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ABSTRACT
Justifications help knowledge base users and engineers to under-
stand why a given given entailment holds. Having this information
is beneficial in understanding the knowledge represented in the
system and how this was used to infer new knowledge. There
are several algorithms used get find justifications and they each
have their advantages and disadvantages. Justifications can be fine-
grained in order to remove superfluity and make more sense of
why an entailment holds.

CCS CONCEPTS
• Theory of computation→ Automated reasoning; • Comput-
ing methodologies → Nonmonotonic, default reasoning and
belief revision; Description logics.

KEYWORDS
artificial intelligence, knowledge representation and reasoning, clas-
sical reasoning

1 INTRODUCTION
Formal logic in the field of Artificial Intelligence allows us to repre-
sent the state of the world in such a way that it is easy for automated
systems to understand it. Once this is achieved we would like the
systems to be able to infer new knowledge by reasoning with that
it already knows. This is the concept of Knowledge Representation
and Reasoning in Artificial Intelligence. We would like to know how
and why Artificial Intelligence systems come to conclusions when
asked if something holds in the world as it knows it. This is known
as Justifications for entailment.

We will start this paper by giving background on Propositional
Logic which is the formal logic this paper will be restricted to. We
will then show how logic ties in with Knowledge Representation
and Reasoning. Then we will explain Justifications for Classical
Entailment including the different algorithms for computing justifi-
cations and the benefits and disadvantages associated with them.
We will show how the black-box algorithm can be optimised to
reduce the number of entailment tests that need to be run.

Finally, in the discussion we will explain how Fine-grained jus-
tifications can be used to solve issues of superfluity and masking.
Furthermore we will discuss how different justification computing
formulas can be used in combination.

2 BACKGROUND
2.1 Propositional Logic
Propositional Logic is the branch of logic concerned with joining
and/or modifying statements to create more complex statements
[7]. Propositional logic has indivisible statements referred to as
atoms. Atoms have a truth value - either True or False, but not both,

and represent what we know about the world. An example would
be, “the sky is blue,” or "it is raining."

2.1.1 Syntax. The set of statements or atoms is denoted as P.
In the language of Propositional Logic, atoms are represented as
lowercase letters. A statement such as, “the sky is blue,” could then
be represented as 𝑠 . Atoms are joined or modified using logical
signs or connectives to create more complex statements called for-
mulas. The main connectives are conjunction, disjunction, negation,
implication, and equivalence. They are used in place of the truth-
functional operators, “and”, “or”, “not”, “if . . . then”, and “if and only
if”, respectively. The negation connective is unary, meaning it takes
only one operand, while the rest are binary, meaning that they take
on two operands.

See the table below for connectives and their symbols.

Name Meaning Symbol
disjunction or ∨
conjunction and ∧
negation not ¬

implication if then →
equivalence if and only if ↔

Figure 1: The Boolean operators used in propositional logic

The formula 𝑝 → 𝑞 is read “p implies q” and means if p is True
then q is True. The set of all formulas can be denoted as L such that
for every 𝑝 ∈ P, 𝑝 ∈ L, and if 𝛼, 𝛽 ∈ L, then ¬𝛼, 𝛼 ∧ 𝛽, 𝛼 ∨ 𝛽, 𝛼 →
𝛽, 𝛼 ↔ 𝛽 ∈ L [18].

2.1.2 Semantics. A valuation V is a function used to assign a
Truth value to an atom. A truth table is a finite table used to show
each possible combination of Truth values of atoms. Each line in
a truth table corresponds to a different valuation [7]. A proposi-
tion having a Truth value True, is called Satisfaction. Formally, A
Valuation V satisfies some 𝑝 ∈ P if 𝑉 (𝑝) = 𝑇 and it is denoted
by 𝑉 ⊩ 𝑝 . A valuation does not satisfy some 𝑝 ∈ P if 𝑉 (𝑝) = 𝐹

and it is denoted by 𝑉 ⊮ 𝑝 . In order to derive the Truth value of a
propositional formula under any valuation V, we look at the Truth
vales of the individual atoms making up the formula and use the
semantics and precedence order of the connectives used to evaluate
whether the formula is True or False.

V is a model of 𝛼 if for any 𝛼 ∈ L and a valuation 𝑉 , 𝑉 ⊩ 𝛼 .

2.2 Knowledge Representation and Reasoning
In Artificial Intelligence, we want to represent knowledge about the
world in such a way that a machine can understand reason about
the representation [1]. Formal logic is used to represent knowledge
by the use of symbols to represent propositions and propositional
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𝑝 𝑞 ¬𝑝 𝑝 ∧ 𝑞 𝑝 ∨ 𝑞 𝑝 → 𝑞 𝑝 ↔ 𝑞

T T F T T T T
T F F F T F F
F T T F T T F
F F F F F T T

Figure 2: A truth table for the Boolean operators ¬, ∧, ∨,→
and↔

formulas. A key component in Knowledge Representation is a Knowl-
edge Base. A Knowledge Base is a finite set of propositional formulas
[18].

