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ABSTRACT
Defeasible reasoning is a way to make conclusions in propositional
logic that can handle exceptions to general rules. With this, we can
make statements like “birds usually fly, but penguins do not fly”, un-
derstand them and make further inferences. Defeasible entailment
is a non-monotonic type of reasoning that allows for exceptions to
general rules. It is useful for understanding situations where new in-
formation can change the conclusions made from a set of facts. This
literature review looks at current research on defeasible entailment,
including methods like Rational Closure and Lexicographic Closure
in the KLM framework. We look at the strengths and weaknesses
of these methods and identify areas for future research in this field.

CCS CONCEPTS
• Theory of computation→ Automated reasoning; • Comput-
ing methodologies → Nonmonotonic, default reasoning and
belief revision.
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tional closure, lexicographic closure

1 INTRODUCTION AND MOTIVATION
In simple terms, Artificial Intelligence (AI) is the development of ma-
chines capable of performing tasks that normally need human-like
intelligence. The ability to derive information from existing knowl-
edge occurs naturally for us humans. “It was raining yesterday”
represents a simple natural language expression of an observation
about one’s environment whose meaning and related inferences
are immediately clear to any reasonable human. Machines need
more structured and rigorous ways to represent and manipulate
information, no matter how simple.

Knowledge Representation and Reasoning (KRR) is an important
field of research within AI with many practical applications and
capabilities [14]. KRR seeks to address three primary concerns: how
well to represent what we know about the world, how we deduce
more or new knowledge from such a representation and, finally,
how to manage the inverse relationship between knowledge articu-
lateness (expressivity) and computational efficiency [7]. Knowledge
Representation is the expression and maintenance of domain in-
formation about some environment using unambiguous language
[11].

In knowledge-based systems, this domain of meaningful infor-
mation is expressive and declarative and is syntactically encoded
as a symbolic structure referred to as a knowledge base [12]. The
application of a set of rules and manipulations to information in
the knowledge base to derive more or new conclusions about the
world describes the notion of reasoning.

KRR can be implemented using both logic-based and non-logic-
based systems. Classical propositional logic is the simple but ex-
pressive language of representing knowledge [12]. Truth values
are assigned to simple domain statements, known as propositions,
and can be joined using operators to form more intricate logical
statements [1]. Primarily, a logical statement or system is made up
of two parts, its language composed of syntax and semantics plus a
procedure of reasoning [11].

Defeasible entailment has the non-monotonicity property, hence
it allows for previous inferences to be possibly withdrawn when
new logically contradictory information is introduced. Unlike clas-
sical entailment, which has monotonicity properties, there is no one
right way for defeasible entailment to work. As a result, there are
many different ways to reason with defeasible knowledge. Kraus,
Lehmann and Magidor [13] (KLM) proposed a set of properties that
they believe define a good way to make conclusions with defeasible
knowledge. This review will focus on the KLM framework because
of their desirable theoretical and computational properties.

2 PROPOSITIONAL LOGIC
2.1 Syntax and Semantics
Propositional logic is a formal framework for representing human
language information or knowledge and reasoning into logical
statements [12]. Its simplicity and syntax make it a primary foun-
dation for other logic systems, hence it is sometimes indicated as
zero-order logic, and is the foundation for the rest of this paper. In
propositional logic, the lowest form of a proposition is known as
an atom and is assigned values of either true or false [1]. We can
therefore attach meaning to each atoms with statements such as
’birds have wings’ and ’birds can fly’.

