

CS/IT Honours Project

Final Paper 2023

Title: Justifications for Classical Entailment

Author: Orefile Morule

Project Abbreviation: CEE

Supervisor(s): Professor Tommie Meyer

Category Min Max Chosen

Requirement Analysis and Design 0 20 0

Theoretical Analysis 0 25 10

Experiment Design and Execution 0 20 5

System Development and Implementation 0 20 20

Results, Findings and Conclusions 10 20 10

Aim Formulation and Background Work 10 15 15

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

Justifications for Classical Entailment
Orefile Morule

mrlore001@myuct.ac.za
University of Cape Town
Cape Town, South Africa

ABSTRACT
Knowledge Representation and Reasoning allows for Artificial In-
telligence systems to store knowledge in symbolic format which
makes reasoning about that knowledge easier. Conclusions from
reasoning systems can be hard to understand. Explanation services
are crucial to reasoning systems as they provide both the users and
engineers of knowledge bases an explanation as to why conclusions
were made by the systems.

We present a type of explanation called a Justification which
gives theminimal subset of knowledge thatmakes a conclusion hold.
Given a query, the Classical Justification Algorithm uses its sub-
algorithms to extract the necessary knowledge from a knowledge
base and then outputs the minimal subset of the knowledge base
that renders the query true.

Propositional Logic is the logic used in this paper and it has a
property called monotonicity, which means that it cannot retract a
conclusion even when new information is added to the knowledge
base. This results in the inability to handle exceptions. Defeasible
reasoning allows for exception handling and is the focus of the
project done by my project partner. The combination of our two
projects resulted in a system which can take in both exceptional
and classical knowledge bases and use the appropriate algorithms
to get an explanation.

We give a software application that implements the Classical
Justification Algorithm and is accessible through a Graphical User
Interface.

CCS Concepts
• Theory of computation→ Automated reasoning; • Comput-
ing methodologies → Nonmonotonic, default reasoning and
belief revision.

Keywords
artificial intelligence, knowledge representation and reasoning, de-
feasible reasoning, classical reasoning

1 INTRODUCTION
Formal logic in the field of Artificial Intelligence allows us to rep-
resent the state of the world in a way that is easy for automated
systems to understand. Once this is achieved, we would like the
systems to be able to infer new knowledge by reasoning using what
it already knows. This is the concept of Knowledge Representation
and Reasoning in Artificial Intelligence. In addition to reasoning,
we would like to know how Artificial Intelligence systems come
to conclusions when asked if something holds or is entailed in the
world as it knows it. Explanations are an important part of reason-
ing services as they offer a way to debug any unwanted inferences
and they explain why inferences we want to have, hold.

We will start this paper by giving background on Propositional
Logic which is the formal logic this paper will be restricted to. We
will then show how logic ties in with Knowledge Representation
and Reasoning. Then we will explain Justifications for Classical
Entailment by going through the different sub-algorithms used for
computing justifications.

2 BACKGROUND
2.1 Propositional Logic
Propositional Logic is the branch of formal logic concerned with
joining and/or modifying statements to create more complex state-
ments [6]. Propositional logic contains indivisible statements such
as, “philosophers are wise,” or "humans are mortal," referred to
as atoms. Atoms are assigned a truth value of true or false, but
not both, and represent what we know about the world [3]. These
propositional atoms can be combined using logical connectives to
create more complex statements.

Formal logic comprises of various logical systems including this
paper’s focus Classical Reasoning. Formal logic utilises a struc-
tured approach to reasoning, characterised by syntax, semantics,
and deduction. The syntactic framework comprises symbols and
rules governing legal statements, while semantics assign meaning
to these symbols within different contexts. Deduction in formal
logic ensures that valid conclusions emerge from sound premises
through the application of logical rules [11].

2.1.1 Syntax

In the language of Propositional Logic, atoms are represented
as lowercase letters. A statement such as, “humans are mortal,”
could then be represented as ℎ. Atoms are joined or modified using
logical signs or connectives to create more complex statements
called formulas. The connectives in the language are conjunction,
disjunction, negation, implication, and equivalence. They are used
in place of the truth-functional operators, “and”, “or”, “not”, “if . . .
then”, and “if and only if”, respectively. The negation connective
is unary, meaning it takes only one operand, while the rest of the
connectives are binary, meaning that they take on two operands.

See the table below for connectives and their symbols.

Name Meaning Symbol
disjunction or ∨
conjunction and ∧
negation not ¬

implication if then →
equivalence if and only if ↔

Figure 1: The Boolean operators used in propositional logic

https://orcid.org/0000-0002-2773-7286

The set of atoms is denoted as P. The formula 𝑝 → 𝑞 is read
“𝑝 implies 𝑞” and means if 𝑝 is true then 𝑞 is true. The set of all
formulas can be denoted as L. We can define formulas inductively
as follows:

Definition 2.1. (Propositional Formulas) [14].
• For every atom 𝑝 ∈ P, 𝑝 ∈ L
• For a formula 𝛼 ∈ L,¬𝛼 ∈ L
• If the formulas 𝛼, 𝛽 ∈ L, then 𝛼∧𝛽, 𝛼∨𝛽, 𝛼 → 𝛽, 𝛼 ↔ 𝛽 ∈ L

2.1.2 Semantics

An interpretation I is a function used to assign a truth value to
an atom. A truth table is a finite table used to show each possible
combination of truth values of atoms. Each line in a truth table
corresponds to a different interpretation [6]. A proposition having
a truth value true, is called Satisfaction. Formally:

Definition 2.2. (Interpretation). An interpretation is a total func-
tion I : P ↦→ {𝑇, 𝐹 } that assigns one of the truth values true or
false to every atom 𝑝 ∈ P.