Satisfiability for a Knowledge BaseK means that for every 𝛼 ∈ K
there exists a valuation 𝑉 that satisfies each of them.

Reasoning is the process of using the knowledge represented
in a knowledge base to make inferences and make decisions. The
reasoning technique this paper focuses on is deduction where a
conclusion logically follows from the premises given.

3 JUSTIFICATIONS FOR ENTAILMENT
Inferring new information using knowledge from a knowledge base
is entailment. Formally, if we let𝑈 ⊆ L be a set of formulas and 𝛼
be a formula,𝑈 entails 𝛼 (𝑈 |= 𝛼), if and only if every model of𝑈
is a model of 𝛼 .

Satisfaction provides a way of checking entailment. K |= 𝛼 if K
with ¬𝛼 added to it is not satisfiable.

It is beneficial to know how an automated system comes to a
conclusion. AI systems are being used in essential parts of our lives
including healthcare, transport, and security [17]. Explanations
provide reasons as to why an inference was made. This review
focuses on a specific type of explanation called Justification, which
is the minimal subset of formulas needed for the entailment to hold
[2].

Let us demonstrate this concept with an example:
(1) Birds fly
(2) Birds have wings
(3) Tweety is a bird

The statements above are our propositions. If someone were to
ask, ‘does Tweety fly?’ all we would need to answer that are the
statements, ‘Birds fly’ and ‘Tweety is a bird’. The statement ‘Birds
have wings’ is irrelevant in our justification because even without
the statement, our entailment holds. Conversely, the entailment
would not hold if we did not have the statements ‘Birds fly’ and
‘Tweety is a bird’.

We can define justification in relation to Knowledge Bases. For-
mally, if we Let K be a knowledge base and have a query 𝛼 such
that K |= 𝛼 ; the set of formulas 𝐽 is a justification for K |= 𝛼 if
𝐽 ⊆ K , 𝐽 |= 𝛼 and for all 𝐽 ′ ⊂ 𝐽 , it holds that 𝐽 ′ ̸ |= 𝛼 [18].

3.1 Justification algorithms
The examples we have looked show only a handful of propositional
formulas, but in reality knowledge bases can contain thousands of
formulas. It is thus necessary to have algorithms that can compute
justifications for entailments in the most efficient way. In the litera-
ture, algorithms for computing justifications are broadly classified

into two categories, black-box algorithms and glass-box algorithms
[8]. Horridge [2] goes further by stating that there are two axes
of classification for algorithms for computing justifications. The
first axis deals with whether an algorithm computes a single or all
justifications for an entailment and this is called the single-all-axis.
The second axis deals with whether the algorithm is a black-box or
glass-box algorithm and this is called the reasoner-coupling-axis.

3.1.1 Single-All-Axis. Algorithms for computing all justifications
tend to depend on algorithms for computing a single justification as
a sub-routine [2]. Computing a single justification can be beneficial
for debugging a knowledge base. If an engineer for a knowledge
base cannot make sense of an entailment, it would be easier to find
the error in the knowledge base if they get a single justification at
a time.

3.1.2 Reasoner-Coupling-Axis. Penaloza et al [11], explain that
the glass-box algorithm aims to keep track of the propositional
formulas being used in the reasoning algorithm. This requires mod-
ifying the reasoner to ensure it does not only state whether or not an
entailment holds but which propositional formulas or justification
make the entailment hold [8].

Contrastingly, the black-box algorithm is independent of the rea-
soning algorithm and does not need to modify its internal workings.
We can think of the reasoner as a black-box that accepts a knowl-
edge base K and an entailment K |= 𝛽 as input and returns a yes
or no depending on whether or not the entailment holds [6]. The
black-box algorithm consists of two phases, expand and contract.
During the expansion phase, a subset 𝑆 of the knowledge base is
expanded with propositional formulas until the entailment holds
in the subset. At this point either the subset 𝑆 or some subset of
𝑆 is guaranteed to be a justification for K |= 𝛽 . We now enter the
contraction stage where propositional formulas are removed from
the subset 𝑆 until it is a minimal set of propositional formulas that
entails 𝛽 . Both stages require satisfiability checks to the reasoner
[6].

The most obvious way to go about expansion is to start with a
subset 𝑆 that is equal to the knowledge base K . The Contraction
stage will then remove one formula at a time until each formula
has been checked. At this point 𝑆 is a justification for K |= 𝛽 .
The number of tests needed would be proportional to the size of
K . As mentioned previously, knowledge bases in reality contain
thousands of formulas, therefore it would be impractical to use such
a method.