The indivisible atoms in propositional logic are usually denoted
using lowercase single letters such as p and q. We can therefore
define a finite set of all proportional atoms as P = {𝑝, 𝑞, . . .}. We
could represent the proposition ’birds have wings’ as w and ’birds
can fly’ as f. Propositional logic provides for the analysis of these
statements without due regard to their instinctive meaning [12].
The figure below describes binary connectives, known as Boolean
operators, which are employed recursively to join atoms or formulas
to form other more complex formulas [5]:

Name Symbol Example Meaning
negation ¬ ¬𝑝 not 𝑝
disjunction ∨ 𝑝 ∨ 𝑞 𝑝 or 𝑞
conjunction ∧ 𝑝 ∧ 𝑞 𝑝 and 𝑞
implication → 𝑝 → 𝑞 𝑝 if then 𝑞

equivalence or bi-implication ↔ 𝑝 ↔ 𝑞 𝑝 if and only if 𝑞

Figure 1: The Boolean operators used in propositional logic
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All the above connectives are binary, except ¬ which is unary,
but they each accept all formulas as inputs [12]. Binary operators
accept two operands while unary ones only take one operand. The
negation, disjunction and conjunction boolean operators should be
understood to mean and behave as the natural language words ’not’,
’or, and ’and’ respectively. As the natural language word ’implies’
behaves, the implication connective means that, for example, if 𝛼
= T and 𝛼 implies 𝛽 , then 𝛽 = T as well. As the visual symbol↔
explains equivalence is simply a two-way implication.

By convention, the boolean operators have assumed precedence
in the following order, from highest to lowest: ¬,∧,∨,→,↔. For
an implication statement, or any of a similar format, such as 𝛼 → 𝛽 ,
we call 𝛼 the antecedent and 𝛽 the consequent With these five base
operators, we can form more complex propositional formulas such
as ¬(𝑏∧𝑤 )→ ¬𝑓 . The proportional language L is the set of all such
well-formed formulas and its elements are denoted by lowercase
Greek letters such as 𝛼, 𝛽, 𝜃, . . .. In knowledge representation, the
finite set of formulas is referred to as a knowledge base, denoted by
K .

An evaluation or interpretation is an expression P → {𝑇, 𝐹 }, that
designates a truth value to each entry, atom or formula, in L. Iff
a formula 𝛽 ∈ L evaluates to true based on the interpretation of
the truth values of statements and operator semantics in 𝛽 , then
we can state that I |= 𝛽 , meaning 𝛽 is satisfied by the interpretation
I. For instance, if we state that I (𝑏) = T and I (𝑤 ) = F, then can
evaluate that I |= (𝑏 ∨ 𝑤 ) and I |= (𝑏 ∧ 𝑤). A model of 𝛽 is any
evaluation that satisfied a formula 𝛽 and the set of all such models
of 𝛽 is indicated as Mod (𝛽). Flowing from this understanding, we
state that a formula fulfilled by every evaluation is denoted as ⊤
and one not fulfilled by any interpretation as ⊥. For a knowledge
base K , the set of all interpretations is denoted by U.

If a formula 𝛽 ∈ L is made up of propositional atoms, 𝑝 and 𝑞,
then we could assign a true (1) or false (0) value to these atoms
individually through the values of the operands using truth tables.
For easy interpretation, we evaluate a formula by breaking it down
into its constituent atoms and then constructing a truth table based
on the specific operators’ semantics and precedence order. The
resulting expression can be expressed as a sequence of atoms and
barred atoms (e.g. 𝑝, 𝑞, 𝑟 ) where the atom depicts the statement
valuation being true and the barred one depicts a false statement
valuation. The truth table below is an example of such a process.

𝑝 𝑞 ¬𝑝 ¬𝑞 𝑝 ∨ 𝑞 𝑝 ∧ 𝑞 𝑝 → 𝑞 𝑝 ↔ 𝑞

1 1 0 0 1 1 1 1
1 0 0 1 1 0 0 0
0 1 1 0 1 0 1 0
0 0 1 1 0 0 1 1

Figure 2: A truth table for the Boolean operators ¬, ∧, ∨,→
and↔

2.2 Limitations
The nature of classical proportional logic limits the ways in which
information or knowledge can be communicated. This is because
their monotonicity property dictates that the addition of any new

information to the knowledge base, no matter how explicitly, does
not remove or negate any prior inferences even when such seem
to logically conflict with subsequent ones. [4] [17]. In other words,
monotonicity allows for the expansion of the knowledge base and in
turn, the drawing of new inferences but all existing inferences can
never be retracted despite any new contradictory knowledge [12]
[3]. This, therefore, poses a limiting challenge in how information
could be adequately represented in the knowledge base and still
draw conclusions that do not logically dispute the actual domain
knowledge.