𝛼 𝛽 ¬𝛼 𝛼 ∧ 𝛽 𝛼 ∨ 𝛽 𝛼 → 𝛽 𝛼 ↔ 𝛽

T T F T T T T
T F F F T F F
F T T F T T F
F F F F F T T

Figure 2: A truth table for the Boolean operators ¬, ∧, ∨,→
and↔

Definition 2.3. (Satisfiability). An Interpretation I satisfies some
𝑝 ∈ P if 𝐼 (𝑝) = 𝑇 and it is denoted by 𝐼 ⊩ 𝑝 . An interpretation
does not satisfy some 𝑝 ∈ P if 𝐼 (𝑝) = 𝐹 and it is denoted by 𝐼 ⊮ 𝑝 .
To derive the truth value of a propositional formula under any
interpretation I, we look at the truth values of the individual atoms
that make up the formula and use the semantics and precedence
order of the connectives used to evaluate whether the formula is
true or false. The evaluation for any formulas 𝛼, 𝛽 ∈ L can be done
as follows:

• 𝐼 ⊩ ¬𝛼 if and only if 𝐼 ⊮ 𝛼
• 𝐼 ⊩ 𝛼 ∧ 𝛽 if and only if 𝐼 ⊩ 𝛼 and 𝐼 ⊩ 𝛽

• 𝐼 ⊩ 𝛼 ∨ 𝛽 if and only if 𝐼 ⊩ 𝛼 or 𝐼 ⊩ 𝛽 or both
• 𝐼 ⊩ 𝛼 → 𝛽 if and only if 𝐼 ⊮ 𝛼 or 𝐼 ⊩ 𝛽 or both
• 𝐼 ⊩ 𝛼 ↔ 𝛽 if and only if 𝐼 ⊩ 𝛼 → 𝛽 and 𝐼 ⊩ 𝛽 → 𝛼

If an interpretation satisfies a formula, then it is a model of that
formula.

Definition 2.4. (Model). An interpretation I is a model of 𝛼 if for
any 𝛼 ∈ L and an interpretation 𝐼 , 𝐼 satisfies 𝛼 .

2.2 Classical Reasoning
One of the main aspects of formal logic is deduction, where con-
clusions are drawn from given premises using established rules of
inference. Classical Entailment provides a way to formally express
how conclusions are drawn from premises:

Definition 2.5. (Classical Entailment). Let T be a set of formulas
and 𝛼 a formula. T entails 𝛼 , written T |= 𝛼 , if and only if the
models of T are a subset of the models of 𝛼 .

A finite set of propositional formulas is referred to as a knowledge
base.

Definition 2.6. (Knowledge Base). Let K be a set of formulas. If K
is finite, it is referred to as a knowledge base.

2.2.1 Reasoning with SAT Solvers

The concepts of entailment and satisfiability can be extended to
knowledge bases. A knowledge base that has a model is satisfiable.

Definition 2.7. (Knowledge Base Satisfiability) [14]. Let a knowl-
edge base K = {𝛼1, 𝛼2, 𝛼3, ...𝛼𝑛 }. If there exists an interpretation I
such that I ⊩ 𝛼𝑖 for all 𝑖 where 1 ≤ 𝑖 ≥ 𝑛, then K is satisfiable. If
for all interpretations I there is an 𝑖 such that I ⊮ 𝛼 , then K is
unsatisfiable.

Let us consider a knowledge base K along with a query 𝛼 . To
check whether K |= 𝛼 , we add ¬𝛼 to K . If and only if K ∪ {¬𝛼}
is unsatisfiable does K |= 𝛼 [3]. Let us consider an example to
illustrate this logic. Let a knowledge base K = {human→ mortal,
Aristotle → human, mortal → die} and a query = human → die.
Therefore, we add ¬ (human → die) to K . It is easy to see that
the set K′ = {human → mortal, Aristotle → human, mortal → die,
¬ (human → die)} is unsatisfiable. We can use deduction to see
that the formulas human → mortal and mortal → die lead to a
conclusion that human→ die, however, ¬ (human→ die) is a direct
contradiction to that contradiction which renders K′ unsatisfiable.

The above example illustrates that checking whether a knowl-
edge base K entails a query 𝛼 can be reduced to checking whether
K ∪ {¬𝛼} is satisfiable.

We have used a SAT Solver, SAT4J, as our satisfiability checker
for this project[1]. This tool allows us to automate the reasoning
process and, therefore, check if a query is entailed by a knowledge
base or not.

2.3 Explanation Services
In the field of formal logic systems, the motivation behind intro-
ducing explanation services comes from the increasing reliance
on automated reasoning systems across various domains, such as
healthcare, transport, and security [13]. As these systems perform
complex logical operations, the challenge lies in rendering their
outcomes understandable and verifiable by humans. Explanation
services address this challenge by providing a clear breakdown of
the logical steps taken by the automated reasoning system. This
helps users, both experts and non-experts, to gain insights into the
logical processes undertaken.

Horridge provides three common use cases that make explana-
tion services valuable [5]. The first is that a user might simply want
to understand why an entailment holds. The second is that a knowl-
edge base engineer might have an inconsistent knowledge base,
and by viewing explanations for an entailment, they can diagnose
the cause of the inconsistency. The third is that a user sees a knowl-
edge base for the first time and tries to understand its complexity
by counting the number of entailments or the average number of
explanations for an entailment.

2

3 PROJECT AIMS
The main aims of this project were to:

• Provide the theory underlying classical reasoning.
• Provide the theory and motivation for explanation services,
specifically justifications.

• Provide and explain the sub-algorithms that make up the
Classical Justifications Algorithm.

• Develop a tool that implements the Classical Justifications
algorithm.

• Combine the work presented for classical justifications with
the work presented by Hamayobe [4] for defeasible justifica-
tions.

4 JUSTIFICATIONS FOR CLASSICAL
ENTAILMENT

4.1 Overview
We focus on a specific type of explanation called a justification. A
justification is a subset of the knowledge base that entails a given
query and has a property that if any element is removed from the
subset, it will no longer entail the query.

Definition 4.1. (Classical Justification). Let K be a knowledge base
and have a query 𝛼 such that K |= 𝛼 ; the set of formulas J is a
justification for K |= 𝛼 if J ⊆ K , J |= 𝛼 and for all J ′ ⊂ J , it
holds that J ′ ̸ |= 𝛼 [14].

For example, a knowledge base K = {human → mortal, Aristotle
→ human, mortal → die}. Given a query human → die, it is clear
that K |= human → die. The justification for the entailment is the
set J = {human → mortal, mortal → die}.

