

CS/IT Honours Project

Final Paper 2023

Title: Defeasible Entailment and Explanations

Author: Chipo Hamayobe

Project Abbreviation: DEE

Supervisor(s): Professor Thomas Meyer

Category Min Max Chosen

Requirement Analysis and Design 0 20 5

Theoretical Analysis 0 25 5

Experiment Design and Execution 0 20 5

System Development and Implementation 0 20 20

Results, Findings and Conclusions 10 20 10

Aim Formulation and Background Work 10 15 15

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

Defeasible Entailment and Explanations
Chipo Hamayobe
chipo@cs.uct.ac.za

Department of Computer Science
University of Cape Town
Cape Town, South Africa

ABSTRACT
In addition to enabling users to capture information about the world
and engage in logical analysis, another crucial aspect provided by
knowledge representation and reasoning tools is the inclusion of
explanation capabilities. These representations serve a significant
purpose by helping users understand entailments, extracting im-
plied knowledge, and making it explicit through logical deductions.
By acknowledging and appreciating the intricate nature of results
produced by the KLM-style defeasible reasoning, this paper seeks
to explore explanations by identifying the critical gap in the current
discourse and, more importantly, the absence of comprehensive
explanation facilities for these complex outcomes. We argue for an
explanation framework based on justifications to clarify inferences
from defeasible reasoning. Within this context, the algorithms dis-
cussed for Rational Closure and justification work effectively and
are fine-tuned to efficiently generate explanations. Additionally, we
provide a software system tool with both a graphical user interface
and a command line interface that implements algorithms for de-
feasible entailment and explanations with outputs in user-friendly
language. We conceive of this tool being employed as a debugging
service aimed at addressing intricacies or issues within knowledge
bases.

CCS CONCEPTS
• Computing methodologies→ Nonmonotonic, default rea-
soning and belief revision; • Theory of computation → Auto-
mated reasoning.

KEYWORDS
artificial intelligence, knowledge representation and reasoning, de-
feasible reasoning, KLM framework, Rational Closure, defeasible
justifications, defeasible explanations, defeasible debugging tool

1 INTRODUCTION
Knowledge representation and reasoning constitute a domain
within the realm of Artificial Intelligence. It involves the modelling
of information through formal logical frameworks, enabling the
application of rule-based manipulations that pertain to specific
modes of reasoning [3]. Within the diverse array of logical sys-
tems, varying levels of expressive power emerge. Classical logic, for
instance, lacks the capacity to encapsulate the concept of typical-
ity, posing a challenge when endeavouring to succinctly represent
exceptional knowledge. This limitation becomes evident when con-
templating the subsequent illustrative scenario. To demonstrate
this understanding, let us consider the following example.

Example 1.1. Assume we are given the observable facts:

(1) Animals are wild
(2) Animals can hunt
(3) Pets are animals

Based on these assertions, we arrive at the deductions that pets
are wild and pets can hunt. However, a paradox emerges if we
introduce an additional statement,

(4) Pets are not wild

indicating that despite being able to hunt, pets are a unique cate-
gory of animals that are not wild. This leads to the contradictory
inference that pets are both wild and not simultaneously. As a re-
sult, our capacity to engage in logical reasoning concerning pets
becomes compromised, rendering their existence untenable.

In order for this illustration to be effective, it is advisable to
rephrase the first two initial facts in Example 1.1 as:

(1) Animals typically are wild
(2) Animals typically can hunt

This wording encompasses a notion of ambiguity, enabling us to
revise our inferences should we acquire information that contra-
dicts them. Such a style of reasoning describes defeasible reasoning.
This paper concentrates on a specific method for establishing de-
feasible reasoning which was proposed by Kraus, Lehmann and
Magidor and appropriately recognised as the KLM approach or
framework [12], which employs propositional logic as its foundation.
Even though there are other formalisms for determining defeasible
entailment within this framework and others, and we shall mention
them in brief, we only focus on one known as Rational Closure, the
most conservative within the rational family.

A vital element of the process of reasoning involves the ability to
deduce fresh insights from existing information. Beyond merely de-
riving new knowledge, it proves highly advantageous to understand
the rationale behind the derivation of specific information. Within
formal logic, this understanding is facilitated through explanations
[7]. Explanations hold significant importance as they are intrinsic to
reasoning services that enhance the comprehension of knowledge
bases. As a result, they assume a pivotal role in the practical utilisa-
tion of reasoning systems. In the realm of logical reasoning services,
the primary means of offering explanations is via justifications. This
paper is centred around this aspect, particularly concerning defea-
sible entailment justification. From Example 1.1, we inferred that
pets are wild because the statements "animals are wild" and "pets
are animals" provide a logically verifiable justification. This simple
understanding is the basis of defeasible explanations explored in
Section 4.

The primary aims of this paper are briefly described as follows:

https://orcid.org/0009-0008-0987-814X

• To explore and analyse the relevant theory and algorithms
for KLM-style defeasible entailment and justification so as
to present explanations in a user-friendly manner.

• To develop a software system tool with simple interfaces
that implements the discussed algorithms so that it can be
used as a debugging service for complex knowledge bases.

• To document and explain the inner workings of the de-
veloped software system tool so that other interested re-
searchers could improve on it and/or modify it for other
defeasible reasoning algorithms or usage scenarios.

Following this initial overview, Section 2 establishes the essential
background in classical logics necessary for this paper’s context.
Section 3 provides an exploratory view of the KLM style of defea-
sible entailment, encompassing its distinctive attributes and the
algorithms facilitating the computation of a variant of defeasible
justification and the ensuing explanations discussed in Section 4.
In Section 5, the requirements analysis, design, architecture and
functionalities of the developed software system tool will be pre-
sented and explained. Subsequent sections highlight the related
work, conclusions and the potential future works that could be
undertaken based on this and other referenced literature as a basis.

It should be mentioned at this point that some of the literature
discussed and the analysis of the software system tool may overlap
with that presented by Morule [15] since the foundational basis
for both forms of entailment and explanations is rooted in classical
propositional logic.

2 BACKGROUND
2.1 Propositional Logic
Propositional logic finds its foundation in entities referred to as
propositional atoms. These atoms embody fundamental statements,
each of which can be attributed a truth value. Within our frame-
work, we denote an atom that is perpetually true as ⊤, and one
that is universally false is symbolised as ⊥. The finite set of all
proportional atoms is denoted as P. By applying logical operators
(¬,∨,∧,→,↔) to P, we can iteratively construct more intricate
statements, known as propositional formulas [1]. The proportional
language L is the set of all such well-formed formulas. Lowercase
Greek letters 𝛼, 𝛽,𝛾, . . . are employed to represent formulas hence
formally, 𝛾 := ⊥ | ⊤ | 𝑞 | ¬𝛼 | 𝛼 ∨ 𝛽 | 𝛼 ∧ 𝛽 | 𝛼 → 𝛽 | 𝛼 ↔ 𝛽 .
The operators in the final five combinations derive their semantics
from an intuitive analogy with corresponding natural language
expressions: "not 𝛼", "𝛼 or 𝛽", "𝛼 and 𝛽", "if 𝛼 then 𝛽" and "𝛼 if and
only if 𝛽". In cases where statements take the form of 𝛼 → 𝛽 , 𝛼 is
denoted as the antecedent, while 𝛽 is termed the consequent.