3.2 Optimising Expansion phase
The aim of optimising the expansion phase is to have as small a
number of entailment tests as possible. One of the techniques used
for this is the selection function. A selection function 𝛾 , creates all
possible subsets of K . This reduces the number of tests done in the
expansion phase. The chances of selecting 𝑆 where 𝐽 ⊂ 𝑆 increases
with an increasing size of 𝐽 . In the best case scenario, only a single
test such as 𝑆 |= 𝛽 has to be done [9]. Horridge [2] explains that
expansion tries to find the entailment in question in a subset of
the knowledge base much smaller than the knowledge base. The
benefit of this is that entailment tests are faster for smaller sets
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and a smaller input to the contraction phase typically means fewer
entailment tests in that phase.

3.3 Optimising Contraction phase
There are two optimisations that can be implemented in the con-
traction phase. The first is the sliding window approach. Instead of
choosing one formula to remove from the subset 𝑆 , a set of formulas
S” is removed from 𝑆 . If 𝑆 \ S" |=𝛽 , then 𝑛 = |S”| number of formulas
can be removed from 𝑆 . This will result in having 𝑛 - 1 entailment
tests as opposed to 𝑛 entailment tests. The second approach is a
divide and conquer strategy. Given a Knowledge Base K , where
K |= 𝛽 , K is split into two halves K1 and K2. If K1 |= 𝛽 then K2
is discarded and vice versa. If neither K1 nor K2 entails 𝛽 , then
K1 is split into half and one of those halves is combined with K2
and an entailment test is ran on that combination. The process of
halving and merging is continued until a justification is obtained.
Shchekotykhin et al [16] carried out a comparison between the
sliding window strategy used by Kalyanpur et al [6] and the divid-
ing and conquer strategy, and found that the divide and conquer
strategy performed noticeably better [2].

3.4 Computing all justifications
A Hitting Set Tree [12] can be used to compute all justifications in
a knowledge base. Given K |= 𝛽 , a hitting set tree for 𝛽 in K is
a finite tree which has nodes that are marked with justifications
for K |= 𝛽 , and edges marked with formulas contained in K . Each
non-leaf node 𝑣 is connected to a child node 𝑣 ′ through an edge
marked with a formula 𝛼 such that 𝛼 is in the mark of 𝑣 but not in
the mark of 𝑣 ′. 𝑣 ′ is a leaf node if the mark of 𝑣 ′ is an empty set.

Here are the steps for building the tree:
(1) We start by choosing a formula 𝛼 ∈ 𝑣 which is not in the

edges of the children of node 𝑣 .
(2) We then let 𝑆 be the disjunction of the chosen formula 𝛼 and

the set of formulas found in the path from 𝑣 to the root node
of the tree. We then remove 𝑆 from K to get K′

(3) We then run an entailment test to check if the new knowledge
base K′ |= 𝛽 . If so, we compute a justification 𝐽 for 𝛽 with
respect toK . If insteadK ̸|= 𝛽 , we set the justification 𝐽 = ∅.

(4) We then make a new node 𝑣 ′ and set its justification to be 𝐽
(5) We add an edge 𝑒 that connects 𝑣 and 𝑣 ′, and we label 𝑒 with

the formula 𝛼
(6) Finally we add all the formulas in 𝑆 back into K
The enumerated procedure is repeated until no new child nodes

can be created. At this stage all the justifications forK′ |= 𝛽 can be
found in the node labels.

3.5 Fine-grained Justifications
Horridge [3] states that there are cases where not all parts of a
formula are needed for an entailment to hold. He then presents
the idea of a fine-grained justification, which is a justification that
contains formulas with no superfluous parts. For a justification 𝐽

for an entailment 𝛽 , an atom that has a Truth value T is regarded
as being superfluous if it can be substituted for another positive
atom without breaking 𝛽 , and an atom that has a Truth value F is
regarded as being superfluous if it can be substituted for another
negative atom without breaking 𝛽 .

Consider the following example:
(1) Birds fly
(2) Birds have wings
(3) Penguins are birds and are cute
If we have a query, ‘do penguins fly’, our justification would be

‘Penguins are birds and are cute’, ‘Birds fly’. Intuitively, one can see
that the information about penguins being cute is not relevant as
the statement ‘Penguins are birds and are cute’ can be replaced with
‘Penguins are birds and are awesome’ and the entailment would still
hold.

Fine-grained justifications are further split into laconic and pre-
cise justifications. Laconic justifications are justifications whose
formulas do not contain superfluous parts and precise justifications
are justifications that identify the parts of formulas which could
be changed for repair of a knowledge base. Formally, given K |= 𝛽 ,
the set of formulas 𝑅 is a repair for 𝛽 inK if 𝑅 ⊆ K ,K \ 𝑅 ̸ |= 𝛽 and
there is no 𝑅′ ⊊ 𝑅 such that K \ 𝑅′ ̸ |= 𝛽 .

