
inferences.

Knowledge Representation and Reasoning (KRR) is a key area of
research in AI that focuses on representing knowledge about the
world, deducing new knowledge from it, and balancing expres-
siveness with computational efficiency. It involves expressing and
maintaining information about a domain using clear language [6].
In knowledge-based systems, information about a domain or world
is represented in a symbolic structure called a knowledge base. This
information is expressive and declarative. Entailment or reasoning

involves applying rules and manipulations to the knowledge base
to derive new conclusions about that domain [9].

KRR can be implemented using both logic-based and non-logic-
based systems. One way to represent knowledge is through classical
propositional logic, which assigns truth values to simple statements
called propositions. These propositions can be combined using op-
erators to form more complex logical statements. A logical system
consists of a language with syntax and semantics, as well as a
reasoning procedure [1, 6]. However, classical deduction systems
are expressively limiting due to their monotonicity property which
dictates that any derived inferences can never be withdrawn even
when new conflicting explicit propositions have been added to the
knowledge base.

Defeasible entailment is non-monotonic, meaning that previous
inferences can be withdrawn when new knowledge is introduced.
Unlike classical entailment, there is no single correct way to reason
with defeasible knowledge. Kraus, Lehmann, and Magidor (KLM)
[10] proposed a set of properties for making conclusions with de-
feasible knowledge. One such proposal, Rational Closure, will be
the primary focus of this project for determining entailment. Com-
pared to classical explanations, less research has been conducted
on defeasible explanations [5]. This project will therefore also seek
to investigate and define the concepts of defeasible explanations
flowing from the developed algorithms for entailment with Rational
Closure.

Finally, the tools independently developed for the two reasoning
systems will be integrated into a common library to provide both
classical and defeasible entailment and explanation services.We aim
to provide such justifications in simple and clear human language
so the entire tool could be used as a debugging mechanism for
defeasible logic systems.

2 BACKGROUND
2.1 Propositional Logic
2.1.1 Overview. Propositional logic is a formal system used to rea-
son about knowledge or information. It abstracts natural language
into a formal language and serves as the foundation for this project
and related work that might follow. A set of connectives and state-
ments defines propositional logic. More complex statements can be
created by combining statements using these connectives.

The truth of any composite statement depends on the truth of
the constituent base statements and the interpretation of the con-
nectives employed in its construction. This allows for the analysis
of the truthfulness of any statement separate from its supposed
intuitive meaning in natural language. It also defines how to reason
about a set of statements formally and what can be derived from
them[1, 9].

1

https://orcid.org/0009-0008-0987-814X

2.1.2 Syntax. The language of propositional logic, symbolised by
L, is constructed from a collection of the most basic units of knowl-
edge known as propositional atoms. Atoms can have truth values
of either true (𝑇) or false (𝐹) and their truthfulness does not nec-
essarily have to make sense in natural language. A propositional
atom such as fly can therefore be symbolised as f. The set of all
such propositional atoms is finite, denoted as P = {𝑝, 𝑞, 𝑟, 𝑠, . . .}.

The unary negation operator (¬) and binary connectives (∧,∨,→
,↔) are used to form propositional formulas like ¬(𝑞∧𝑟) → 𝑟 . The
set of all such formulas over P is called the propositional language
L [1]. Finally, the constants ⊤,⊥ ∈ L read as "top" to mean a
tautology and "bottom" to mean the opposite respectively are also
employed when required.

2.1.3 Semantics. The meaning of truth is defined by the seman-
tics of a logic, which enables systematic and meaningful analysis
of its language [9]. A knowledge base, K ⊆ L, is a finite set of
propositional formulas such as {𝛼, 𝛽,𝛾, . . . }.

A valuation, also referred to as an interpretation, I, is defined
as a function I : P ↦→ {𝑇, 𝐹 } which assigns each propositional
atomic statement a value of 𝑇 (true) or 𝐹 (false) respectively. If a
valuation assigns the truth value true to an atom, it is said to satisfy
the atom and satisfaction is symbolised by ⊩. For example, if we
have P = {𝑟, 𝑠} and interpretation is I(𝑟) = 𝑇 and I(𝑠) = 𝐹 then
I ⊩ (𝑟 ∨𝑠). It should be stated that this expression can be extended
to any formula in L.

Models of a formula 𝛼 are interpretations that satisfy it and the
set of all such models is represented by Mod (𝛼). An interpretation
is considered a model of a knowledge base K if it satisfies all the
formulas in K . If the set of models of K , Mod (K), is a subset of
the set of models of a statement 𝛽 , Mod (𝛽), then we say that K
entails 𝛽 , represented as K |= 𝛽 . This forms the foundation of a
fundamental reasoning system. By expressing knowledge as a set
of statements in a knowledge base, we can determine if it implies
other propositional statements.

Example 2.1. If the knowledge base contains the following propo-
sitions:

• birds fly (𝑏 → 𝑓)
• ostriches are birds (𝑜 → 𝑏)

We can conclude that since ostriches are birds, ostriches fly. We
can formally represent entailment as since Mod (K) ⊆ Mod (𝑓),
K |= 𝑜 → 𝑓 .