In the instance where a query 𝛼 is not entailed by the knowledge
base, the justification given is simply the knowledge base itself. The
intuition behind this is that the reason why the query does not hold
is because nothing in the knowledge base renders it true.

Definition 4.2. (Classical Justification for Non-entailment). Let
K be a knowledge base and have a query 𝛼 such that K ̸|= 𝛼 . The
justification for K ̸|= 𝛼 is K [14].

For example, a knowledge base K = {human → mortal, Aristotle
→ human,mortal→ die}. Given a querymortal→ human, it is clear
that K ̸|= mortal → human. The justification for the entailment is
then K .

4.2 Classical Justification Algorithm
4.2.1 Overview

Algorithms for computing justifications are usually categorised
using two axes of classification [5]. The first axis is the single-
all-axis which classifies whether an algorithm computes only one
or all the justifications for an entailment. The second axis is the
reasoner-coupling-axis which classifies whether an algorithm is a
black-box algorithm or a glass-box algorithm. The black-box and
glass-box algorithms compute justifications and are distinct based
on their relationship with the reasoner. A black-box algorithm
computes justifications independent of the reasoner, while a glass-
box algorithm is tightly interwoven with the reasoner.

Figure 3: Depiction of the Expand-Contract strategy.

The idea behind the Classical JustificationAlgorithm is that given
a query that is entailed by the knowledge base, the algorithm first
expands a subset of the knowledge base until it entails the query.
This will be done by the ExpandFormulas sub-algorithm. After this,
the algorithm removes formulas from this subset that do not play a
role in the entailment. This will be done by the ContractFormulas
sub-algorithm. Figure 3 depicts the Expand-Contract strategy.

4.2.2 Expand Formulas

The goal of this algorithm is to find a subset of the knowledge
base that entails the query. Instead of linearly adding formulas
to create this subset, Horridge proposes finding formulas whose
signature intersects with the signature of the query[5].

Definition 4.3. (Signature). The signature of a formula is all the
propositional atoms that appear in that formula.

These formulas are the initial elements of subset 𝑆 .
Let us consider a knowledge base K = {philosopher → thinker,

Aristotle→ philosopher, thinker → ponder_profound_questions, pon-
der_profound_questions→ wise, Aristotle→ wise, wise→ respected}.
We can simplify this by using a single letter to represent each
propositional atom. p for philosopher, t for thinker, A for Aristotle,
q for ponder_profound_questions, w for wise and r for respected.
Therefore K = {p → t, A→ p, t → q, q → w, A→ w, w → r}.

If we have a query 𝐴 |= 𝑟 , we can define a set Σ as the signature
of the query. This means Σ := {A, r}. Our initial subset 𝑆 would then
be {A → p, A→ w, w → r}.

We define IntersectingFormulas(Σ,K) as a method that finds all
the propositional formulas in K that have signatures that intersect
with Σ.

The algorithmfirst checks if the knowledge base entails the query
by running it through a SAT solver. If the result is non-entailment
then an empty set is returned as there is no entailment to justify. If
K |= 𝛼 → 𝛽 then 𝑆 and 𝑆 ′ are initialised to empty sets while Σ is
set to the signature of the query.

Example: (ExpandFormulas)
Let us consider K = {p → t, A → p, t → q, q → w, A → w, w →

r}. Our query is 𝐴 → 𝑞.
(1) The knowledge base does entail this query therefore Σ is

initialised to {A, q}.

(2) In the while loop line 9 assigns {A→ p, t → q, q→w,A→w}
to 𝑆 . 𝑆 does not entail the query so it needs to be expanded.

(3) In the second iteration of the loop line 9 expands 𝑆 to {A →
p, t → q, q → w, A→ w, p → t, w → r}. The set 𝑆 now does
entail the query, meaning that the algorithm can stop.

3

Algorithm 1: ExpandFormulas
Input: Knowledge base K and a query 𝛼 → 𝛽

Output: Set 𝑆
1 if K ̸|= 𝛼 → 𝛽 then
2 return ∅
3 else
4 𝑆 := ∅
5 𝑆 ′ := ∅
6 Σ := signature(𝛼 → 𝛽)
7 while 𝑆 ′ ≠ 𝑆 do
8 𝑆 ′ = 𝑆

9 𝑆 = 𝑆 ∪ IntersectingFormulas(Σ,K)
10 if 𝑆 |= 𝛼 → 𝛽 then
11 return 𝑆

12 Σ = signature(𝑆)
13 return 𝑆

It is important to note the role of the set 𝑆 ′. It keeps track of
whether or not the set 𝑆 expanded in the previous loop iteration. If
there was no expansion then it means that the set 𝑆 can no longer
be expanded beyond its current size, and therefore the algorithm
needs to end to avoid an infinite loop.

4.2.3 Contract Formulas

We note that although the output of the ExpandFormulas exam-
ple does entail the query, it is not a minimal set. This introduces the
ContractFormulas algorithm which aims to remove the formulas
from the set 𝑆 that do not contribute to the entailment.

We use a divide and conquer technique to remove formulas from
the set 𝑆 as described by Horridge [5]. The set 𝑆 is split into two
halves, 𝑆1 and 𝑆2. If 𝑆1 entails the query, then 𝑆2 is not considered
and, conversely, 𝑆1 is not considered if 𝑆2 entails the query. If neither
one of 𝑆1 and 𝑆2 entail the query then 𝑆1 is arbitrarily chosen to
itself be split into half and one the halves is combined with 𝑆2 and
then we check whether this combination entails the query. This
process of halving and combining continues until an entailment
occurs.

Our algorithm presents the recursive implementation of the
divide and conquer strategy. We construct a binary tree where each
child node represents one half of the parent node.

Algorithm 2: ContractFormulas
Input: Set 𝑆 and a query 𝛼 → 𝛽 such that 𝑆 |= 𝛼 → 𝛽

Output: Set 𝑆 ′ ⊆ 𝑆 such that such that 𝑆 ′ |= 𝛼 → 𝛽

1 return ContractRecursive(∅,K,𝛼 → 𝛽)

Example: (ContractFormulas)
Let us consider K = {p → t, A → p, w → r, A → w, q → w, t →

q}. Our query is 𝑝 → 𝑞.
(1) The ContractFormulas algorithm calls the ContractRecursive

algorithm with the arguments 𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = ∅, 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 =

K and our query. The rest of the explanation will detail what
goes on in the ContractRecursive algorithm.