Meaning is attributed to propositional atoms through interpreta-
tions or evaluations. An evaluation functions by assigning a truth
value to each atom, P → {𝑇, 𝐹 }, thereby presenting a distinct rep-
resentation of the reality encapsulated by these atoms. If an atom
𝑝 or a formula 𝛼 is found to be true in a particular evaluation, we
say that the evaluation satisfies 𝑝 or 𝛼 and satisfaction is denoted
by ⊩. 𝛼 is therefore considered unsatisfiable if and only if ¬𝛼 = ⊤.
When a formula 𝛼 ∈ L aligns with the truth values and semantic
rules of the operators within an interpretation I, we classify I as
a model of 𝛼 , denoted Mod(𝛼). We formally symbolically represent

this as I |= 𝛼 , meaning that 𝛼 is satisfied by the interpretation I,
its model [11].

2.2 Entailment
A collection of finite propositional formulas is termed a knowledge
base, K ⊆ L. An interpretation becomes a model of a knowledge
base K if it functions as a model for every formula within K , that
is, for every model of K , a formula 𝛼 ∈ L holds true. We assert
that K entails a statement 𝛼 , denoted as K |= 𝛼 , when every model
of K also serves as a model for 𝛼 , that is, Mod(K) ⊆ Mod(𝛼) [11].

Definition 2.1. Let F ⊆ L be a set of formulas and 𝛼 a formula.
F entails 𝛼 , denoted F |= 𝛼 , if and only if every model of F is a
model of 𝛼 [18].

This type of propositional implication operates within the frame-
work of classical reasoning, a methodology for drawing conclu-
sions based on provided information. Classical reasoning adheres
to monotonicity, signifying that the introduction of new statements
toK must align with and not contradict any prior inferences drawn
from K . This forms the foundational principle of a straightforward
reasoning system [18], which we illustrate through the subsequent
example.

Example 2.2. The assertions in Example 1.1 involve the atoms
"animal" (a), "wild" (w), "hunt" (h) and "pet" (p), expressed as P →
{𝑎,𝑤,ℎ, 𝑝}, which can iteratively construct formulas, such as these
in the knowledge base K :

(1) Animals are wild (𝑎 → 𝑤)
(2) Animals can hunt (𝑎 → ℎ)
(3) Pets are animals (𝑝 → 𝑎)
In order to ascertain whether we can deduce the statements "pets

are wild (𝑝 → 𝑤)" or "pets can hunt (𝑝 → ℎ)", we assess whether
the knowledge base K entails either pets are wild or pets can hunt,
denoted K |= (𝑝 → 𝑤) and K |= (𝑝 → ℎ) respectively.

However, an issue arises when contradictory statements are
introduced to K , resulting in the absence of any models for K .
Consequently, any statement would be valid in all models of K .
This renders such a knowledge base devoid of meaning, as it entails
all possible statements [18]. Hence, a framework for non-monotonic
reasoning becomes necessary. In this regard, our preferred approach,
detailed in this paper, is a form of defeasible reasoning known as
the KLM Approach.

The task of verifying whetherK |= 𝛼 can be simplified by assess-
ing the satisfiability (the process of determining if there is a way to
assign truth values to the constituent atoms such that the formula
is true) of K when ¬𝛼 is included in it (expressed as K ∪ {¬𝛼}).
The determination of satisfiability can be performed using a solver
for propositional logic satisfiability, SAT Solver in short 1.

2.3 Explanations
Within reasoning systems, explanations serve the purpose of clari-
fying the relevant statements within the knowledge base K that
contribute to the logical implication between the said K and an
entailed statement, a query [7]. Among the various methods for
1A SAT Solver is a software tool designed to ascertain whether an interpretation exists
that satisfies a given propositional logic formula.

2

explanations in classical logics, justifications have been extensively
studied. A justification J , a subset ofK , for the logical implication
of a formula 𝛽 consists of a minimal subset of K that results in the
implication of 𝛽 . The collection of all justifications for the condition
K |= 𝛽 is symbolised as J (K, 𝛽).

Definition 2.3. LetK be a knowledge base and 𝛽 be a query such
that K |= 𝛽 . The set of formulas J is a justification for K |= 𝛽 if
J ⊆ K , J |= 𝛽 and for all J ′ ⊆ J , it holds that J ′ ̸ |= 𝛽 [18].

It is important to note that a single query may have multiple
justifications within K . These justifications offer a straightforward
and instinctive means of succinctly explaining why a logical im-
plication is valid. They achieve this by pinpointing the specific
formulas within K that underlie the given logical implication. To
better illustrate this concept, consider the following example.

Example 2.4. From Example 1.1, does the classical knowledge
base entail pets are wild, that is, K |= 𝑝 → 𝑤?

K = {animals are wild, animals can hunt, pets are animals}
or

K = {𝑎 → 𝑤, 𝑎 → ℎ, 𝑝 → 𝑎}

It can be established that, within context, because Mod(K) ⊆
Mod(𝑝 → 𝑤), then K |= 𝑝 → 𝑤 . This conclusion is supported by
the justification J = {𝑎 → 𝑤, 𝑝 → 𝑎}, as the set {𝑎 → 𝑤, 𝑝 →
𝑎} |= 𝑝 → 𝑤 , and the removal of any statement from this set, J ,
results in the entailment becoming invalid.

Numerous algorithms have been created to calculate classical
justifications [10]. These algorithms are categorised as either black-
box or glass-box methods. For this purpose, we employ a black-box
algorithm to determine all justifications for a classical K . In these
algorithms, the computation of justifications occurs independently
of the underlying reasoning process. This characteristic grants them
versatility across various logical frameworks [16], which makes
them suitable for use with propositional logic, as we do in this
paper.

3 DEFEASIBLE ENTAILMENT
The approach to non-monotonic reasoning explored in this paper is
that of the preferential approach, which was first defined by Shoham
[11]. Shoham defined the class of preferential logics, achieved by
enriching regular semantics with a preference relation over all val-
uations. Then, for a formula 𝛼 to be satisfiable, it must be satisfied
by all the most preferred models of 𝛼 . This set of most preferred
models is defined as being all models of 𝛼 that are minimal with
respect to the preference relation [7]. Using the preferential seman-
tics, notions of preferential entailment can be defined by specifying
that 𝛼 |≈ 𝛽 , read as "𝛼 preferentially entails 𝛽", if and only if all pre-
ferred models of 𝛼 also satisfy 𝛽 . A foundation for a corresponding
proof-theoretic system for preferential reasoning was also defined
by Gabbay [11]. Both the semantics and corresponding proof sys-
tem were then extended by Kraus et al. to form the KLM Approach
[12]. Rational Closure, an alternative syntactic definition of mini-
mal ranked defeasible entailment, is the focus of this paper and is
discussed in Section 3.4.