3 DEFEASIBLE REASONING
3.1 Motivation
The monotonicity property of entailment in classical propositional
logic has caused many restrictive problems in the representation of
knowledge in systems advanced bymodern technology. As similarly
described by Wang in [12], the example below describes a practical
problem introduced by the monotonicity property:

Example 3.1. We have the following atoms representing the
propositions "being a bird", "having wings", "able to fly", "being
a penguin" and "being an ostrich" respectively:

P = {𝑏,𝑤, 𝑓 , 𝑝, 𝑜}
We can codify this information as:

• birds have wings (𝑏 → 𝑤)
• birds can fly (𝑏 → 𝑓 )
• penguins are birds (𝑝 → 𝑏)
• ostriches are birds (𝑜 → 𝑏)

In proposition logic, we can represent this information as a
knowledge base K with K = {𝑏 → 𝑤,𝑏 → 𝑓 , 𝑝 → 𝑏, 𝑜 → 𝑏}. We
can reason logically and consequently infer using the principles
of classical entailment that since penguins are birds, penguins can
fly (𝑝 → 𝑓 ). This deduction is correct and acceptable based on
the current knowledge base. But we know that penguins can’t fly
(𝑝 → ¬𝑓 ), despite being birds. Our knowledge base K is now
represented as K = {𝑏 → 𝑤,𝑏 → 𝑓 , 𝑝 → 𝑏, 𝑜 → 𝑏, 𝑝 → ¬𝑓 }.

As explained in the section 2.2, the monotonicity attribute of
classical propositional logic does not negate our original conclusion
that penguins can fly in spite of the explicit contradictory knowl-
edge we just added [8]. Since there are no models of K in which 𝑝

can be true, we can only deduce that penguins don’t exist and no
further meaningful reasoning can be made about penguins.

We, therefore, need another reasonable form of entailment to
handle cases such as the fact that penguins exit and are a non-
flying class of birds. We can try to modify the knowledge base to
categorically address penguins as being exceptional, but this avenue
is not practical as other exceptions such as ostriches can’t fly (𝑜 →
¬𝑓 ) would require similar structural changes to the knowledge
base. ∤≈

Based on theAI principles of knowledge-based intelligent agents,
our major interest is how to make logical actions based on some
intrinsic representation of knowledge. The inability to convey the
notion of typicality with classical proposition logic alone has been
illustrated in example 3.1. Basically, we intended to communicate
the concept that ’birds typically fly’ and still have the proficiency

2



to reason about the existence of penguins. The panacea is non-
monotonicity reasoning, which encompasses the tenets of "common
sense" or defeasible reasoning that allows for the withdrawal of prior
deductions when hostile additions are made to the knowledge base
[12]. Many variations and approaches of defeasible reasoning have
been advanced over the years but for our purpose, we will only
consider the framework proposed by Kraus, Lehmann and Magi-
dor (KLM), known as the KLM Framework [13]. The next section
discusses what this entails and looks like.

4 DEFEASIBLE ENTAILMENT
Classical logic has limitations in conveying information due to its
monotonicity property. This means that once something is inferred
from a knowledge base, adding more information won’t change it.
As a result, previously inferred knowledge can’t be retracted even
when new statements are added.

KLM explains preferential entailment [13] and Lehmann and
Magidor explain rank entailment [16] as versions of defeasible
entailment. Both are still monotonic but furnish a foundation for
defining nonmonotonic entailment based on preferential semantics.
Rational Closure by Lehmann and Magidor [16] and Lexicographic
Closure by Lehmann [15] are two such forms and are both LM-
Rational compliant.