4 DISCUSSION
The idea of justifying entailments has been laid out in this review.
The main reasons one would want to seek a justification for an
entailment are (1) debugging an erroneous knowledge base, (2)
exploring the facts about the world stored in the knowledge base,
and (3) understanding the complexity of the knowledge base. A
lot of the work cited has been done by Horridge. He states that
explanations were initially mostly proof-based. That is to say an
explanation showed how a reasoner proved that entailment held
in a knowledge base. Work by Schlobach and Cornet [15] and [10]
is noted as being a significant cause to shifting attention towards
justification-based explanations. This means that in order to un-
derstand a justification, one does not need to know how proofs
work and the rules used for deduction. Instead all one needs is to
understand the semantics of propositional logic. The literature cov-
ers justification-based explanations in terms of ontologies and not
knowledge bases. An ontology is essentially a formal representation
of a domain of knowledge. It is related to knowledge bases in that
an ontology can be the foundation upon which a knowledge base
is built and that allows us to extend the concepts of justification
as well as knowledge representation and reasoning to knowledge
bases.

The different algorithms for computing were shown along the
single-all axis and the reasoner-coupling axis. The algorithms can
be combined [14]. One combination sometimes referred to as the
pure black-box algorithm is where you have a black-box algorithm
for computing all justifications using a black-box algorithm for
computing a single justification as a sub-routine [5]. Another com-
bination sometimes referred to as hybrid black-box glass-box al-
gorithm is where you have a black-box algorithm for computing
all justifications using a glass-box algorithm for computing single
justifications as a subroutine. Lastly we have what is sometimes
referred to as pure glass-box algorithm where you have a glass-
box algorithm for computing all justifications using a glass-box
algorithm for computing a single justification as a sub-routine.

Black-box algorithms have the advantage of easy implementa-
tion due to being independent of the reasoner. The disadvantage
of a black-box algorithm is that it can be impractical for a large
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knowledge base where it might need to expand over a large portion
of the knowledge base. Glass-box algorithms have the advantage of
being able to compute single justifications quickly and trivially as
part of the reasoning process [2] [13]. A disadvantage of glass-box
algorithms is that they are difficult to implement as modifications
to the reasoner need to be made. Additionally they have a disadvan-
tage as compared to black-box algorithms of more memory usage
[13].

A problem that has been highlighted with justifications is su-
perfluity. This concepts refers to formulas in a justification having
unnecessary parts for the entailment to hold. A related concept
that was introduced is masking, which means that the number of
justifications for an entailment do not equal the number of reasons
for that entailment. Horridge [4] explains that there are two main
problems with masking. The first is that because there can be mul-
tiple reasons for an entailment within a single justification, this
can hinder one’s comprehension of why the entailment holds. Sec-
ondly if a knowledge base engineer needs to repair the knowledge
base by removing parts of formulas, then the repair might not give
the desired result because all the reasons for an entailment might
not be clear. As a solution to superfluity and masking Horridge
[2] proposes fine-grained justifications. These are categorised into
laconic and precise justifications. Having fine-grained justifications
allows one to know which parts of the formulas in a justification
are needed for an entailment to hold. This aids in terms of compre-
hension of the justification of an entailment and also helps in terms
of making a successful repair.

5 CONCLUSIONS
We have looked at how propositional logic allows us to represent
statements about the world using symbols and connectives between
them. This is useful in terms of Artificial Intelligence because it
makes it easier for a computer to understand this representation
and reason about it. We then explained that one would want to
understand why an entailment from a knowledge base holds for
reasons including that the automated decision can be in fields in-
cluding healthcare and security where there is little to no margin
of error.

We looked at the black-box and glass-box algorithms and how
they are used to compute justifications. The main difference be-
tween them is that black-box algorithms are independent of the
reasoner whereas glass-box algorithms need to be integrated with
a reasoner in order to compute justifications. The black-box algo-
rithms can be optimised to reduce the number of entailment tests
needed at each step by using a selection function in the expansion
phase and during the contraction phase using either a sliding win-
dow approach or a divide and conquer strategy. Shchekotykhin et
al [16] showed that the divide and conquer performs better than
the sliding window approach. We also noted that there can be more
than one justification for an entailment. The Hitting Set Tree is an
algorithm that is most common for computing all the justifications
for an entailment.

Finally we have explained that justifications have a problem
where they can be superfluous and that one could have justification
masking. A way to circumvent this is by having fine-grained justifi-
cations. Horridge’s work [2] defines that fine-grained justifications

can be laconic or precise. Our discussion showed that this helps
with comprehending why an entailment holds and how to go about
knowledge base repairs for the desired result.
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