2.2 Classical Reasoning
Example 2.2. Assuming we have the following atoms representing
the propositions "being a bird", "having wings", "able to fly", "being
a penguin" and "being an ostrich" respectively:

P = {𝑏,𝑤, 𝑓 , 𝑝, 𝑜}
We can codify this information in the knowledge base K as:

• birds have wings (𝑏 → 𝑤)
• birds fly (𝑏 → 𝑓)
• penguins are birds (𝑝 → 𝑏)
• ostriches are birds (𝑜 → 𝑏)

We can now semantically represent K = {𝑏 → 𝑤,𝑏 → 𝑓 , 𝑝 →
𝑏, 𝑜 → 𝑏}. We can reason logically and consequently infer using

the principles of classical entailment that since penguins are birds,
penguins fly (𝑝 → 𝑓). This deduction is correct and acceptable
based on the current knowledge base. But we know that penguins
can not fly (𝑝 → ¬𝑓), despite being birds.

Despite this new conflicting information, we can not withdraw
our previous inference that penguins fly (𝑝 → 𝑓) due to the non-
monotonicity property of classical reasoning. The only logical infer-
ence we can draw based on this new information is that penguins
do not exit, which is not true in the real world because we know
that penguins do exist.

To account for the fact that penguins are a non-flying class of
birds, we need a different form of reasoning. While we could modify
the knowledge base to address penguins as an exception, this is
not practical as other exceptions like ostriches (𝑜 → ¬𝑓) would
also require changes to the knowledge base structure. Classical
entailment is denoted by |=.

2.3 Defeasible Reasoning
Classical reasoning systems have a significant drawback in that
they cannot depict typicality. This makes it challenging to concisely
represent any exceptional knowledge. Defeasibility on the other
hand allows us to withdraw previous conclusions when new in-
formation comes to light. If we add this new explicit information
(penguins do not fly) to the knowledge base, K is now represented
as {𝑏 → 𝑤,𝑏 → 𝑓 , 𝑝 → 𝑏, 𝑜 → 𝑏, 𝑝 → ¬𝑓 }.

There are nomodels ofK in which 𝑝 can be true and still infer the
existence of penguins; therefore no further meaningful reasoning
can be made about penguins.

Our main focus is making logical decisions based on an inter-
nal representation of knowledge, following the AI principles of
knowledge-based intelligent agents. Example 2.2 shows that classi-
cal propositional logic alone cannot convey the idea of typicality.
We want to express that ’birds typically fly’ while still being able
to reason about the existence of penguins.

The solution is non-monotonic reasoning, which includes the
principles of "common sense" or defeasible entailment. This allows
for the retraction of previous deductions when conflicting infor-
mation is added to the knowledge base [2]. It is very important
to note that entailment is a high-level concept, similar to logical
equivalence and consequence. The idea of |= is not defined within
L, but rather it represents what can be inferred from formulas in
L.

While other variations of defeasible reasoning have been pro-
posed, we will focus on the KLM Framework by Kraus, Lehmann,
and Magidor[10] specifically on Rational Closure. The next section
will discuss this framework in more detail

2.3.1 The KLM Framework. We expand classical propositional logic
by adding the representation for typicality through the defeasible
connective, |∼, which is similar to the classical implication one,
→. In defeasible reasoning, classical statements such as 𝛼 → 𝛽 (𝛼
implies 𝛽) can now be written within a typicality context as 𝛼 |∼ 𝛽

(𝛼 typically implies 𝛽).
Therefore based on example 2.2 above, we can express ’birds

typically fly’ as 𝑏 |∼ 𝑓 . We also introduce the concept of defeasible
entailment, represented by |≈, which is comparable to the classical
|=. We aim to find reasonable non-monotonic entailment forms that

2

allow for the withdrawal of deductions when new contradictory
knowledge is added. These entailment relations are established by a
set of postulates and further refined to define more specific classes
of entailment [4, 10, 11]. We will focus mainly on the Rational
Closure type of entailment for explanations and justification.

2.4 Rational Closure
Rational Closure is a prototypical form of defeasible reasoning in
the KLM framework that is very conservative in abnormal cases.
Lehmann and Magidor [11] suggest that any other reasonable form
of entailment, while it may be more “adventurous” in its deductions,
should at least support the assertions in the Rational Closure of the
corresponding knowledge base.

The Rational Closure of a knowledge base can be computed in
two main ways. The option for this project is one that employs an
algorithmic approach that ranks statements in the knowledge base
[11]. We will use this method in our implementation because we
need access to the actual formulas within the knowledge base.

Lets assume K = {𝑏 |∼ 𝑓 , 𝑝 → 𝑏, 𝑝 |∼ ¬𝑓 }. We should actually
express this asK = {𝑏 |∼ 𝑓 ,¬(𝑝 → 𝑏) |∼ ⊥, 𝑝 |∼ ¬𝑓 } and then have
K𝑚 = {𝑏 → 𝑓 ,¬(𝑝 → 𝑏) → ⊥, 𝑝 → ¬𝑓 }. We know thatK𝑚 |= ¬𝑝
and 𝑝 is exceptional for K , therefore K𝑚 ̸ |= ¬𝑝 is also valid if so 𝑏
is not exceptional for K .