Rational Closure is more traditionalist or conservative and is
categorised as a manifestation of prototypical reasoning while Lex-
icographic Closure is a form of presumptive reasoning. The funda-
mental distinction between these two classifications of reasoning
is how much we can suppose based on the given knowledge or
information. In prototypical reasoning, something is assumed true
if it is true in the most ’typical’ instances while in presumptive
reasoning, something is assumed true if there is no contradictory
proof.

It should be stated that other reasonable forms of defeasible
entailment like Relevant Closure [2] are not LM-Rational, hence
demonstrating that the KLM style is not the only valid alternative
for stipulating defeasible entailment.

4.1 The KLM Framework
KLM contended that a nonmonotonic logic should be able to state
vividly that "a 𝑦 is typically a 𝑧", and they explained that "typically"
should be understood tomean "in a normal situation, it is reasonable
to deduce 𝑧, given 𝑦". Guided by the expressivity limitations of
classical logic for typicality communication, Lehmann and Magidor
(LM) defined an avenue to record it by extending propositional
logic [15][5].

Even though KLM defines other extensions, we will only concen-
trate on the initial preferential consequence relation over a proposi-
tional logic as explained by Kaliski [12]. With several postulates,
this introduces a meta-level consequence relation denoted as |∼ to
represent typicality where the relation 𝛼 |∼ 𝛽 , 𝛼 and 𝛽 being propo-
sitional formulas, is read as "typically, if 𝛼 then 𝛽 . This review deals
only with the KLM-style subclass of preferential reasoning (the
core of nonmonotonic reasoning) known as ranked interpretations
[15].

The following are the KLM properties for defeasible entailment:
(1) Reflexivity (Ref): K |≈ 𝛼 |∼ 𝛼

(2) Left Logical Equivalence (LLE):
𝛼 ≡ 𝛽, K |≈ 𝛼 |∼ 𝛾

K |≈ 𝛽 |∼ 𝛾

(3) Right Weakening (RW):
K |≈ 𝛼 |∼ 𝛽, 𝛽 |= 𝛾

K |≈ 𝛼 |∼ 𝛾

(4) And:
K |≈ 𝛼 |∼ 𝛽, K |≈ 𝛼 |∼ 𝛾

K |≈ 𝛼 |∼ 𝛽 ∧ 𝛾

(5) Or:
K |≈ 𝛼 |∼ 𝛾, K |≈ 𝛽 |∼ 𝛾

K |≈ 𝛼 ∨ 𝛽 |∼ 𝛾

(6) Cautious Monotonicity (CM):
K |≈ 𝛼 |∼ 𝛽, K |≈ 𝛼 |∼ 𝛾

K |≈ 𝛼 ∧ 𝛽 |∼ 𝛾

(7) Rational Monotonicity (RM):
K |≈ 𝛼 |∼ 𝛾, K ∤≈ 𝛼 |∼ ¬𝛽

K |≈ 𝛼 ∧ 𝛽 |∼ 𝛾

Any defeasible entailment that meets certain properties is known
as LM-Rational. Property (6) above is included for consistency even
though it is implied by the other properties. KLM explained the
reasoning behind these properties when they were first defined [13].
Before discussing defeasible entailment further, we’ll talk about
preferential and ranked interpretations. These provide semantics
for |∼ and a foundation for defining LM-Rational forms of defeasible
entailment.

4.1.1 Preferential Interpretations. Shoman [18] proposed that KLM’s
semantics for |∼ are based on preferential logics. This expands clas-
sical logic semantics by introducing an ordering of interpretations
based on typicality. A statement is considered true if it holds in
the most typical interpretations. KLM initially defined defeasibil-
ity at the meta-level using a preferential consequence relationship
and the first six KLM properties. They also defined a preferential
interpretation consisting of a set of states, a mapping from states
to propositional interpretations, and a strict partial order on the
set of states. These preferential interpretations define preferential
consequence relationships.