Algorithm 3: ContractRecursive
Input: Set 𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 , Set 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 and a query 𝛼 → 𝛽

such that 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 |= 𝛼 → 𝛽

Output: Set 𝑆 ′ ⊆ 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 such that such that 𝑆 ′ |= 𝛼 → 𝛽

1 if |𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 | == 1 then
2 return 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

3 𝑆1 := Halve(𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 , 1)
4 𝑆2 := Halve(𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 , 2)
5 if 𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∪ 𝑆1 |= 𝛼 → 𝛽 then
6 return ContractRecursive(𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 , 𝑆1, 𝛼 → 𝛽)
7 if 𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∪ 𝑆2 |= 𝛼 → 𝛽 then
8 return ContractRecursive(𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 , 𝑆2, 𝛼 → 𝛽)
9 𝑆 ′1 := ContractRecursive(𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∪ 𝑆2, 𝑆1, 𝛼 → 𝛽)

10 𝑆 ′2 := ContractRecursive(𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∪ 𝑆 ′1, 𝑆2, 𝛼 → 𝛽)
11 return 𝑆 ′1 ∪ 𝑆 ′2

(2) In the first recursion, we halve 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 to get 𝑆1 = {p→ t, A
→ p, w → r} and 𝑆2 = {A→ w, q→ w, t → q}. 𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛∪
𝑆1 does not entail 𝑝 |= 𝑞 and neither does 𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∪ 𝑆2.
Thus, we move to line 9 which calls the recursive algorithm
in order to assign a value to 𝑆 ′1.

(3) In the next recursion the algorithm is given the arguments
𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = {A → w, q → w, t → q}, 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = {p → t,
A → p, w → r} and our query. We halve 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 to get 𝑆1
={p → t, A → p} and 𝑆2 = {w → r}. 𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∪ 𝑆1 does
entail 𝑝 |= 𝑞. The algorithm therefore returns the output of
the next recursion as shown in line 6.

(4) In the next recursion the algorithm is given the arguments
𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = {A → w, q → w, t → q}, 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = {p → t,
A → p} and our query. We halve 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 to get 𝑆1 = {p →
t} and 𝑆2 = {A→ p}. 𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∪𝑆1 does entail 𝑝 |= 𝑞. The
algorithm therefore returns the output of the next recursion
as shown in line 6.

(5) In the next recursion the algorithm is given the arguments
𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = {A → w, q → w, t → q}, 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = {p →
t} and our query. Since 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 only has one element, we
return it as per line 2. This value propagates to the first
recursive call made and thus 𝑆 ′1 = {p → t}.

(6) We can now move to line 10 of the algorithm which uses the
value of 𝑆 ′1 to obtain 𝑆 ′2. We are now back to the first call
to the recursive algorithm, meaning our arguments are as
follows:

• 𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = ∅

• 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = {p → t, A → p, w → r, A → w, q → w, t → q}

• 𝑆1 = {p → t, A→ p, w → r}

• 𝑆2 = {A→ w, q → w, t → q}

• 𝑆 ′1 = {p → t}

We call the recursive algorithm to get the value of 𝑆 ′2.
4

(7) In the next recursion the algorithm is given the arguments
𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = {p → t}, 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = {A → w, q → w, t →
q} and our query. We halve 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 to get 𝑆1 = {A → w,
q → w} and 𝑆2 = {t → q}. 𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∪ 𝑆1 does not entail
𝑝 |= 𝑞 but 𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∪𝑆2 does entail 𝑝 |= 𝑞. The algorithm
therefore returns the output of the next recursion as shown
in line 8.

(8) In the next recursion the algorithm is given the arguments
𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = {p → t}, 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = {t → q} and our query.
Since 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 only has one element, we return it as per
line 2. This value propagates to the recursive call made for
𝑆 ′2 and thus 𝑆 ′2 = {t → q}.

(9) Finally, the algorithm returns 𝑆 ′1 ∪ 𝑆 ′2 as the set 𝑆
′ = {p → t,

t → q}.

4.2.4 Compute Single Justification

One reason why computing a single justification for an entail-
ment is important is that non-experts may merely want an explana-
tion of why an entailment holds. This means that they are satisfied
with seeing only one justification. An engineer can also get enough
information from just a single justification to debug the system.

To compute a single justification you simply need to use the
ExpandFormulas sub-algorithm to find a set 𝑆 ⊆ K that entails the
query and then use the ContractFormulas sub-algorithm to find the
minimal subset of 𝑆 that entails the query.

Algorithm 4: ComputeSingleJustification
Input: Knowledge base K and a query 𝛼 → 𝛽 such that

K |= 𝛼 → 𝛽

Output: Justification J
1 if 𝛼 → 𝛽 ∈ K then
2 return 𝛼 → 𝛽

3 𝑆 := ExpandFormulas (K , 𝛼 → 𝛽)
4 if 𝑆 == ∅ then
5 return ∅
6 J = ContractFormulas(𝑆 , 𝛼 → 𝛽)
7 return J

4.2.5 Compute All Justifications

We compute all justifications of an entailment by using Reiter’s
Hitting Set Tree algorithm [9]. This algorithm has foundations in the
field ofModel Based Diagnosis. When a system is faulty, the objective
is to identify a diagnosis, which is a set of system components whose
erroneous operation provides an explanation for the faulty system
behaviour [10]. The idea is that faults in a system are caused by a
bad interaction between distinct sets of system components. There
are usuallymultiple, or even an exponential amount of diagnoses for
a faulty system, therefore Reiter’s algorithm presents a technique
that finds the minimal sets of explanations for a fault. The algorithm
constructs diagnoses as hitting sets of conflicts [9]. A conflict set is
a set of system components that cannot all be fault-free given how
the system is expected to behave [10]. A minimal conflict set is a
conflict set that has no subset which is a conflict set. In the context

of a set of system conflict sets, a hitting set refers to a set that has
at least one element from every individual conflict set. A minimal
hitting set is a hitting set that has no subset which is a hitting set.
Formally, a diagnosis is referred to as a minimal hitting set [5].