3.1 The KLM Approach
While various methodologies for defeasible reasoning exist, a promi-
nently examined approach in the literature is the KLM Framework.
This approach expands propositional logic by incorporating the
notion of defeasible implication, |∼, serving as a counterpart to the
classical implication →. Defeasible implications are represented
as 𝛼 |∼ 𝛽 , where 𝛼, 𝛽 ∈ L, and this notation is interpreted as "𝛼
typically implies 𝛽". Nested defeasible implication operations such
as (𝛼 |∼ 𝛽) |∼ 𝛾 are not permitted.

A defeasible knowledge base is a finite collection of formulas com-
prising one or more defeasible implications. Defeasible entailment,
|≈, is then established as a binary relationship that spans defea-
sible knowledge bases and defeasible implications. For instance,
K |≈ 𝛼 |∼ 𝛽 signifies that within the scope of K , "K defeasibly
entails that 𝛼 typically implies 𝛽". Notably, while our supposition re-
volves around the inclusion of solely defeasible implications within
defeasible knowledge bases, we possess the means to represent any
classical formula 𝛼 through the defeasible form ¬𝛼 |∼ ⊥ [8].

Lehmann and Magidor present a set of postulates that establish
the foundation of rational defeasible entailment [14]. Each postu-
late serves as an assertion of an intuitively expected characteristic
inherent to a reasonable defeasible entailment relationship, thus
earning the moniker "rational". In parallel to this axiomatic defini-
tion, rational entailment relationships possess a model-theoretic
semantics, which, while beyond the scope of this paper and discus-
sion, are sometimes precisely described by computational reasoning
algorithms of practical complexity [8]. These reasoning algorithms
constitute a pivotal focal point of our discussion and we empha-
sise Rational Closure, the most prominent variant of defeasible
entailment within the KLM framework, denoted |≈𝑅𝐶 . We define
a partial ordering, ≤K , over the ranked interpretations such that
this ordering favours interpretations that are more conservative or
typical conservative over those that are less typical.

Definition 3.1. If K is a knowledge base and RK the set of its
ranked models, it holds for every RK

0 ,RK
1 ∈ RK that RK

0 ≤K
RK
1 ⇐⇒ for every 𝑢 ∈ U, RK

0 (𝑢) ≤ RK
1 (𝑢) [11].

All defeasible entailment discussions in the paper should be
assumed to be |≈𝑅𝐶 , even when not explicitly stated or |≈ is used.

3.2 The KLM Properties
In contrast to classical entailment, the concept of defeasible entail-
ment is not singular in nature. Instead, there are several distinct
representations of defeasible entailment, such as Rational Closure
[14], Lexicographic Closure [13] and Relevant Closure [6]. The KLM
framework establishes a set of rationality principles, which have
been asserted by Lehmann and Magidor as necessary criteria for
any defeasible entailment approach [14]. These principles provide
a way to differentiate between approaches that are considered suit-
able or unsuitable in the context of rational entailment.

When a defeasible entailment algorithm meets all the specified
criteria, it is considered an appropriate variant of defeasible entail-
ment and is referred to as LM-rational. The provided KLMproperties
for propositional logic are outlined as follows:

(1) Reflexivity (Ref): K |≈ 𝛼 |∼ 𝛼

(2) Left Logical Equivalence (LLE):
𝛼 ≡ 𝛽, K |≈ 𝛼 |∼ 𝛾

K |≈ 𝛽 |∼ 𝛾

3

(3) Right Weakening (RW):
K |≈ 𝛼 |∼ 𝛽, 𝛽 |= 𝛾

K |≈ 𝛼 |∼ 𝛾

(4) And:
K |≈ 𝛼 |∼ 𝛽, K |≈ 𝛼 |∼ 𝛾

K |≈ 𝛼 |∼ 𝛽 ∧ 𝛾

(5) Or:
K |≈ 𝛼 |∼ 𝛾, K |≈ 𝛽 |∼ 𝛾

K |≈ 𝛼 ∨ 𝛽 |∼ 𝛾

(6) Cautious Monotonicity (CM):
K |≈ 𝛼 |∼ 𝛽, K |≈ 𝛼 |∼ 𝛾

K |≈ 𝛼 ∧ 𝛽 |∼ 𝛾

(7) Rational Monotonicity (RM):
K |≈ 𝛼 |∼ 𝛾, K ̸|≈ 𝛼 |∼ ¬𝛽

K |≈ 𝛼 ∧ 𝛽 |∼ 𝛾

Each of these characteristics holds a relatively straightforward
interpretation. Kaliski [11] offers an elaborate explanation of the
intended significance of each of these properties. Let us contemplate
the subsequent pair of defeasible implications that can be expressed
using propositional logic as an example:

• If Salah plays, then typically Liverpool FC wins (𝑠 |∼ 𝑤)
• If Mané plays, then typically Liverpool FC wins (𝑚 |∼ 𝑤)

The concept of Or indicates that if a specific formula can be
reasonably inferred from two or more distinct formulas, then it
should also be a reasonable inference from either combination of
those formulas using disjunction. It appears logical to deduce the
following statement as it aligns precisely with the functioning of
the Or property.

• If Salah or Mané plays, then typically Liverpool FC wins (𝑠∨𝑚 |∼ 𝑤)

3.3 Materialisation and Dematerialisation
The propositional formula 𝛼 → 𝛽 corresponds to the material
counterpart of a defeasible implication 𝛼 |∼ 𝛽 . Alternatively, 𝛼 → 𝛽

can be seen as the materialisation of 𝛼 |∼ 𝛽 . We can deduce that the
defeasible implication 𝛼 |∼ 𝛽 is the dematerialisation representation
of the classical implication 𝛼 → 𝛽 [11].

Definition 3.2. The materialisation of a defeasible knowledge
base K , denoted as

−→
K , signifies the conventional knowledge base:
{𝛼 → 𝛽 | 𝛼 |∼ 𝛽 ∈ K}

Definition 3.3. The dematerialisation of a classical knowledge
base K , represented as K−→, is the knowledge base where each for-
mula in K , follows the structure 𝛼 → 𝛽 , where 𝛼 ∈ L, 𝛽 ∈ L:

{𝛼 |∼ 𝛽 | 𝛼 → 𝛽 ∈ K}

By employing the concept of knowledge base materialisation, we
can establish a way to determine the uniqueness of a propositional
formula concerning a knowledge base.

Definition 3.4. A propositional formula 𝛼 , where 𝛼 ∈ L, is
deemed exceptional for a knowledge base K if K |= ¬𝛼 .

To illustrate this formulation, consider K = {𝑎 |∼ 𝑤, 𝑝 |∼ 𝑎, 𝑝 |∼
¬𝑤}. In this case, 𝑝 is more specific and is an exceptional element
for K , but 𝑎 is not. This example demonstrates the inherent signifi-
cance of exceptionality in a straightforward manner: We can only
deduce implications of exceptional statements by dismissing the
more general formulas present in K .