We define R(K) to represent the set of statements in K with
exceptional antecedents. This allows us to create a sequence of
knowledge bases RK

0 ,RK
1 ,RK

2 , . . . ,RK
𝑛 for any knowledge baseK .

Earlier knowledge bases in the sequence contain more defeasible
statements than later ones. We letRK

0 = K andRK
𝑖+1 = R(RK

𝑖
) The

last knowledge base RK
∞ contains only non-retractable statements

(if not empty)
We create a rankingK0,K1, . . . ,K∞ of the statements inK using

the sequence of R knowledge bases. We set K𝑖 = RK
𝑖

+ · · · + RK
𝑖+1

for 0 ≤ 𝑖 ≤ 𝑛 − 1 and K∞ = RK
∞ . The ranks are disjoint and earlier

ranks contain more defeasible statements than later ones.

Example 2.3. Again, assuming the knowledge base K = {𝑏 |∼
𝑤,𝑏 |∼ 𝑓 , 𝑝 → 𝑏, 𝑝 |∼ ¬𝑓 , 𝑐 → 𝑝}.

Figure 1 below presents the ranking of formulas associated with
it.

0 𝑏 |∼ 𝑤,𝑏 |∼ 𝑓

1 𝑝 |∼ ¬𝑓
∞ 𝑝 → 𝑏, 𝑐 → 𝑝

Figure 1: Rankings K0,K1, . . . ,K∞ for Example 2.3

Our expectations are met by this result. The statement 𝑝 |∼ ¬𝑓
(penguins typically do not fly), is recognised as more typical or less
defeasible than the statements 𝑏 |∼ 𝑓 (birds typically fly) and 𝑏 |∼ 𝑤

(birds typically have wings). It is important to note that classical
information is constantly found in the infinite or boundless rank
K∞.

With this ranking of statements in place, we can now compute
K |≈ (𝛼 |∼ 𝛽) by first checking if 𝛼 is exceptional with respect
to K , meaning whether RK |= ¬𝛼 . If 𝛼 is not exceptional, our

defeasible entailment result is computed as RK |= (𝛼 → 𝛽). If it
is exceptional, we remove the lowest level from our ranking and
repeat the process.

Let us take the query chippies typically do not fly (𝑐 |∼ ¬𝑓) and
the same knowledge baseK as in Example 2.3. Since the antecedent
𝑐 is exceptional for K , we discard the propositions in the first rank
K0 from K . Now that 𝑐 is no longer exceptional for K , we check if
RK |= (𝑐 → ¬𝑓). We can therefore deduce that the defeasible en-
tailment is valid for Rational Closure since this classical entailment
holds.

2.5 Explanations
Explanations give reasons for why an entailment holds from a
knowledge base. This project focuses on a specific type of expla-
nation called justifications, which are minimal subsets of formulas
needed for an entailment to hold [8]. Let us illustrate this concept
with an example.

Example 2.4. Suppose we have the following statements in our
knowledge base K :

• birds have wings (𝑏 → 𝑤)
• birds fly (𝑏 → 𝑓)
• tweety is a bird (𝑡 → 𝑏)

If someone asks, ’does tweety fly?’, the only statements needed
to answer this question are ‘birds fly’ and ‘tweety is a bird’. The
statement ‘birds have wings’ is irrelevant because the entailment
still holds without it. However, if we didn’t have the statements
‘birds fly’ and ‘tweety is a bird’, the entailment would not hold.

We can define justification in relation to knowledge bases. For-
mally, if we have a knowledge base K and have a query 𝛼 such
that K |= 𝛼 ; the set of formulas J is a justification for K |= 𝛼 if
J ⊆ K , J |= 𝛼 and for all J ′ ⊆ J , it holds that J ′ ̸ |= 𝛼 [13].

3 PROJECT DESCRIPTION
3.1 Overview
When reasoning, we humans are generally capable of providing
corroboration to support why we believe a certain fact is true or
false. For instance, if someone knows that ’birds fly’ and ’penguins
are birds’, they could logically conclude that ’penguins fly’. To sup-
port their conclusion, they would present the two known facts as
corroboration.

Explanations in reasoning systems reveal the statements in a
knowledge base that have relevance to the entailment between
the knowledge base and an entailed statement [5]. A simple form
of explanation frequently used for classical logics is justifications,
which are based on the idea of minimal subsets of a knowledge
base that can entail a propositional formula.

While much research has been done concerning classical expla-
nations and justifications and how to compute them, minimal work
has been done in expanding this to defeasible reasoning. Specifically,
for KLM-style entailment, no definition of defeasible explanation
has been proposed. More specifically, there are no tools available
that output explanations in a format that could serve as a debugging
service for knowledge bases. Our project aims to define and develop
such an explanation service.

3

3.2 Project Work
Our intention is to extend the algorithms for Relevant Closure to
provide a means of computing explanations and then provide justi-
fications for this type of defeasible entailment. We believe that since
this algorithm reduces to a series of classical entailment computa-
tions, we can use methods for computing classical justifications to
obtain a version of defeasible justification, as Chama [5] explains
for Rational Closure.