4.1.2 Ranked Interpretations. The preferential interpretations were
refined by Lehmann and Magidor [16] through defining conditions
that restrict the partial order to create ranked interpretations. This
creates a series of non-empty levels where lower-level interpreta-
tions are more typical. The definition for a preferential consequence
relation was also extended to define a rational consequence relation
that satisfies all seven KLM properties. Ranked interpretations de-
fine rational consequence relations and every rational consequence
relation can be defined by a ranked interpretation. Lehmann and
Magidor also provided semantics for the operator |∼ using ranked
interpretations at the object level. A defeasible implication 𝛼 |∼ 𝛽

holds in a ranked interpretationR is true in all themost typical inter-
pretations where 𝛼 is true. It’s worth noting that any propositional
formula 𝛼 can be written as an analogous defeasible implication
𝛼 |∼ ⊤ or ¬𝛼 |∼ ⊥ [5].

4.2 Rational Closure
The defeasible entailment relation |≈𝑅𝐶 for Rational Closure is de-
fined using the concept of base ranks. Described by Lehmann and
Magidor [16] as a possible solution to the examination of what a
defeasible knowledge base should entail, we can define Rational
Closure using either a ranked interpretation or a ranking of decla-
rations in the knowledge base K . In the KLM framework, Rational
Closure represents a prototypical pattern, one that is tremendously
traditionalist in unusual instances of defeasible reasoning and is
understood in terms of what postulations could follow from a given
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knowledge base K . Lehmann and Magidor [16] further contended
that other forms of entailment that are deemed reasonable even
with more "adventurous" inferences should endorse those decla-
rations in the Rational Closure of the corresponding knowledge
base.

In the sections below, the definitions of Rational Closure will be
discussed using ranked assertions followed by ranked formulas and
the consequent algorithms it provides.

4.2.1 Ranked Interpretations. Lehmann and Magidor [16] explain
that the minimal element corresponds to Rational Closure after
the ordering on all rational consequence relations. Through the
imposition of an ordering, ⪯K , on all ranked interpretations that
are models of a knowledge base K , Casini et al[5] also provides
an associated explanation. We have R1 ⪯K R2 if R1 (𝑢) ≤ R2 (𝑢)
for all 𝑢 ∈ U. This imposes another surface of typicality where
lower-ranked interpretations are more typical. It is demonstrated
by Giordano et al[10] that there is a distinct least model R𝑅𝐶

K forK
where interpretations are thrust to the bottom as much as possible.
A defeasible inference 𝛼 |∼ 𝛽 is in the Rational Closure ofK if R𝑅𝐶

K
is a model of 𝛼 |∼ 𝛽 . Rational Closure is, therefore, LM-Rational
because it is defined using ranked interpretations.

4.2.2 Ranked Formulas. Rational Closure can also be defined using
the ranking of statements in a knowledge baseK based on the base
rank of individual formulas. The materialisation of a defeasible
knowledge base K , indicated as

−→
K , is where every defeasible impli-

cation is substituted by a classical implication [16] and represented
formally as

−→
K = {𝛼 → 𝛽 | 𝛼 |∼ 𝛽 ∈ K}.

With respect to K , we considered a formula 𝛼 exceptional if
−→
K |= 𝛼 , meaning it can be disproved using formulas in K [5].
Using exceptionality, we can define subsets ofK using the function
𝜀 (K) = {𝛼 |∼ 𝛽}, 𝛼 is exceptional with respect to K . We set
EK
0 = K and successively set EK

𝑖+1 = 𝜀 (EK
𝑖
) until we reach an i

where EK
𝑖+1 = EK

𝑖
. For this i we set EK

∞ = EK
𝑖
. The base rank of a

formula 𝛼 (denoted as br(𝛼) is then defined as the smallest i such
that 𝛼 is not exceptional with respect to EK

𝑖
.

br(𝛼 |∼ 𝛽) is defined as br(𝛼) for any defeasible statement. For a
knowledge base K and a defeasible formula 𝛼 |∼ 𝛽 , the formula is
in the Rational Closure of K if br(𝛼) < br(𝛼 ∧ ¬𝛽) or br(𝛼) = ∞ [9].