The method for explaining defeasible entailments relies on the
approach used for justifying classical entailments discussed in Sec-
tions 2.2 and 2.3. The classical entailment justification method takes
as input, the materialised knowledge base K . This means that
the formulas found in the generated justifications are parts of the

materialised knowledge base. In simpler terms, any justification,
J ⊆ (−→R0 ∪

−→R1 ∪ · · · ∪ −−→R∞), that comes from the outcome of the
classical justification process, can not be directly used for explain-
ing defeasible matters unless the essential formulas are reinstated
from their initial forms. This underlines the importance of the
Dematerialisation algorithm (Algorithm 1). The algorithm goes
through every justification 𝑗 ∈ J and for every 𝑗 , it examines each
formula within it and if any formula, 𝛼 → 𝛽 , is not present in
the initial knowledge base, it is modified to become the defeasible
implication 𝛼 |∼ 𝛽 [18].

Algorithm 1: Dematerialisation
Input: Set of justifications J and a defeasible knowledge base K
Output: Set of dematerialised justifications J

1 for 𝑗 in J do
2 for 𝛼 → 𝛽 in 𝑗 do
3 if 𝛼 → 𝛽 ∈ K then
4 Replace 𝛼 → 𝛽 with 𝛼 |∼ 𝛽 ;
5 end
6 end
7 end
8 return J;

3.4 Rational Closure
Rational Closure represents the most cautious approach to deriving
conclusions from a defeasible knowledge base K . This form of
entailment draws limited inferences from the given K . As outlined
by Casini et al., this concept can be defined both algorithmically and
semantically [6]. The semantic definition relies on structures called
ranked interpretations. These interpretations essentially involve
ordering all possible understandings in the set of all interpretations,
I, by their usualness. In this paper, we only consider the algorithmic
definition.

Freund [9] introduced an algorithm to prioritise formulas neces-
sary for Rational Closure. This distinct prioritisation is termed the
base rank for formulas. Notably, the base rank for formulas within
a knowledge base holds singularity. The rationale underlying the
base rank is rooted in the notion that lower-ranked formulas are
comparatively less extraordinary. Casini et al. subsequently for-
malised both the BaseRank (Algorithm 2) and RationalClosure
(Algorithm 3) algorithms respectively [6].

The BaseRank procedure arranges all statements within
−→
K based

on their level of generality. This ranking results in statements that
are always true (classical statements) being positioned at the lowest
rank (the infinite rank, R∞). The higher ranks contain materiali-
sations of defeasible statements, which progressively increase in
generality as one ascends the ranking order towards the top most,
R0. We define a partial ordering, ≤K , over the ranked interpreta-
tions such that this ordering favours interpretations that are more
conservative or typical over those that are less typical. It is worth
noting that the minimal ranked entailment of a knowledge base K
is essentially the same thing as the Rational Closure of K .

4

Algorithm 2: BaseRank
Input: A knowledge base K
Output: An ordered tuple (R0, . . . , R𝑛−1, R∞, 𝑛)

1 𝑖 := 0;

2 𝐸0 :=
−→
K ;

3 while 𝐸𝑖−1 ≠ 𝐸𝑖 do
4 𝐸𝑖+1 := {𝛼 → 𝛽 ∈ 𝐸𝑖 | 𝐸𝑖 |= ¬𝛼 };
5 R𝑖 := 𝐸𝑖 \ 𝐸𝑖+1;
6 𝑖 := 𝑖 + 1;
7 end
8 R∞ := 𝐸𝑖−1;
9 if 𝐸𝑖−1 = ∅ then
10 𝑛 := 𝑖 − 1;
11 end
12 else
13 𝑛 := 𝑖;
14 end
15 return (R0, . . . , R𝑛−1, R∞, 𝑛)

Definition 3.5. If K is a knowledge base and RK the set of its
ranked models, it holds for every RK

0 ,RK
1 ∈ RK that RK

0 ≤K
RK
1 ⇐⇒ for every 𝑢 ∈ U, RK

0 (𝑢) ≤ RK
1 (𝑢) [11].

Given a knowledge base K , because the BaseRank algorithm
assumes K contains only defeasible implications, Wang [18] exam-
ined the following two situations and made some observations:

(1) Suppose we have a classical implication 𝛽 and 𝛽 ∈ K . As
per the definition of defeasible implication within K , we
can substitute 𝛽 with ¬𝛽 |∼ ⊥. If we input K into the
BaseRank algorithm, then¬𝛽 → ⊥ ∈ 𝐸0, and for some level
𝑖 , ¬𝛽 → ⊥ ∈ 𝐸𝑖 . Since the classical implication ¬𝛽 → ⊥
essentially implies 𝛽 , line 4 of the algorithm places ¬𝛽 → ⊥
in 𝐸𝑖+1. This realisation leads us to the understanding that
¬𝛽 → ⊥ is consistently put into R∞. As a result, we can
conclude that the BaseRank algorithm always designates
any classical implication 𝛽 to the lowest rank, R∞.

(2) Suppose we have a knowledge base K , and in this context,
let us consider the case where {𝛼 |∼ 𝛽, 𝛼 |∼ ¬𝛽} ⊆ K .
When we useK as the BaseRank algorithm input, it results
in {𝛼 → 𝛽, 𝛼 → ¬𝛽} ⊆ 𝐸0, and for a specific level 𝑖 ,
{𝛼 → 𝛽, 𝛼 → ¬𝛽} ⊆ 𝐸𝑖 . Because 𝐸𝑖 implies ¬𝛼 at all
times, line 4 of the algorithm consistently places 𝛼 → 𝛽

and 𝛼 → ¬𝛽 into 𝐸𝑖+1. Based on this observation, we can
draw the conclusion that if both 𝛼 |∼ 𝛽 and 𝛼 |∼ ¬𝛽 are
formulas in K , the algorithm invariably assigns them to
the lowest rank, R∞.

To further expand on the literal understanding, let us consider a
simple practical illustration that demonstrates the underlying idea
of base ranking:

Example 3.6. Consider the following knowledge base K :
(1) Animals typically are wild (𝑎 |∼ 𝑤)
(2) Pets typically are animals (𝑝 |∼ 𝑎)
(3) Pets typically are not wild (𝑝 |∼ ¬𝑤)
(4) ExoticPets typically are animals (𝑒 |∼ 𝑎)
(5) ExoticPets typically are pets (𝑒 |∼ 𝑝)

The following steps help explain the statement ranking produced
by the BaseRank algorithm.

(1) K = {𝑎 |∼ 𝑤, 𝑝 |∼ 𝑎, 𝑝 |∼ ¬𝑤, 𝑒 |∼ 𝑎, 𝑒 |∼ 𝑝}
(2) The materialisation of K is:

−→
K = {𝑎 → 𝑤, 𝑝 → 𝑎, 𝑝 → ¬𝑤, 𝑒 → 𝑎, 𝑒 → 𝑝}

Therefore, 𝐸0 = {𝑎 → 𝑤, 𝑝 → 𝑎, 𝑝 → ¬𝑤, 𝑒 → 𝑎, 𝑒 → 𝑝}.
(3) By utilizing line 4 of the algorithm, we derive 𝐸1 = {𝛼 →

𝛽 ∈ 𝐸0 | 𝐸0 |= ¬𝛼}. Only three interpretations fulfill 𝐸0 :
apwe, apwe and apwe. All the three interpretations also
fulfil p and e. Consequently, 𝐸0 |= ¬𝑝, 𝐸0 |= ¬𝑒 and 𝐸1 =

{𝑝 → 𝑎, 𝑝 → ¬𝑤, 𝑒 → 𝑎, 𝑒 → 𝑝}. The subsequent step,
line 5 of the algorithm, defines R1 = {𝑎 → 𝑤}.