Additionally, we aim to explore and provide a general definition
for defeasible explanation within the KLM framework, but more
specifically for Rational Closure, and possibly in the broader con-
text of defeasible reasoning. With this definition in place, we will
develop algorithms and tools that could be employed in reasoning
systems providing explanations as a form of service.

3.3 Motivation
Understanding how an automated system reaches a conclusion is
very advantageous. AI systems are used in crucial aspects of every-
day life such as security, transportation and health services [12].
The examples we have illustrated in this proposal show a relatively
small number of propositional formulas with a relatively small com-
plexity. In practice, a knowledge base can contain hundreds or more
formulas with varying complexities. In scenarios where a knowl-
edge base is inconsistent or has an error, entailments (classical or
defeasible) can be challenging to understand. A justification can
help with debugging a knowledge base as it provides one with the
propositional formulas that make an entailment hold or not hold.
By examining the justifications for an entailment, it is possible to
identify inconsistencies or contradictions in the knowledge base
that may be causing the error [3].

Our analysis and implementation could lead to the development
of tools that evaluate justifications and improve our understand-
ing of entailment in KLM and other similar formalisms. This is
important because explanations are a key part of reasoning sys-
tems and are not well understood. Our work could also lead to
the development of a more advanced KLM-style reasoning system
providing explanations as a service, such as for debugging plugins
for knowledge bases.

4 PROBLEM STATEMENT
This project seeks to address the gaps in classical and defeasible
reasoning literature and available tools in explaining why a partic-
ular entailment of a knowledge base is valid (or not) by analysing
the ranking of statements using the Rational Closure algorithm.

4.1 Aims
As part of this project, we aim to:

• Provide the relevant theory and motivation for defeasible
entailment and explanations.

• Provide an algorithmic specification for computing defea-
sible entailment, specifically for Rational Closure, as pro-
posed by [10].

• Propose an abstract representation of the ranking of state-
ments compatible with the operations performed during
entailment checking.

• Implement the proposed entailment and explanations for
classical reasoning.

• Implement an algorithm to explain why an entailment holds
within the Knowledge base.

• Implement algorithms to verify the explanations against
the entailment in classical reasoning.

• Output the results for both levels of explanations in clear
and simple human language.

4.2 Research Questions
Our work in this project seeks to provide answers to the following
research questions:

4.2.1 Chipo Hamayobe.

• How can the corresponding ranked statements in Rational
Closure be efficiently abstracted to determine entailment
by constructing and analysing the applicable algorithms?

• How can such an entailment be tested and verified that it
is satisfiable for every propositional atom in any rank of a
knowledge base?

• How can the constituent formulas of such an entailment
be simplified so that the corresponding explanations can
be understood and expressed in natural language?

4.2.2 Orefile Morule.

• How can entailment be efficiently abstracted and developed
in classical reasoning to determine explanations?

• How can such an entailment be tested and verified so as to
inform the efficient abstraction of atomic propositions in
classical reasoning?

• How can the discovered justifications be explained and
presented to anyone in simple and clear natural language?

4.2.3 Additional ResearchQuestions. In case the research questions
are answered earlier than anticipated, we have proposed additional
research questions:

• Can the algorithms and tools developed for defeasible en-
tailment using Rational Closure also be easily extended to
Lexicographic Closure?

• Can the algorithms and tools developed for explanations
and justifications in classical reasoning also be easily ex-
tended to defeasible reasoning?

5 PROCEDURES AND METHODS
The first part of this project will primarily be theoretical focusing
more on understanding the defeasible entailment and explanations
pertaining to Rational Closure. At the same time, explanations for
classical reasoning will be explored as a basis for understanding the
groundwork. This will be followed by possibly the logical design
of the overall system and determination of the required tools and
focusing more on algorithms for the ranking of statements. After
that, optimized implementations of the Rational Closure versions
of these algorithms will be implemented in Java. Entailment expla-
nations in the sense of justifications in natural language will also
be analysed and developed. The Knowledge Base Generation Tool
(KBGT) from [7] will be used as a benchmarking and testing tool
to evaluate the performance of the developed algorithms.

4

This project involves iterative cycles of comprehending concepts,
formulating theories, and verifying their validity. While substantial
progress has been made in reviewing the relevant literature, this
knowledge will be refined and built upon throughout the project.
The project comprises four primary phases: tasks (3), (4), (5) and
(6) as outlined in Table 2.

5.1 Algorithm Adaptation
To modify the relevant algorithms, we must first thoroughly un-
derstand their workings. We will begin by reviewing the papers
that introduced these algorithms and any subsequent literature
that presents variations of them, with a focus on examples that can
enhance our intuitive grasp. We will also examine how these algo-
rithms relate to Rational Closure and its extension for computing
justifications.

To assess the completion of this section, we will submit prelimi-
nary versions of our algorithms and tools that demonstrate progress
and effectiveness in computing defeasible and classical explanations
to our supervisor. If the algorithms and tools are deemed unsatis-
factory, we will address any concerns and work on developing new
ones.