4.2.3 The Algorithms. Rational Closure has an algorithm that ranks
formulas in a knowledge base according to their specificity. More
general statements have lower ranks. If there’s an inconsistency,
the most general information is discarded until it’s resolved. Then
classical entailment is used to compute entailment from the re-
maining knowledge base. This involves materializing the knowl-
edge base and partitioning it into levels R0, . . . ,R𝑛−1,R∞ based
on formula base ranks. The base rank of a formula is related to
its defeasibility or typically, with lower-ranked formulas being
more non-typical. This partitioning provides a specificity ranking
of formulas. To inspect if 𝛼 |∼ 𝛽 is entailed by K , we check if
R0 ∪ · · · ∪ R𝑛−1 ∪ R∞ |= ¬𝛼 . If this holds, we remove the lowest
level R0 and inspect again until either only R∞ remains or the
stated entailment no longer holds. When this situation is reached,
we evaluate R𝑖 ∪ · · · ∪ R𝑛−1 ∪ R∞ |= 𝛼 → 𝛽 where i is the level
where it is returned as the result of the entailment, and when 𝛼 is no

longer exceptional. This algorithm makes it efficient to implement
defeasible entailment with current classical reasoners by reducing
it to a series of classical entailment checks.

4.3 Lexicographic Closure
Lehman [15] introduces Lexicographic Closure as a type of Defeasi-
ble Entailment. It can be defined using both a ranked interpretation
and ranking formulas. The ranked formula definition is presented
as an algorithm. Both definitions use a ‘seriousness’ ordering with
two aspects: the number of violated formulas in an interpretation
and the specificity of those violated formulas based on their base
rank. The two criteria create two generate orderings that are fused
in a lexicographic manner with specificity being the most important
criterion.

4.3.1 Ranked Interpretations. To generate the ranked interpreta-
tion for Lexicographic Closure, interpretations are first ordered
based on the specificity of the formulas they violate. Then, this
ordering is refined using the number of violated formulas. It has
been demonstrated by Casini et al[6] that Lexicographic Closure
can be derived from Rational Closure, making it a refinement. The
ranked interpretation for Lexicographic Closure can be obtained
by taking the ranked interpretation for Rational Closure and rank-
ing interpretations within levels based on the number of satisfied
formulas. Interpretations that satisfy more formulas have a lower
rank.

Formally, a ranking ⪯K
𝐿𝐶

is defined where u, u, v ∈ U, u ⪯K
𝐿𝐶

u if RK
𝑅𝐶

(u) = ∞ or RK
𝑅𝐶

(v) < RK
𝑅𝐶

(u) or RK
𝑅𝐶

(v) = RK
𝑅𝐶

(u) and
CK (v) ≤ CK (u), where CK (v) = {𝛼 |∼ 𝛽 ∈ K | v ∈ Mod(𝛼 → 𝛽)}
and # indicates set size. A formula 𝛼 → 𝛽 is in the Lexicographic
Closure of a knowledge base if the ranked interpretation obtained
by ordering ⪯K

𝐿𝐶
(denoted RK

𝐿𝐶
) is a model of 𝛼 |∼ 𝛽 .

4.3.2 Ranked Formulas. A ranking of statements for Lexicographic
Closure can also be obtained from Rational Closure and presented as
an algorithm. The ranking for Rational Closure is refined by adding
extra levels containing weakened versions of formulas from the
knowledge base. Instead of removing an entire level of information
when there’s an inconsistency, the formula causing it is removed by
weakeningmore general information. The algorithm ranks formulas
in a knowledge base K according to the base rank algorithm in
Rational Closure. When checking if K defeasibly entails a formula
𝛼 |∼ 𝛽 , we start by checking if R0 ∪ · · · ∪ R𝑛−1 ∪ R∞ |= ¬𝛼 .