(4) During the second iteration of the while loop, 𝐸2 is de-
fined as {𝛼 → 𝛽 ∈ 𝐸1 | 𝐸1 |= ¬𝛼} and the interpreta-
tions satisfying 𝐸1 are apwe, apwe, apwe, apwe, apwe
and apwe. From these interpretations, it becomes evident
that 𝐸1 |≈ ¬𝑝 and 𝐸1 |≈ ¬𝑒 . As a result, 𝐸2 = ∅ and
R1 = {𝑝 → 𝑎, 𝑝 → ¬𝑤, 𝑒 → 𝑎, 𝑒 → 𝑝}.

(5) The third iteration of the while loop renders 𝐸3 = ∅, leading
to termination due to 𝐸2 = 𝐸3. Consequently, R∞ = ∅ in
line 10. The if-else construct spanning lines 8 through 14
designates 𝑛 = 3.

(6) Conclusively, the algorithm yields the tuple: ({𝑎 →
𝑤}, {𝑝 → 𝑎, 𝑝 → ¬𝑤, 𝑒 → 𝑎, 𝑒 → 𝑝}, ∅, 3).

(7) From a visual standpoint, the rankings of
−→
K can be observed

in the following table.

R0 𝑎 → 𝑤

R1 𝑝 → 𝑎, 𝑝¬𝑤, 𝑒 → 𝑎, 𝑒 → 𝑝

R∞ ∅

Figure 1: BaseRank output of Example 3.6

Algorithm 3: RationalClosure
Input: A knowledge base K and a defeasible implication 𝛼 |∼ 𝛽

Output: true, if K |≈ 𝛼 |∼ 𝛽 , and false otherwise
1 (R0, . . . , R𝑛−1, R∞, 𝑛) := BaseRank(K) ;
2 𝑖 := 0;
3 R :=

⋃𝑗<𝑛

𝑖=0 R 𝑗 ;
4 while R∞ ∪ R |= ¬𝛼 and R ≠ ∅ do
5 R := R \ R𝑖 ;
6 𝑖 := 𝑖 + 1;
7 end
8 return R∞ ∪ R |= 𝛼 → 𝛽 ;

We can now proceed from the prior exemplification of base
ranking to explain the rationale underpinning Rational Closure
as guided by the RationalClosure algorithm. In this instance,
we shall use the defeasible implication statement 𝑒 |∼ ¬𝑤 as our
defeasible query; that is K |≈ 𝑒 |∼ ¬𝑤?

(1) The outcome of the base ranked instance on line 1 of the
algorithm is employed. The algorithm’s 3rd line defines the
set R =

⋃𝑗<𝑛
𝑖=0 R 𝑗 . This operation is applied to the resultant

5

outcome of base ranking, yielding R = {𝑎 → 𝑤, 𝑝 →
𝑎, 𝑝 → ¬𝑤, 𝑒 → 𝑎, 𝑒 → 𝑝}.

(2) The conditions presented on line 4 of the algorithm ne-
cessitate the evaluation of R∞ ∪ R |= ¬𝑒 . Since no model
encompassing R∞ ∪ R satisfies the condition 𝑑 , it follows
that R∞ ∪ R |= ¬𝑒 . Line 5 involves the removal of R0 from
R, leading to the modified set R = {𝑝 → 𝑎, 𝑝 → ¬𝑤, 𝑒 →
𝑎, 𝑒 → 𝑝}.

(3) The interpretation denoted as apwe satisfies the set R as
well as the condition 𝑒 . Consequently, it can be inferred
that R∞ ∪ R ̸|= ¬𝑒 , which prompts the algorithm to exit
the while loop. To conclude, it is imperative to ascertain
the validity of R∞ ∪R |= 𝑒 → ¬𝑤 . The interpretation apwe
also satisfies the condition 𝑒 → ¬𝑤 . This affirms the truth
of R∞ ∪ R |= 𝑒 → ¬𝑤 .

(4) As a result, the algorithm yields a true outcome, confirming
the relationship K |≈ 𝑒 → ¬𝑤 . In simpler terms, the defea-
sible knowledge base K does entail the defeasible query,
that exotic pets typically are not wild.

3.5 Alternatives to Rational Closure
3.5.1 Lexicographic closure. Based on the framework described
by Lehmann and Magidor, Lehmann introduced the concept of
Lexicographic Closure as an enhancement of Rational Closure, dis-
tinguished mainly by variations in the hierarchical ranking of state-
ments. [13] This approach involves ranking statements within the
same hierarchy, following the precedence set by the BaseRank algo-
rithm, while simultaneously maintaining the initial ranking. When
it comes to the extent of logical inferences drawn from a knowl-
edge base, Lexicographic Closure demonstrates a lesser degree of
conservatism compared to Rational Closure [6].

3.5.2 Relevant Closure. Originally introduced by Casini et al. [5]
as a non-LM-rational alternative, the concept of relevant closure
offers a nuanced perspective that seeks to strike a balance between
the prototypical accuracy of Rational Closure and the inclusion of
presumptive inferences rooted in the concept of relevance associ-
ated with each statement. This positions Relevant Closure as an
intermediary point between Rational Closure and Lexicographic
Closure along the spectrum of typical and inferred entailments. The
approach is algorithmically defined and operates by pinpointing a
subset of defeasible statements pertinent to a specific query. Subse-
quently, it applies a modified version of the defeasible entailment
algorithm to the knowledge base, ensuring that only these pertinent
statements become subject to removal [8].

4 DEFEASIBLE EXPLANATIONS
Horridge introduced the concept of justifications, which represent
the smallest sets in the knowledge base K that entails a specific
query. Horridge also introduced an algorithm to identify justifica-
tions for classical entailments [10]. However, when dealing with
defeasible entailments, the concept of justification becomes more
intricate. Based on Description Logics, Chama [7] provided a distinct
definition for defeasible justification, which Everett et al. [8] termed
weak justifications. How this notion relates to strong justifications, a
more general notion of defeasible explanation given by Brewka and
Ulbricht [4], was explored and extended to KLM by Everett et al.

using a revised definition. As emphasised by Wang [18], Chama’s
definition of justification is applicable to the explanations we are
exploring in this paper.

Definition 4.1. For a justification of a defeasible entailment,K |=
𝛼 , the process involves selecting only the smallest sets within K
that meet two conditions:

(1) The materialisation process of any minimal set must classi-
cally entail −→𝛼 .

(2) The minimal sets exclusively encompass the relevant and
applicable axioms and these suitable and relevant axioms
should only be ones that were taken into account when
calculating Rational Closure entailment.

4.1 Defeasible Justification
Let us approach the discussion of defeasible justifications through
an illustrative example.