Given the concepts above, we can note the parallels between
Model Based Diagnosis and Computing Justifications. A knowledge
base corresponds to a system, an entailment corresponds to a fault,
and a set of justifications corresponds to a minimal hitting set.

We will now give a brief overview of how the hitting set tree
algorithm works. Given a knowledge base K and a query 𝛼 such
that K |= 𝛼 , a hitting set tree consists of nodes that are labelled
with the justifications for K |= 𝛼 and edges that are labelled with
formulas found in K . Every non-leaf node 𝑛 is connected to a child
node 𝑛′ through an edge which is labelled with a formula 𝛽 such
that 𝛽 is in the label of 𝑛 but not in the label of 𝑛′. If the label of
𝑛′ is an empty set, then it is a leaf node. For any node 𝑛′′ , the set
of formulas that label the path from 𝑛′′ to the root node does not
intersect with the justification that labels 𝑛′′.

Algorithm 5: ComputeAllJustifications
Input: Knowledge base K and a query 𝛼 → 𝛽 such that

K |= 𝛼 → 𝛽

Output: Set of Justifications J
1 Just𝑠𝑒𝑡 :=∅
2 Root_Just := ComputeSingleJustification(K , 𝛼 → 𝛽)
3 Root_Node := CreateNode(K , Root_Just)
4 Enqueue(Root_Node, 𝑄)
5 AddRoot(HS𝑡𝑟𝑒𝑒)
6 while 𝑄 ≠ ∅ do
7 𝑁𝑜𝑑𝑒 = Dequeue(𝑄)
8 𝑁𝑜𝑑𝑒_𝐽𝑢𝑠𝑡 = GetJust(𝑁𝑜𝑑𝑒)
9 𝑁𝑜𝑑𝑒K𝐵 = 𝐺𝑒𝑡K(𝑁𝑜𝑑𝑒)

10 for each formula 𝛿 ∈ 𝑁𝑜𝑑𝑒_𝐽𝑢𝑠𝑡 do
11 𝑆𝑚𝑎𝑙𝑙𝑒𝑟K = 𝑁𝑜𝑑𝑒K𝐵 \ 𝛿
12 𝑆𝑚𝑎𝑙𝑙𝑒𝑟K 𝐽 𝑢𝑠𝑡 =

ComputeSingleJustification(𝑆𝑚𝑎𝑙𝑙𝑒𝑟K , 𝛼 → 𝛽)
13 𝐶ℎ𝑖𝑙𝑑_𝑁𝑜𝑑𝑒 = CreateNode(𝑆𝑚𝑎𝑙𝑙𝑒𝑟K ,

𝑆𝑚𝑎𝑙𝑙𝑒𝑟K 𝐽 𝑢𝑠𝑡)
14 𝐻𝑆𝑡𝑟𝑒𝑒 = 𝐻𝑆𝑡𝑟𝑒𝑒 ∪𝐶ℎ𝑖𝑙𝑑_𝑁𝑜𝑑𝑒

15 if 𝐶ℎ𝑖𝑙𝑑_𝑁𝑜𝑑𝑒 ≠ ∅ then
16 Enqueue(𝐶ℎ𝑖𝑙𝑑_𝑁𝑜𝑑𝑒)
17 Just𝑠𝑒𝑡= Just𝑠𝑒𝑡 ∪ 𝑆𝑚𝑎𝑙𝑙𝑒𝑟K 𝐽 𝑢𝑠𝑡

18 return Just𝑠𝑒𝑡

Example: (ComputeAllJustifications)
Let us consider K = {p → q, q → w, p → w, q → r, r → w, p →

r}. Our query is 𝑝 → 𝑤 .
(1) We begin by finding the root justification. This is done by

calling ComputeSingleJustification(K , 𝑝 → 𝑤). Since 𝑝 →
𝑤 ∈ K , Root_Just = 𝑝 → 𝑤 . We then initialise the root
node by calling CreateNode(K , Root_Just) which takes in
a justification and its associated knowledge base. We add
this node to our queue 𝑄 . The root node of the tree is then
𝑝 → 𝑤 .

5

(2) We enter our while loop and retrieve the root node from the
queue. For line 7 and 8 we have 𝑁𝑜𝑑𝑒_𝐽𝑢𝑠𝑡 = 𝑝 → 𝑤 and
𝑁𝑜𝑑𝑒K𝐵 = K . Our for loop executes only once as we only
have one formula in our justification. We now aim to find an-
other justification for our query and we do this by removing
𝛿 = 𝑝 → 𝑤 from K in line 11. 𝑆𝑚𝑎𝑙𝑙𝑒𝑟K = {p → q, q → w, q
→ r, r → w, p → r}. By calling ComputeSingleJustification()
on this smaller knowledge base, we get 𝑆𝑚𝑎𝑙𝑙𝑒𝑟K 𝐽 𝑢𝑠𝑡 = {p
→ q, q → w}. We create a new node with this justification
and the reduced knowledge base in line 12. We add the new
node to the tree in line 13. Line 15 adds the new node to the
queue.

(3) In the next iteration of the while loop, we retrieve the node
we just added from the queue. 𝑁𝑜𝑑𝑒_𝐽𝑢𝑠𝑡 = {p → q, q →
w} and 𝑁𝑜𝑑𝑒K𝐵 = {p → q, q → w, q → r, r → w, p →
r}. Our for loop will execute twice. For the iteration where
𝛿 = 𝑝 → 𝑞, 𝑆𝑚𝑎𝑙𝑙𝑒𝑟K = {q→ w, q→ r, r →w, p→ r}. There
is a justification in this smaller knowledge base, therefore
𝑆𝑚𝑎𝑙𝑙𝑒𝑟K 𝐽 𝑢𝑠𝑡 = {p → r, r → w}. A new node is created
which is added to the tree and queue.