If the entailment holds, instead of removing an entire level, the
lowest levelR0 is weakened. This is done by taking all subsets of size
x-1 (where x is the number of elements in the level), creating a single
formula equivalent to all formulas in the subset using conjunction
and then joining all combined formulas using disjunction to create
a final formula. This considers all ways of removing a formula from
R0. If 𝛼 isn’t exceptional with respect to the rest of the levels and
this weakened version of R0, entailment is computed using classical
entailment as before. Otherwise, R0 is weakened again considering
subsets of size x-2. If zero size is reached for the subsets, R0 is
discarded entirely and the process commences again with the next
level. Like in Rational Closure where we did not discard the lowest
level, we also don’t weaken it in Lexicographic Closure.
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The enfeeble levels can be computed and placed before comput-
ing entailment allowing the Lexicographic Closure algorithm to
fit into Casini et al’s [6] general pattern for defeasible entailment.
However, this would result in unnecessary computation as higher
levels often don’t need their weakened versions added.

4.4 Limitations
Defeasible reasoning is useful for understanding situations where
new information can change the conclusions made from a set of
facts. However, it has its limitations. One limitation is that it can be
hard to decide how careful to be when making conclusions. Some
methods like Rational Closure are very careful and assume there
are very few exceptions to general rules. Other methods like Lexi-
cographic Closure are less careful and allow for conclusions even in
unusual situations unless there is evidence against it. Deciding how
careful to be can be difficult and depends on the situation and goals.
Another limitation is that it can be hard to understand complex
uncertainty [12][5].

Defeasible reasoning usually assumes new information supports
or contradicts existing beliefs. But in real life, new information may
only partly support or contradict existing beliefs. Understanding
this type of uncertainty can be difficult. Lastly, defeasible reasoning
can take a lot of time and effort. Many methods require looking
throughmany possible conclusions to see which ones are supported
by evidence. This takes time and may not work for quick decisions.
In conclusion, while defeasible reasoning is useful for understand-
ing uncertain situations, it has limitations. More research is needed
to develop better methods that can handle complex uncertainty and
take less time and effort [12] [7].

5 DISCUSSION
The examples for Rational Closure and Lexicographic Closure man-
ifested their dissimilarities regarding their prototypical and pre-
sumptive reasoning techniques. However, this does not mean that
Lexicographic Closure is necessarily a more valid form of defeasible
entailment than Rational Closure just because it correctly entailed
that penguins can not fly while Rational Closure did not. It is likely
that there is no single correct form of defeasible entailment, but
rather some forms may be better suited to certain domains than
others.

Though not to an impactful extent, other approaches for defeasi-
bility in logic have been explored. Casini et al[5] suggest using their
method of rational closure in Description Logics by introducing
defeasibility into OWL Ontologies. In trying to explain justifications
for defeasible reason, Chama’s [7] result for Rational Closure is
promising because it suggests that similar justification algorithms
may be produced for Relevant and Lexicographic Closure.

6 CONCLUSIONS
We demonstrated how formal logic can be used to model informa-
tion and perform reasoning. By using entailment, we can infer new
information and draw conclusions from knowledge bases. However,
classical logic is too limiting, so we switched to nonmonotonic logic
to reason with uncertainty. We examined defeasible reasoning in
the KLM framework and discussed two approaches for defeasible
entailment: Rational Closure and Lexicographic Closure.

We discussed the motivation and different applications and rea-
sons for defeasible entailment. Rational Closure is a careful way to
make conclusions in the KLM framework. It assumes that there are
very few exceptions to general rules and makes conclusions based
on this idea. However, other ways of making conclusions within
this framework are less careful than Rational Closure. For exam-
ple, Lexicographic Closure allows for conclusions even in unusual
situations unless there is evidence against it.

Defeasible entailment is useful for understanding situations
where new information can change the conclusions made from
a set of facts. Methods like Rational Closure and Lexicographic
Closure in the KLM framework provide good ways to represent and
understand defeasible knowledge. However, there are still many
questions to be answered and opportunities for future research in
this area. More work is needed to develop better methods for defea-
sible entailment and to understand the strengths and weaknesses
of current methods.
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