Example 4.2. Given the defeasible knowledge base K :
(1) Animals typically are wild (𝑎 |∼ 𝑤)
(2) Animals typically can hunt (𝑎 |∼ ℎ)
(3) Pets are animals (𝑝 → 𝑎)
(4) Pets typically are not wild (𝑝 |∼ ¬𝑤)
(5) ExoticPets are pets (𝑒 → 𝑝)
(6) ExoticPets typically are wild (𝑒 |∼ 𝑤)
The BaseRank algorithm produces the ordering of formulas

shown in Figure 2.

R0 𝑎 |∼ 𝑤, 𝑎 |∼ ℎ

R1 𝑝 |∼ ¬𝑤
R2 𝑒 |∼ 𝑤

R∞ 𝑝 → 𝑎, 𝑒 → 𝑝

Figure 2: BaseRank algorithm output for K from Example 4.2

Using this formula ranking output, the RationalClosure algo-
rithm determines that K |≈ 𝑒 |∼ 𝑤 . Additionally, the algorithm
does not consider R0 = {𝑎 |∼ 𝑤, 𝑎 |∼ ℎ} and R1 = {𝑝 |∼ ¬𝑤}.
Although one might initially consider both J1 = {𝑒 |∼ 𝑤} and
J2 = {𝑎 |∼ 𝑤, 𝑝 |∼ 𝑎, 𝑒 → 𝑝} as explanations supporting the claim.
However, J2 contains 𝑎 |∼ 𝑤 , which was not factored into the
Rational Closure calculation. Consequently, only J1 remains as the
valid defeasible explanation since it only includes the suitable and
relevant formula.

The RationalClosure algorithm discussed in Section 3 merely
gives back a true or false answer that tells us if the defeasible
entailment, K |≈ 𝛼 |∼ 𝛽 , is valid or not. Using the idea of defea-
sible justification, Chama [7] made adjustments to this algorithm
for Description Logics to include a number that shows how many
levels of axioms were ignored. Chama’s approach to defeasible
justification involves excluding axiom levels following the Ratio-
nal Closure algorithm [18]. This change also involves using the
ComputeAllJustifications algorithm (Algorithm 7 in Appendix
A.1) process on the relevant and suitable axioms in the knowledge
base. This results in generating explanations for defeasible argu-
ments.

6

Based on Chama’s reasoning and algorithms for justifications,
Wang [18] extended these principles and produced similar algo-
rithms for propositional logics, which we employ in this paper.
The modified algorithms serve the same purpose as their original
counterparts, Algorithms 2 and 3, but are optimised for efficiency
in producing explanations.

Algorithm 4: BaseRankForJustification
Input: A knowledge base K
Output: An ordered tuple (R0, . . . , R𝑛, R∞)

1 C := {𝛼 → 𝛽 ∈ K} ∪ {𝛼 → 𝛽, 𝛼 → ¬𝛽 ∈ K | 𝛼 |∼ 𝛽 and
𝛼 → ¬𝛽 ∈ K};

2 𝐸0 := K \ C;
3 𝑖 := 0;
4 while 𝐸𝑖−1 ≠ 𝐸𝑖 do
5 𝐸𝑖+1 := {𝛼 |∼ 𝛽 ∈ 𝐸𝑖 | −→𝐸𝑖 ∪ C |= ¬𝛼 };
6 R𝑖 := 𝐸𝑖 \ 𝐸𝑖+1;
7 𝑖 := 𝑖 + 1;
8 end
9 R∞ := C ∪ 𝐸𝑖−1;

10 if 𝐸𝑖−1 = ∅ then
11 𝑛 := 𝑖 − 1;
12 end
13 else
14 𝑛 := 𝑖;
15 end
16 return (R0, . . . , R𝑛, R∞)

Wang enhanced the BaseRank algorithm even more by introduc-
ing rules that are applied to formulas that are consistently assigned
to the infinity rank,R∞ [18]. This modified version necessary for de-
feasible explanations is presented as BaseRankForJustification
(Algorithm 4). To help understand the base ranking procedure nar-
rated by the enhanced algorithm, let us consider the following
knowledge base as input to the algorithm:

K = {𝑝 → 𝑎, 𝑒 → 𝑝, 𝑎 |∼ 𝑤, 𝑎 |∼ ℎ, 𝑝 |∼ ¬𝑤, 𝑒 |∼ 𝑤}
As we proceed through the algorithm, the variables are given these
values:

• C := {𝑝 → 𝑎, 𝑒 → 𝑝}
• 𝐸0 := {𝑎 |∼ 𝑤, 𝑎 |∼ ℎ, 𝑝 |∼ ¬𝑤, 𝑒 |∼ 𝑤}
• 𝐸1 := {𝑝 |∼ ¬𝑓 𝑙𝑦, 𝑒 |∼ 𝑤}
• R0 := {𝑎 |∼ 𝑤, 𝑎 |∼ ℎ}
• 𝐸2 := {𝑒 |∼ 𝑤}
• R1 := {𝑎 |∼ 𝑤}
• 𝐸3 := ∅
• R2 := {𝑎 |∼ 𝑤}
• R∞ := {𝑝 → 𝑎, 𝑒 → 𝑝}

The base ranking output for K is shown visually in Figure 3.

R0 𝑎 |∼ 𝑤, 𝑎 |∼ ℎ

R1 𝑝 |∼ ¬𝑤
R2 𝑒 |∼ 𝑤

R∞ 𝑝 → 𝑎, 𝑒 → 𝑝

Figure 3: BaseRankForJustification algorithm output for K

Much like how Chama [7] modified the Rational Closure
algorithm to include an extra integer indicating the count of
formula ranks that are ignored, Wang [18] made correspond-
ing changes to the RationalClosure algorithm to align it with
the necessary information for KLM style defeasible justifica-
tion. This modified version of the algorithm is presented as
RationalClosureForJustification (Algorithm 5).

Algorithm 5: RationalClosureForJustification
Input: A knowledge base K and a defeasible implication 𝛼 |∼ 𝛽

Output: true, if K |≈ 𝛼 |∼ 𝛽 , and false otherwise, rank 𝑖 and an
ordered tuple of base ranked formulas (R0, . . . , R𝑛, R∞)

1 (R0, . . . , R𝑛, R∞) := BaseRankForJustification(K) ;
2 𝑖 := 0;
3 R :=

⋃𝑗≤𝑛
𝑖=0 R 𝑗 ;

4 while
−−→R∞ ∪ −→R |= ¬𝛼 and R ≠ ∅ do

5 R := R \ R𝑖 ;
6 𝑖 := 𝑖 + 1;
7 end

8 return
−−→R∞ ∪ −→R |= 𝛼 → 𝛽, 𝑖, (R0, . . . , R𝑛, R∞) ;

Given a defeasible knowledge baseK and a defeasible query 𝛼 |∼
𝛽 as inputs, the RationalClosureForJustification algorithm
returns the following results:

(1) A true or false value indicating whether K |≈ 𝛼 |∼ 𝛽 .
(2) An integer representing the count of ranks of formulas, if

any, that are not considered when determining the logical
implication.

(3) An ordered tuple (R0, . . . ,R𝑛,R∞) which contains the
smallest ranked formulas in K .