(4) For the iteration where 𝛿 = 𝑞 → 𝑤 , 𝑆𝑚𝑎𝑙𝑙𝑒𝑟K = {p→ q, q→
r, r → w, p→ r} and 𝑆𝑚𝑎𝑙𝑙𝑒𝑟K 𝐽 𝑢𝑠𝑡 = {p→ r, r → w}. A new
node is created and added to the tree and queue. Although
this new node and the previous node have the same label,
they are considered different.

(5) In the next iteration of the while loop, we retrieve the node
we added in the first iteration of the previous for loop from
the queue. 𝑁𝑜𝑑𝑒_𝐽𝑢𝑠𝑡 = {p → r, r → w}. In our first for loop
iteration, 𝛿 = 𝑝 → 𝑟 and 𝑆𝑚𝑎𝑙𝑙𝑒𝑟K = {q→ w, q→ r, r → w}.
It is clear that there is no justification for our query in this
smaller knowledge base, therefore we add an empty node
to the tree. The same result is observed when 𝛿 = 𝑟 → 𝑤 ,
therefore another empty node is added to the tree.

(6) In the next iteration of the while loop, we retrieve the last
non-empty node we added from the queue. 𝑁𝑜𝑑𝑒_𝐽𝑢𝑠𝑡 = {p
→ r, r → w} and 𝑁𝑜𝑑𝑒K𝐵 ={p → q, q → r, r → w, p → r}.
In our first for loop iteration, 𝛿 = 𝑝 → 𝑟 and 𝑆𝑚𝑎𝑙𝑙𝑒𝑟K = {p
→ q, q → r, r → w}. There is a justification in this smaller
knowledge base, therefore 𝑆𝑚𝑎𝑙𝑙𝑒𝑟K 𝐽 𝑢𝑠𝑡 = {p → q, q → r, r
→ w}. A new node is created which is added to the tree and
queue.

(7) For the next for loop iteration where 𝛿 = 𝑟 → 𝑤 , we have
no justifications. For the remaining nodes in the queue, we
find that there are no justifications.

5 DEFEASIBLE REASONING
5.1 The Need for Non-monotonic Reasoning
Classical reasoning has a property referred to asmonotonicity which
means that adding new information cannot cause the retraction of
previously drawn conclusions. Monotonic reasoning restricts the
expressivity of classical logics such as Propositional Logic because
these logics cannot handle exceptions. The classic example used to
illustrate this concept is that of reasoning that a bird can fly [12].
Birds typically can fly, but there are exceptions such as penguins. Let

us consider a knowledge base K = {birds → fly, penguins → birds}.
It is clear that K |= penguins → fly. If we then add the statement
(penguins → ¬ fly) to K , we cannot retract our conclusion. This
is a significant shortfall of monotonic reasoning because there are
exceptions to almost all statements and rules about the world. To
cover this shortfall, experts formalised non-monotonic reasoning,
which gives us the ability to retract previously drawn conclusions
upon gaining new knowledge [7, 8]. Defeasible reasoning is an
implementation of non-monotonic reasoning and is the basis of the
paper written by Hamayobe [4].

Hamayobe’s work is based on the KLM Framework, which is used
to perform defeasible reasoning. The framework extends Proposi-
tional Logic by adding a binary connective to represent defeasible
implication. The symbol for defeasible implication is |∼. The formula
𝑝 |∼ 𝑞 is read “𝑝 typically implies 𝑞”. A set of formulas that contain
a defeasible implication is referred to as a defeasible knowledge base.
The classical statement 𝑝 → 𝑞 is the materialisation of 𝑝 |∼ 𝑞.

5.2 Classical Justification Algorithm for
Defeasible Reasoning

The Classical Justification Algorithm is used in the research project
done by Hamayobe. His work is based on explanations, but for
defeasible reasoning, which is non-monotonic. The process under-
taken to find justifications for defeasible knowledge bases involves
firstly methodically discarding statements from the knowledge base
that cause a contradiction that renders a query false. If the remain-
ing statements entail the query, then any defeasible statements are
converted to classical statements. The Classical Justification Algo-
rithm is then used as a sub-algorithm to find the justifications for
the given knowledge base and query. Before the justifications are
returned, any statement that was a defeasible statement and was
converted to classical is converted back to defeasible in a process
called dematerialisation.

The Classical JustificationAlgorithmneeds to be used to compute
justifications for defeasible knowledge bases. The integration of this
algorithm with the work done by Hamayobe is what has allowed us
to be able to compute justifications not just for classical knowledge
bases but also for defeasible knowledge bases.

6 IMPLEMENTATION OF CLASSICAL
JUSTIFICATION ALGORITHM

6.1 Overview
We now present the practical work done for this project. We imple-
mented the Classical Justification Algorithm as a tool called Classi-
calJustificationTool. In the following subsections we will highlight
the Software Architecture (Section 6.2), External Packages used
(Section 6.3), the Input and Output Parameters with excerpts (Sec-
tion 6.4), the Algorithm Implementation (Section 6.5) and finally
the Test Design, Execution and Evaluation (Section 6.6).

6.2 Software Architecture
The ClassicalJustificationTool was implemented using the Java
Programming Language. We implemented our software using the

6

Figure 4: Graphical User Interface

Model-View-Controller design pattern. The Model component con-
sists of the propositional formulas that form the basis of our opera-
tion, objects that we created to return values as well as our Hitting
Set Tree which is used in the ComputeAllJustifications algorithm.
The View component consists of a graphical user interface that
allows users to interact with the tool. Finally, the Controller com-
ponent consists of the implementation of the algorithms that we
have theoretically presented in this paper.

The external packages used are written in Java therefore this
was the main motivator behind the language choice. Using Java
allowed us to leverage Object Oriented Programming in construct-
ing our Hitting Set Tree and creating objects that represent our
propositional formulas.

The ClassicalJustificationTool GUI is shown in Figure 4. The
user is expected to interact with the tool in the following manner:

• The user selects their knowledge base by clicking the Select
Knowledge Base File button.

• The user is then presented with a file chooser window where
they then select a .txt file with the knowledge base of their
choice.