5.2 Determination of Entailment and
Explanations

The approach to formulating a definition and developing of tools
for explanations is less precise. We will begin by examining existing
literature on entailment and explanations for both classical and
defeasible reasoning, with a particular emphasis on the definition
of strong justifications [3]. As a starting point, we will investigate
this definition in the context of KLM in relation to the statement
rankings we previously discussed for Rational Closure. Building on
this foundation, we will develop a general definition for defeasible
explanations by adapting and reinforcing the conditions for classical
justifications. Based on this outcome, we will develop preliminary
prototypes that demonstrate our understanding of the requirements
so far.

We will assess this section more subjectively by verifying if it
aligns with our expectations. We will present a high-level design
evaluating the suitability of our approach. To this end, we will
review other papers in the field of logics that explain how explana-
tion systems have been theorised and implemented to gain a better
understanding of how this is formally accomplished.

5.3 Implementation of Algorithms
After presenting our definition of defeasible entailment and expla-
nation, we will formally verify our extended algorithms and the
previously defined extended algorithm for Rational Closure. This
will involve proving their correctness by demonstrating their sound-
ness and completeness according to our definition. If the algorithms
are found to be incorrect, we will review either the algorithms or
our definition based on the source of the issue.

We will then spend a considerable amount of time developing
and implementing the determined algorithms for entailment and
explanation. The tools independently developed for the two reason-
ing systems will be integrated into a common library to provide a
combined debugging service. When this work is tested and verified,

we will then work on outputting the explanations in simple and
clear human language.

5.4 Testing and Verification
For practical purposes and easier testing, we plan to define a reason-
ably small knowledge base, maybe a maximum of 16 propositional
formulas. Our code will also involve lots of unit tests to verify some
edge case functionality.

For testing, our supervisor Professor Thomas Meyer and 2 or more
of his colleague will perform the informal testing of the end product
to ensure that the resultant tool is useful for the intended purpose.
The feedback and results of this expert testing will be documented
and reported accordingly.

6 ETHICAL, PROFESSIONAL AND LEGAL
ISSUES

This project has both theoretical and practical aspects. We do not an-
ticipate any ethical issues related to user testing or privacy breaches
since neither component involves such activities. Since the end
product will be tested informally by the experts, including our su-
pervisor, there is no need to request any authorisation from the
University of Cape Town’s Research Ethics Committees (REC).

Since we will not be using or storing any personal information,
the Protection of Personal Information (POPI) Act does not apply
to us. We do not have to worry about licensing and copyright
issues because we are only referencing the literature on the subject
according to academic standards and not using any copyrighted
works.

Regarding intellectual property rights, we will be using software
such as Oracle OpenJDK releases for Java and the TweetyProject
library, which are licensed under the GNU General Public License
(GPL) with the Classpath Exception and GNU General Public Li-
cense respectively.

Additionally, the KBGT [7] is published under the MIT license,
allowing free use and modification of the tool. As such, we plan to
license our software under an open-source software license (likely
MIT) and will follow all necessary guidelines during development.

7 RELATEDWORK
An array of algorithms for calculating classical justifications have
been examined and offered by Horridge [8]. The algorithms pre-
sented can be classified as either glass-box or black-box. In glass-box
algorithms, the calculation of justification is incorporated into the
reasoning algorithm, meaning justifications are computed during
the reasoning process. In contrast, black-box algorithms operate
independently of the underlying reasoning process and are cal-
culated separately. There are trade-offs between the two kinds of
algorithms in terms of effectiveness and user-friendliness, which
must be weighed when selecting which one to employ.

An adaptation or remodelling of the Rational Closure algorithm
for determining justifications for Rational Closure defeasible en-
tailment is introduced by Chama [5]. This adaptation employs
algorithms presented by Horridge [8] as a foundation for determin-
ing justifications. This approach mirrors the reasoning process for
Rational Closure: after removing more typical ranks, we depend
on classical instruments to reason about the knowledge base, but

5

in this respect, rather than classical entailment we utilize classical
justification.

A distinct approach to defining defeasible justifications is how-
ever taken by Brewka et al. [3]. An abstract concept of a defeasible
justification is introduced that is purported to work for all types
of defeasible reasoning, called a strong explanation. One reason
why justifications function well in classical reasoning is that any-
thing entailed by a justification is also entailed by the knowledge
base. However, in the defeasible case, the remainder of the knowl-
edge base may contain information that contradicts the entailment.
This is addressed by broadening the definition of a justification
to encompass an extra attribute that guarantees there is no addi-
tional information in the knowledge base that conflicts with the
justification [3].

8 ANTICIPATED OUTCOMES
8.1 The System
Algorithms that determine the satisfiability of any input formula
for a particular knowledge base will be implemented in Java. Algo-
rithms that employ Rational Closure for defeasible entailment will
be employed for this purpose. A program, also in Java, that offers
explanations for the determined interpretations in the knowledge
base will also be developed that will function as a ’debugging’ tool
for providing details on why the determined entailment holds or
not. These will likely be command-line executables that integrate
with existing tools from the TweetyProject library collection. We
may also develop a web interface that could be used as a testing
and demonstration tool for the underlying explanation services.

The main design challenges will involve integration with these
code bases. A custom algorithm to output the explanations in a
simple natural language format will be developed as the main basis
of whatever desirable output. The success and acceptability of the
functional system will depend on its expressivity, efficacy and com-
putational efficiency. Unit and integration tests will be developed
for the determination of these metrics.