To help grasp the concept of Rational Closure as depicted by the
RationalClosureForJustification algorithm, we will explain
it using the following example.

K = {𝑝 → 𝑎, 𝑒 → 𝑝, 𝑎 |∼ 𝑤, 𝑎 |∼ ℎ, 𝑝 |∼ ¬𝑤, 𝑒 |∼ 𝑤}
The base rank output from BaseRankForJustification sub-

algorithm on line 1 is as follows:
• R0 := {𝑎 |∼ 𝑤, 𝑎 |∼ ℎ}
• R1 := {𝑝 |∼ ¬𝑤}
• R2 := {𝑒 |∼ 𝑤}
• R∞ := {𝑝 → 𝑎, 𝑒 → 𝑝}

We provide two distinct cases of defeasible implications as illus-
trative defeasible input queries to the algorithm:

(1) K |≈ 𝑝 |∼ ℎ?
• −→R := {𝑒 → 𝑤, 𝑝 → ¬𝑤, 𝑎 → 𝑤, 𝑎 → ℎ} and −−→R∞ ∪

−→R |= ¬𝑝 .
• It follows that R0 is removed from R, then R := {𝑝 →

¬𝑤, 𝑒 → 𝑤}.
• Now

−−→R∞ ∪ −→R |= ¬𝑝 does not hold.
• Since

−−→R∞ ∪ −→R ̸|= ¬𝑝 |∼ ℎ, therefore K ̸|≈ 𝑝 |∼ ℎ.
• 𝑖 = 1 is returned since it involves one cycle of elimi-

nating the formulas with the lowest rank from R.
(2) K |≈ 𝑒 |∼ 𝑤?

• Going through the steps from lines 4 to 7, both R0 and
R1 are taken away from R because

−−→R∞ ∪ −→R ̸|= ¬𝑒 .
7

• −−→R∞ ∪ −→R := {𝑝 → 𝑎, 𝑒 → 𝑝, 𝑒 → 𝑓 𝑙𝑦} |= 𝑒 |∼ 𝑤 .
• As a result, the inference K |≈ 𝑒 |∼ 𝑤 is valid.
• 𝑖 = 2 is returned by the algorithm since two levels of

formulas were removed.
Wang also introduced the KLMDefeasibleJustification al-

gorithm (Algorithm 6), which consists of various smaller algo-
rithms which come together to create the justification process.
This algorithm employs the BaseRankForJustification and
RationalClosureForJustification to calculate the defeasible
implication. It also uses the ComputeAllJustifications algo-
rithm. There is also a sub-algorithm responsible for identifying
all explanations for conventional implication based on Definations
2.1 and 2.3. Lastly, the classical explanations are transformed into
defeasible explanations using the dematerialisation algorithm (Al-
gorithm 1).

The algorithm takes a knowledge base K and a defeasible im-
plication 𝛼 |∼ 𝛽 as its inputs. When K |≈ 𝛼 |∼ 𝛽 , the algorithm
generates a collection of justification(s), J𝑖 ∈ K , to support this
implication such that every J𝑖 |≈ 𝛼 |∼ 𝛽 . However, if K ̸|≈ 𝛼 |∼ 𝛽 ,
the algorithm generates T ∈ K such that T ̸|≈ 𝛼 |∼ 𝛽 .

Algorithm 6: KLMDefeasibleJustification
Input: Defeasible knowledge base K and defeasible query 𝛼 |∼ 𝛽

Output: Justification J
1 𝑖 := 0;
2 J := ∅;
3 entailment, (R0, R1, . . . R∞), rank :=

RationalClosureForJustification(K, 𝛼 |∼ 𝛽) ;
4 if ¬ entailment then
5 while 𝑖 < rank do
6 K := K \ K𝑖 ;
7 𝑖 := 𝑖 + 1;
8 end
9 return K ̸|≈ 𝛼 |∼ 𝛽 ;

10 end
11 if rank == 0 then
12 J := ComputeAllJustifications(

−→
K, 𝛼 |∼ 𝛽) ;

13 J := Dematerialisation(J,K) ;
14 return J;
15 end
16 while 𝑖 < rank do
17 K := K \ K𝑖 ;
18 𝑖 := 𝑖 + 1;
19 end

20 J := ComputeAllJustifications(
−→
K, 𝛼 |∼ 𝛽) ;

21 J := Dematerialisation(J,K) ;
22 return J;

The following two scenarios help explain the
KLMDefeasibleJustification algorithm for K and entail-
ment output from Example 4.2. Given a defeasible query as input,
what is the justification set if the query is entailed by K?

(1) K |≈ 𝑝 |∼ ℎ

• When examining the validity of defeasible entailment,
the formulas in R0 were eliminated.

• As a result, the KLMDefeasibleJustification algo-
rithm provides the subsequent explanation for the ab-
sence of entailment: {𝑝 → 𝑎, 𝑒 → 𝑝, 𝑒 |∼ 𝑤, 𝑝 |∼
¬𝑤, 𝑎 |∼ 𝑤, 𝑎 |∼ ℎ} ̸|≈ 𝑝 |∼ ℎ.

• Because K ̸|≈ 𝑝 |∼ ℎ,J := ∅
(2) K |≈ 𝑒 |∼ 𝑤?

• When analyzing the defeasible query 𝑒 |∼ 𝑤 , it is found
that K |≈ 𝑒 |∼ 𝑤 , and both R0 and R1 formulas were
disregarded during the Rational Closure calculations.

• The loop from lines 16 to 19 in the
KLMDefeasibleJustification process eliminates
the formulas that were discarded from K .

• As a result, K = {𝑝 → 𝑎, 𝑒 → 𝑝, 𝑒 |∼ 𝑤}.
• Subsequently, the ComputeAllJustifications algo-

rithm takes
−→
K and 𝑒 → 𝑤 as inputs, which leads to

the set of justifications J = {𝑒 → 𝑤}.
• Finally, the Dematerialisation algorithm transforms

J into {𝑒 |∼ 𝑤}.
• This example highlights the contrast between classical

and defeasible justifications. In the case of the classical
implication

−→
K |= 𝑒 → 𝑤 , there would have existed two

explanations supporting the implication: {𝑒 → 𝑤} and
{𝑒 → 𝑝, 𝑝 → 𝑎, 𝑎 → 𝑤}. However, in the context of
defeasible reasoning, the formula 𝑎 |∼ 𝑤 is removed
during the Rational Closure calculations resulting in
only a single defeasible explanation remaining, {𝑒 →
𝑤}.

5 SYSTEM DESIGN AND IMPLEMENTATION
In this section, we focus on the practical aspect of this paper. Besides
presenting the theoretical algorithms for defeasible entailment and
justification in Sections 3 and 4, we have turned these algorithms
into a working software system tool. We have given this tool the
name KLMDEETool, for KLM Defeasible Entailment and Explanations
Tool. The source code is publicly available on GitHub 2 3.