• The knowledge base is then printed out on the text area.
• The user can then enter their query in the provided text field.
• The user can then click the Compute Classical Justification
button to run the Classical Justifications Algorithm.

• The justification(s) for the given query is then printed out in
the text area at the bottom of the screen.

• The user can terminate the program by clicking the Exit
button.

Table 1: Symbol Representation

Symbols in the literature Symbols in the tool
¬ !
∨ ||
∧ &&
→ =>

↔ <=>

Figure 5: Example input and output of our Compute All Jus-
tifications tool

6.3 External Packages
The ClassicalJustificationTool utilises two external packages.
The first is the Tweety Project, a library from which we got the
models and functions for the logic in our project - Propositional
Logic [2]. The symbols that are used to represent logic operations
in the literature are difficult to use practically, therefore we had to
replace them accordingly as shown in Table 1.

The second external package is the SAT4J SAT solver, which
is the black-box reasoner used in our project to compute classical
entailments [1].

6.4 Input and Output Parameters
In this subsection we showcase the input and output needed by the
ClassicalJustificationTool. The tool takes in two inputs: a classi-
cal knowledge base and a query. We letK = {philosopher → thinker,
Aristotle→ philosopher, thinker → ponder_profound_questions, pon-
der_profound_questions → wise, Socrates → wise, wise → respected}.
The query is entered into a textbox as a string. We let our query
string be “philosopher => respected”. The result of these two inputs
is then displayed in the text area to the user. Figure 5 shows the
GUI display of the described scenario.

6.5 Algorithm Implementation
We implemented the functionality of computing a single justifica-
tions by following Horridge’s algorithms for expanding and con-
tracting formulas (algorithms 1 to 4) [5]. To implement the func-
tionality of computing all justifications, we needed to create an
object that represents the Hitting Set Tree structure. We used Java’s
Object Oriented Programming basis to create this binary tree object.

7

Each node stores a classical justification for the given query and a
knowledge base from which that justification was extracted. The
root node represents the first justification found using the Com-
puteSingleJustification algorithm on the full knowledge base. The
child nodes have a knowledge base with one less propositional for-
mula than their parent. We can think of the edge between a parent
and each child as representing the formula that was removed to
get the child node’s knowledge base. We implemented the Classical
Justifications Algorithm by using open-source code provided by
Wang [14].

6.6 Test Design, Execution and Evaluation
The ClassicalJustificationTool was tested using a series of test
knowledge bases and queries. Among those used were the exam-
ples included in Algorithm 1: ExpandFormulas, Algorithm 2 and 3:
ContractFormulas and Algorithm 5: ComputeAllJustifications. The
results of the tests were accurate and in accordance to the theory.
We noted that there is a potential “blow up” that can occur when
using the ExpandFormulas algorithm. This is to say that in order to
find a justification, all the formulas in the knowledge base can end
up being considered. This would significantly decrease the speed of
execution of the ClassicalJustificationTool for large knowledge
bases, therefore we limited our knowledge base size to an upper
limit of ten.

These tests were designed to assess the correctness of each algo-
rithm’s implementation under various scenarios, providing a robust
validation process for our work.

6.6.1 Unit Testing Approach

Due to the modular design of the ClassicalJustificationTool
we were able to make use of unit tests to test each of the algorithms.
To ensure the correctness of our implemented algorithms, compre-
hensive testing was carried out by means of Java unit tests. Each
algorithm was encapsulated within its own test suite, allowing us
to focus on specific functionalities and evaluate their outcomes
independently. By employing unit tests, we aimed to detect and
rectify any potential errors at an early stage of development.

6.6.2 Test Case Diversity

To rigorously evaluate the algorithms, we carefully designed a
diverse set of test cases that covered different input variations and
edge cases. This approach allowed us to examine the behavior of
our algorithms across a wide range of scenarios, ensuring that they
could handle various input sizes, constraints, and special conditions.
By addressing both common and exceptional cases, we increased
the confidence in the correctness and robustness of our implementa-
tions. For all cases where there was no justification, our algorithms
were correct. For the cases where there were multiple justifications,
our algorithms were able to compute all the justifications proving
our Hitting Set Tree implementation was done correctly. For cases
where invalid symbols were in our knowledge base or query, an
appropriate error message was returned to the user. Our Appendix
section highlights these test cases along with the respective GUI
outputs in Figures 6, 7 and 8.

6.6.3 Validation Metrics

The unit tests were designed to verify correctness and not nec-
essarily to quantify algorithm performance. We also enlisted the
expertise of our supervisor to test the correctness and practicality of
our tool and its interface. Our supervisor approved the correctness
of our tool as well as its practicality in the field of KRR. The results
of the test cases were correct and in accordance with the theory. We
noted, however, that there is a potential “blow up” that can occur
when using the ExpandFormulas algorithm. This is to say that in
order to find a justification, all the formulas in the knowledge base
can end up being considered. This would significantly decrease
the speed of execution of the ClassicalJustificationTool for large
knowledge bases, therefore we limited our knowledge base size to
an upper limit of ten.

7 CONCLUSIONS
Explanation services help users understand how reasoning systems
reach a conclusion. This is useful as it makes the black-box rea-
soning process transparent and thus allows for knowledge base
comprehension and even debugging by experts. In this paper we
have presented the Classical Justification Algorithm which explains
why an entailment holds for a given knowledge base query. The
algorithm utilises an expand-contract strategy proposed by Hor-
ridge in order to find the minimal sets of propositional formulas
that entail a query.

For the theoretical part of this paper we presented an algorithm
that computes justifications for the classical logic, propositional
logic. This algorithm comprises of the sub-algorithm ComputeSin-
gleJustification which uses the ExpandFormulas and ContractFor-
mulas sub-algorithm to return one justification. We use the Com-
puteAllJustifications sub-algorithm to return all justifications of an
entailment through the use of Reiter’s Hitting Set Tree.

For the practical part of this paper, we implemented the theorised
algorithms in Java. We used two external packages, The Tweety
Project and the SAT4J SAT Solver which we used as our reasoner.
The tool created follows an MVC architecture and allows user
interaction through a Graphical User Interface (GUI). Furthermore,
we were able to combine our work with that done by Hamayobe to
allow for the computing of defeasible justifications.