8.2 Expected Impact
We expect to develop justification algorithms for Rational Closure
by extending Chama’s algorithm [5] to include justifications in
clear human language. We will also formulate a definition for defea-
sible explanation and provide soundness and completeness proofs
that connect the reasoning algorithms for Rational Closure to this
declarative description. Additionally, we offer more informal expla-
nations to aid intuitive understanding. This preliminary work will
help in the development and implementation of algorithms that
output explanations on both levels in clear human language to aid
in the debugging of more complex and logically problematic knowl-
edge bases. This type of work has not been explored satisfactorily
yet, therefore we hope our project work will be used as a stepping
stone for more research in further meaningful explanation systems.

8.3 Key Success Factors
The success of this project will be determined by whether or not
we achieve these outcomes. A deeper understanding of the deter-
mination of classical and defeasible explanations will be the first
goal. The project will be considered successful if we:

• conduct a comprehensive analysis of how defeasible en-
tailment and explanations function as demonstrated and
implemented by Horridge [8] and Chama [5].

• implemented, develop and explain why particular infer-
ences hold or not using the Rational Closure type of defea-
sible reasoning.

• implemented, develop and explain why particular infer-
ences hold or not in classical reasoning.

• output both levels of explanations and justifications in clear
and simple human language.

• package these tools in some form of a library that can be
used as a debugging plugin for other software.

9 PROJECT PLAN
9.1 Risks and Contingencies
In addition to the general risks associated with projects, this project
depends on the ability to comprehend complex literature. This
introduces risks such as not being able to understand the work or
not being able to do so within the required time frame. Specifically,
spending too much time trying to understand a particular concept
can cause delays that can endanger the entire project. The risks,
alongwith their probabilities and impacts, are provided in Appendix
A as Table 3. A plan to mitigate, monitor and manage associated
risks is also presented under the same Appendix as Table 4.

9.2 Resources
For the theoretical aspects of the project, it will be crucial to have
access to pertinent literature such as credible research journals
and textbooks. For the practical parts of the system, computers
will be required to create and execute algorithms using IDEs soft-
ware like Visual Studio Code and IntelliJ IDEA. Additionally, open
source software such as Java (Open JDK) and the TweetyProject
(https://tweetyproject.org), as well as the source code for imple-
menting tools and algorithms in [7], will be required.

9.3 Deliverables
Please note that all the dates below relate to the year 2023.

Deliverable Due Date
Literature Reviews 24 March
Project Proposal Draft 21 April
Project Proposal Presentation 25-28 April
Project Proposal Final 2 May
Ethics Applications (if any) 12 May
Software Feasibility Demonstration 17 July
Project Progress Demonstration 17-21 July
Final Project Paper Draft 28 August
Final Project Paper Submission 11 September
Final Project Code Submission 15 September
Final Project Demonstration 26-29 September
Project Poster 9 October
Project Website 16 October
School of IT Showcase 24 October

Table 1: Project Deliverable Deadlines

6

9.4 Milestones and Tasks
Please note that all the dates below relate to the year 2023.

Task Dates
(1) Literature Review 24/02 - 24/03
(2) Project Proposal 28/03 - 02/05
(a) Draft 28/03 - 21/04
(b) Presentation 25/04 - 28/04
(c) Final 01/05 - 02/05
(3) In-depth Topic Exploration 03/05 - 26/05
(a) Do further research on defeasible and classical
entailment

03/05 - 26/05

(b) Do further research on defeasible and classical
explanations

03/05 - 26/05

(c) Review understanding with supervisor 24/05 - 26/05
(4) Preliminary Work 05/06 - 06/06
(a) Finalise the overall approach with supervisor 05/06 - 06/06
(5) Algorithm Implementation 07/06 - 16/07
Defeasible Entailment (Chipo) and Classical Expla-
nations (Orefile)
(a) Research on the best possible algorithms 07/06 - 14/06
(b) Analysis of the chosen Algorithms 15/06 - 20/06
(c) Initial Prototype and Implementation 21/06 - 05/07
(d) Analysis and Testing 06/07 - 11/07
(e) Finalisation Analysis 12/07 - 16/07
(6) Demonstrations 12/07 - 21/07
(a) Software Feasibility Demonstration 12/07 - 17/07
(b) Project Progress Demonstration 17/07 - 21/07
(7) Integration 22/07 - 08/08
(a) Integrate defeasible entailment and explana-
tion service programs onto the chosen external
tool

17/07 - 31/07

(b) Analysis and Testing 01/08 - 08/08
(8) Final Submissions 09/08 - 15/09
(b) Complete Draft of final paper 09/08 - 28/08
(b) Paper final submission 29/08 - 11/09
(c) Code final submission 09/08 - 15/09
(9) Other Tasks 16/09 - 24/10
(a) Final Project Demonstration 26/09 - 29/09
(b) Project Poster 30/09 - 09/10
(c) Project Website 16/09 - 16/10
(d) School of IT Showcase 17/10 - 24/10

Table 2: Project Milestones and Tasks

The project timeline is summarised in the Gantt Chart presented
as Figure 2 in Appendix B.

9.5 Work Allocation
Task (1) has already been completed and submitted independently.
The remaining work is divided into tasks as tabulated in Table 2
and is allocated as follows:

9.5.1 Chipo Hamayobe.

• Finalise the defeasible entailment theory and preliminary
work under Task(4).

• All the defeasible entailment and relatedwork under Task(5).
• Development and testing of defeasible entailment algo-

rithms and explanations under Tasks (5) and (6).
• Integration work for entailment explanations under Task(7).
• Task (8) based on the work done on the project.

9.5.2 Orefile Morule.

• Finalise the classical explanations theory and preliminary
work under Task(4).

• All the classical explanations and related work under Task
(5).

• Development and testing of classical explanations algo-
rithms and outputs under Tasks (5) and (6).

• Integration work for justifications and explanations under
Task(7).

• Task (8) based on the work done on the project.

9.5.3 Collaborative Tasks.

• All the work under Task(2) will be done as a team.
• We shall also collaborate on Task(6) as part of the integra-

tion of developed tools.
• As a following process from Task(6), Task (7) will be a team

effort to ensure we test the integrated software.
• All the Task(9) sub-tasks will be done as a team, to prepare

for final demonstrations, presentations and a showcase to
the School of IT.

REFERENCES
[1] Mordechai Ben-Ari. 2012. Propositional Logic: Formulas, Models, Tableaux.

Springer London, London, 1, 7–47.
[2] Richard Booth, Giovanni Casini, Thomas Meyer, and Ivan Varzinczak. 2015. On

the Entailment Problem for a Logic of Typicality. In Proceedings of the 24th Inter-
national Conference on Artificial Intelligence (Buenos Aires, Argentina) (IJCAI’15).
AAAI Press, 2805–2811.

[3] Gerhard Brewka and Markus Ulbricht. 2019. Strong explanations for nonmono-
tonic reasoning. Description Logic, Theory Combination, and All That: Essays
Dedicated to Franz Baader on the Occasion of His 60th Birthday (2019), 135–146.

[4] Giovanni Casini, Thomas Meyer, and Ivan Varzinczak. 2019. Taking Defeasible
Entailment Beyond Rational Closure. In Logics in Artificial Intelligence. Springer
International Publishing, Cham, 182–197.

[5] Victoria Chama. 2020. Explanation for defeasible entailment. Master’s thesis.
Faculty of Science, University of Cape Town, Rondebosch, Cape Town, 7700.

[6] Crina Grosan and Ajith Abraham. 2011. Knowledge Representation and Reasoning.
Springer Berlin Heidelberg, Berlin, Heidelberg, 131–147. https://doi.org/10.1007/
978-3-642-21004-4_6

[7] Joel Hamilton, Joonsoo Park, Aidan Bailey, and Thomas Meyer. 2022. An Inves-
tigation into the Scalability of Defeasible Reasoning Algorithms. SACAIR 2021
Organising Committee, Online, 235–251. https://protect-za.mimecast.com/s/
OFYSCpgo02fL1l9gtDHUkY

[8] Matthew Horridge. 2011. Justification based explanation in ontologies. Ph. D.
Dissertation. University of Manchester, UK.

[9] Adam Kaliski. 2020. An Overview of KLM-Style Defeasible Entailment. Master’s
thesis. Faculty of Science, University of Cape Town, Rondebosch, Cape Town,
7700.

[10] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. 1990. Nonmonotonic
reasoning, preferential models and cumulative logics. Artificial Intelligence 44, 1
(1990), 167–207. https://doi.org/10.1016/0004-3702(90)90101-5

[11] Daniel Lehmann and Menachem Magidor. 1992. What does a conditional knowl-
edge base entail? Artificial Intelligence 55, 1 (1992), 1–60. https://doi.org/10.
1016/0004-3702(92)90041-U

[12] Warren J von Eschenbach. 2021. Transparency and the black box problem: Why
we do not trust AI. Philosophy & Technology 34, 4 (2021), 1607–1622.

[13] S Wang. 2022. Defeasible Justification for the KLM Framework. Master’s thesis.

7

https://doi.org/10.1007/978-3-642-21004-4_6
https://doi.org/10.1007/978-3-642-21004-4_6
https://protect-za.mimecast.com/s/OFYSCpgo02fL1l9gtDHUkY
https://protect-za.mimecast.com/s/OFYSCpgo02fL1l9gtDHUkY
https://doi.org/10.1016/0004-3702(90)90101-5
https://doi.org/10.1016/0004-3702(92)90041-U
https://doi.org/10.1016/0004-3702(92)90041-U

Appendix A RISKS

ID Risk Probability Impact
1 Poor time management Medium High
2 Difficulty in understanding the technical aspects in our research Medium Medium
3 Integration of the two project components with external tools is more

challenging than expected
Medium Medium

4 Disagreement between partners in the joint-project phase of the project Medium Medium
5 Project partner does not successfully complete their part of the project Medium Medium
6 Supervisor is unavailable Low Medium
7 Source code or project paper gets corrupted or is otherwise irretrievable Low Medium
8 Inability to access internet resources due to load shedding High High

Table 3: Risk Identification

ID Mitigation Monitoring Management
1 Make use of project management tools

such as our Gantt chart and a Kanban
board to keep track of tasks and their time-
lines.