We tested our tool with various test cases and expert testing by
our supervisor. We uncovered a substantial time-explosion when
using large knowledge bases to find justifications. This prompted
us to limit the size of our test knowledge bases to 𝑛 = 10.

8 FUTUREWORK
The output that is presented to the user has the syntax of proposi-
tional logic. This means that the potential users of this work are
limited to those who are familiar to prompositional logic and other
forms of formal logic. A future adaptation of this work could seek to
present justifications using natural language and thus eliminating
all symbols that are unique to formal logic.

Future work could also include listing justifications in a logical
waymirroring how a humanwould reach a conclusion given a set of
premises. This would involve identifying which deductive inference
rules were used to reach a conclusion and then determining the

8

dependencies between the premises accordingly, perhaps using
graphs.

Future work could also involve optimising the process of comput-
ing justifications. This could include an investigation into whether
pre-sorting formulas in the knowledge base could aid in streamlin-
ing the expand and contract process.

9 ACKNOWLEDGEMENTS
I would like to say a huge thank you to my supervisor, Professor
Tommie Meyer, for introducing me to the world of Knowledge
Representation and Reasoning and for guiding me through this
project. Thank you to my project partner Chipo Hamayobe for the
incredible support throughout this project.

References
[1] [n. d.]. SAT4J SAT SOLVER. http://www.sat4j.org/ Last Accessed: August 26,

2023.
[2] [n. d.]. The Tweety Project. https://tweetyproject.org/ Last Accessed: August 26,

2023.
[3] Mordechai Ben-Ari. 2012. Propositional Logic: Formulas, Models, Tableaux.

Springer London, London, 7–47. https://doi.org/10.1007/978-1-4471-4129-7_2
[4] Chipo Hamayobe. 2023. Defeasible Entailment and Explanations.
[5] Matthew Horridge. 2011. Justification based explanation in ontologies. Ph. D.

Dissertation. University of Manchester UK.
[6] Kevin C. Klement. 2004. Propositional Logic. In Internet Encyclopedia of Philoso-

phy.
[7] John McCarthy. 1980. Circumscription—a form of non-monotonic reasoning.

Artificial intelligence 13, 1-2 (1980), 27–39.
[8] Drew McDermott and Jon Doyle. 1980. Non-monotonic logic I. Artificial intelli-

gence 13, 1-2 (1980), 41–72.
[9] Raymond Reiter. 1987. A theory of diagnosis from first principles. Artificial

Intelligence 32, 1 (1987), 57–95. https://doi.org/10.1016/0004-3702(87)90062-2
[10] Patrick Rodler and Manuel Herold. 2018. StaticHS: A Variant of Reiter’s Hitting

Set Tree for Efficient Sequential Diagnosis. In Proceedings of the International
Symposium on Combinatorial Search, Vol. 9. 72–80.

[11] Peter Smith. 2003. An introduction to formal logic. Cambridge University Press.
[12] Frank Van Harmelen, Vladimir Lifschitz, and Bruce Porter. 2008. Handbook of

knowledge representation. Elsevier.
[13] Warren J von Eschenbach. 2021. Transparency and the black box problem: Why

we do not trust AI. Philosophy & Technology 34, 4 (2021), 1607–1622.
[14] S Wang. 2022. Defeasible Justification for the KLM Framework. Master’s thesis.

9

http://www.sat4j.org/
https://tweetyproject.org/
https://doi.org/10.1007/978-1-4471-4129-7_2
https://doi.org/10.1016/0004-3702(87)90062-2

A SUPPLEMENTARY INFORMATION
A.1 Test Cases
We present three representative test cases. The first shows a sce-
nario where the query is not entailed by the knowledge base, the
second shows a scenario where there is only one justification for
the entailment, and the third shows where there are multiple justi-
fications for the entailment.

For all our test cases, we let K = {philosopher → thinker, Aris-
totle → philosopher, thinker → ponder_profound_questions, pon-
der_profound_questions → wise, Socrates → wise, wise → respected,
Orefile → !philosopher}. The query is entered into a textbox as a
string.

A.1.1 No entailment

The first test case shows a scenario where there is no entailment.
The query entered is “thinker => philosopher”. This conclusion
cannot be inferred from our knowledge base, so as a result there
can be no justifications. Figure 6 shows the output displayed to
the user upon trying to compute a justification based on the given
query and knowledge base.

Figure 6: Example output of no entailment

A.1.2 One justifications

The second test case shows a scenario where there is an entail-
ment and there is only one justification for it. The query entered
is “wise => respected”. This conclusion can be inferred from our
knowledge base and this is because this query is a statement within
our knowledge base. Figure 7 shows the output displayed to the
user upon trying to compute a justification based on the given
query and knowledge base.

Figure 7: Example output of one justification

A.1.3 Multiple justifications

The third test case shows a scenario where there is an entailment
and there is more than one justifications for it. The query entered
is “Socrates => respected”. This conclusion can be inferred from
our knowledge base and there are two justifications for why this is
so. Figure 8 shows the output displayed to the user upon trying to
compute a justification based on the given query and knowledge
base.

Figure 8: Example output of multiple justifications

10

	ABSTRACT
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Propositional Logic
	2.2 Classical Reasoning
	2.3 Explanation Services

	3 PROJECT AIMS
	4 JUSTIFICATIONS FOR CLASSICAL ENTAILMENT
	4.1 Overview
	4.2 Classical Justification Algorithm

	5 DEFEASIBLE REASONING
	5.1 The Need for Non-monotonic Reasoning
	5.2 Classical Justification Algorithm for Defeasible Reasoning

	6 IMPLEMENTATION OF CLASSICAL JUSTIFICATION ALGORITHM
	6.1 Overview
	6.2 Software Architecture
	6.3 External Packages
	6.4 Input and Output Parameters
	6.5 Algorithm Implementation
	6.6 Test Design, Execution and Evaluation

	7 CONCLUSIONS
	8 FUTURE WORK
	9 ACKNOWLEDGEMENTS
	References
	A SUPPLEMENTARY INFORMATION
	A.1 Test Cases