Regularly check the Gantt chart and Kan-
ban board to see if we are on track to meet
deadlines.

Reduce our scope if we have sufficiently
covered the fundamental goals of a par-
ticular phase to ensure we meet the next
deadline(s).

2 Engage with multiple resources as soon as
possible and collaborate with project part-
ners when dealing with the same concepts.

Regularly engage with the supervisor to
ensure that your understanding is correct.

Request a meeting with our supervisor to
help clear up misunderstandings.

3 Take a considerable amount of time to
understand how the tools work and note
what any relevant limitations are.

As we build our algorithms incrementally,
test whether integration is possible after
each increment.

Resort to online forums AI tools to help
solve our problem.

4 Ensure that your project partner knows
what you are doing at each stage of your
individual project even way before the col-
laboration phase.

Hold team meetings after a milestone
has been reached to assess each other’s
progress.

Meet with our supervisor to help mediate
the matter.

5 Make sure that the scope given is reason-
able.

Keep track of deadlines as stated in the
Gantt chart and request a change in scope
if it is inevitable that the current goals will
not be matched.

Ensure that each partner project still
works independently of the unfinished
project.

6 Request the supervisor’s schedule well in
advance.

Inform the supervisor of our intention to
have a meeting two weeks prior and regu-
larly check if they will still be available.

Reschedule meetings and work on parts of
the project that we can without the super-
visor’s assistance.

7 Backup our electronic documents on the
cloud.

Back-up work to the cloud each night after
editing.

Restore the latest backup and rewrite work
from that point.

8 Set up a schedule for working on the
project such that you do not need to work
during load-shedding.

Regularly check the load-shedding sched-
ule and go to areas where you have inter-
net access if possible.

Continue project work for sections that
are not reliant on internet access.

Table 4: Risk Mitigation, Monitoring, and Management

8

Appendix B GANTT CHART

ID Task Name Start Finish

1 Literature Review Feb 24 Mar 24

2 Individual Literature Reviews Feb 24 Mar 24

3 Project Proposal Mar 28 May 02

4 Draft Feb 28 Apr 24

5 Presentation Apr 25 Apr 28

6 Final May 01 May 02

7 In-depth Topic Exploration May 03 May 26

8 Do further research on defeasible and classical
explanations

May 03 May 23

9 Do further research on defeasible and classical
entailment

May 03 May 23

10 Review understanding with supervisor May 24 May 26

11 Preliminary Work Jun 05 Jun 07

12 Finalise the overall approach with supervisor Jun 05 Jun 07

13 Algorithm Implementation Jun 07 Jul 14

14 Research on the best possible algorithms Jun 07 Jun 14

15 Analysis of the chosen Algorithms Jun 15 Jun 20

16 Initial Prototype and Implementation Jun 21 Jul 05

17 Analysis and Testing Jul 06 Jul 11

18 Finalisation Analysis Jul 12 Jul 14

19 Demonstrations Jul 12 Jul 21

20 Software Feasibility Demonstration Jul 12 Jul 17

21 Project Progress Demonstration Jul 18 Jul 21

22 Integration Jul 22 Aug 08

23 Integrate defeasible entailment and explanation service
programs on to the chosen external

Jul 22 Jul 31

24 Analysis and Testing Aug 01 Aug 08

25 Final Submissions Aug 10 Sep 15

26 Complete Draft of final paper Sep 11 Sep 11

27 Paper final submission Aug 29 Sep 11

28 Code final submission Sep 12 Sep 15

29 Other Tasks Sep 16 Oct 24

30 Final Project Demonstration Sep 26 Sep 29

31 Project Poster Oct 02 Oct 10

32 Project Website Sep 16 Oct 16

33 School of IT Showcase Oct 17 Oct 24

09/11

02/12 02/19 02/26 03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23 04/30 05/07 05/14 05/21 05/28 06/04 06/11 06/18 06/25 07/02 07/09 07/16 07/23 07/30 08/06 08/13 08/20 08/27 09/03 09/10 09/17 09/24 10/01 10/08 10/15 10/22 10/29 11/05
March April May June July August September October November

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

Page 1

Project: DEE_Project_Proposal_P
Date: Apr 24

Figure 2: Gantt Chart

9

	Abstract
	1 Introduction
	2 Background
	2.1 Propositional Logic
	2.2 Classical Reasoning
	2.3 Defeasible Reasoning
	2.4 Rational Closure
	2.5 Explanations

	3 Project Description
	3.1 Overview
	3.2 Project Work
	3.3 Motivation

	4 Problem Statement
	4.1 Aims
	4.2 Research Questions

	5 Procedures and Methods
	5.1 Algorithm Adaptation
	5.2 Determination of Entailment and Explanations
	5.3 Implementation of Algorithms
	5.4 Testing and Verification

	6 Ethical, Professional and Legal Issues
	7 Related Work
	8 Anticipated Outcomes
	8.1 The System
	8.2 Expected Impact
	8.3 Key Success Factors

	9 Project Plan
	9.1 Risks and Contingencies
	9.2 Resources
	9.3 Deliverables
	9.4 Milestones and Tasks
	9.5 Work Allocation

	References
	A Risks
	B Gantt Chart