This section is structured as follows: In Section 5.1, we analyse
the functional requirements and several design diagrams of the
KLMDEETool. Section 5.2 discusses the architectural fundamentals
of the tool while Section 5.3 outlines how it was implemented and
the various external components used. The process of putting the
mentioned algorithms into practice is also discussed in this section.
We explain how the tool works and how to use it in Section 5.4.
Lastly, the design of experimental scenarios and their execution
for testing and assessment of the tool along with a summary of the
feedback received is presented in Section 5.5.

5.1 Requirement Analysis and Design
In the process of defining what a software system needs to do (func-
tional requirements) and how well it should do it (non-functional
requirements), we gather information from various sources. This
includes talking to users and stakeholders, watching how users per-
form tasks, studying procedure manuals and task lists, reviewing

2GitHub is a web-based platform used for collaborating on software projects by hosting,
sharing, and managing them using version control systems.
3The source code is available at https://github.com/ChiefMonk/DEE. Compilation and
execution instructions are included in a readme.rm file.

8

https://github.com/ChiefMonk/DEE

requests to improve the current system, and examining marketing
materials and product definitions [19]. In our case, because our soft-
ware needs to perform specific functions with a limited knowledge
base size, we mainly focused on collecting functional requirements.
To create the functional requirements for the KLMDEETool, we used
feedback from our supervisors, analysed a similar tool developed
by Wang [18], and studied the pseudo algorithms for entailment
and justification. Since our tool primarily deals with these algo-
rithms, our functional requirements involve the ability to handle
logical arguments, manage exceptions, and explain its conclusions.
In addition to functional requirements, we also considered non-
functional aspects during the design phase. These include perfor-
mance measures like speed and accuracy, user-friendliness in terms
of interfaces, and reliability aspects such as how the system handles
errors and maintains robustness. To aid in project management and
better estimate delivery timelines that expose critical paths and
resource allocation, we developed a Program Evaluation and Review
Technique (PERT) Chart presented in Appendix B.1.

During the design phase, we concentrated on creating a detailed
plan for how the tool will meet all the functional requirements
and some non-functional ones. This included how the pseudo al-
gorithms for defeasible reasoning will be translated into an object-
oriented language, creating data structures to store arguments and
counterarguments for knowledge bases, and planning for user in-
terfaces that clearly present explanations. The output of this phase
was the development of UML diagrams, class diagrams and use-cases
diagram used to represent the system’s architecture and interac-
tions among components and external users. These are presented
and explained in Appendix B.

Throughout these phases, it was important to continuously en-
gage with the stakeholders for feedback and validation, ensuring
that the tool effectively solves the intended problems in a user-
friendly manner. After analysing the problem and available require-
ments, we decided to develop two applications that utilise the same
codebase and interfaces: a Desktop Application and a Console Appli-
cation.

5.2 System Architecture
The KLMDEETool is developed in Java, an object-oriented program-
ming language, and is structured around a well-defined architecture
that adheres to the Multi-tier Architecture pattern of software en-
gineering [17]. It consists of several interconnected components
that work together to facilitate the processing and analysis of de-
feasible reasoning scenarios. The architecture is designed to ensure
efficiency, modularity, and ease of use as shown in Figure 4.

At its core, the system encompasses the UI Manager responsi-
ble for providing a unified user interface for all the functionality
KLMDEETool offers. This user interface tier or component offers
both a command line interface (CLI) and a graphical user interface
(GUI) for user interaction. The CLI allows users to specify the in-
puts as parameters on the command line while the GUI provides
a user-friendly interface for input and result visualisation. Both
of these interfaces consume and provide the same functionality
but only differ in presentation and the verbosity of the debug and
information outputs. The user interface manager interacts with
various modules and services for different functionalities, such as

Figure 4: The Multi-tier Architecture of the KLMDEETool

the entailment service, justification service, explanation service and
the knowledgebase service, responsible for storing and managing
the defeasible knowledge base related data. These services in turn
communicate with 3rd party libraries and tools to effect the desired
action and result.

The entailment and justification service layers employ algo-
rithms derived from the KLM approach discussed in Sections 3 and
4. It processes the input knowledge base and queries to determine
if entailments hold true. In cases where entailments are established,
the justification service generates justifications for these conclu-
sions based on the algorithms for justification discussed in Section
4. The explanation service module is responsible for providing step-
by-step explanations for the identified entailments. It utilises the
generated justifications to guide users through the reasoning pro-
cess, outlining the reasons behind each conclusion and showcasing
the specific rules or statements that contribute to the whole result.

Figure 5: The KLMDEETool GUI with an active example output

Overall, the architecture of this software system blends the prin-
ciples of defeasible reasoning within the KLM framework with a
modular and user-friendly design, enabling users to explore and
understand complex defeasible scenarios and their explanations
effectively. The KLMDEETool offers a GUI that facilitates user en-
gagement with the software. We opted for the Java Swing package

9

Figure 6: The KLMDEETool CLI with an active example output

to develop the GUI due to its straightforward nature and suitability
for our tool’s requirements. Figures 5 and 6 visually portray the GUI
and CLI interfaces of the KLMDEETool with an example showing a
valid entailment, justification and explanation.

5.3 System Implementation
To aid in processing and solving complex logical expressions and
queries efficiently, the KLMDEETool incorporates and relies on two
external libraries or packages: the TweetyProject 4 and the SAT4J
SAT Solver 5.

The TweetyProject offers a software framework that encompasses
models and functions applicable to most forms of logic, includ-
ing propositional logic. KLMDEETool implementation extends the
propositional logic models from the TweetyProject to construct the
necessary models and functions specific to the KLM Framework.
However, due to constraints and constants defined by the Tweet-
yProject, the conventional symbols commonly used in literature to
represent KLM Framework operations cannot be employed. Instead,
the propositional logic operators are replaced by the TweetyProject’s
equivalents as shown in Table 7. Additionally, we developed a parser
capable of reading strings like 𝛼 ∼> 𝛽 (for 𝛼 |∼ 𝛽) and generating a
defeasible implication instance, enabling the tool to carry out opera-
tions such as materialisation. For the resulting classical justification
that the KLMDefeasibleJustification algorithm materialises, a
tool is first required to compute classical entailment based on K
and the query. In this context, we utilise the SAT4J SAT solver [2]
to perform the necessary classical entailment computations. The
execution of the base rank, Rational Closure defeasible entailment,
justification and dematerialisation processes adheres to Algorithms
1, 4, 5 and 6 respectively. To determine a single classical justification,
we closely follow Horridge’s algorithms as shown in Appendix A.2.

5.4 Functionality and Usage
In orchestrating the program’s operations, the UI Manager dictates
the actions executed in response to user interactions. It undertakes
4The TweetyProject consists of diverse Java libraries that embody strategies for knowl-
edge representation formalisms, encompassing classical logics, conditional logics, and
probabilistic logics.
5The SAT4J SAT Solver is a Java library designed to solve problems related to boolean
satisfaction and optimisation.

Connective Name Symbol TweetyProject equivalent

negation ¬ !
disjunction ∨ | |
conjunction ∧ &&
implication → =>

bi-implication ↔ <=>

defeasible implication |∼ ∼>

Figure 7: Logical symbol replacements with equivalents

a range of actions, each contingent upon specific user inputs. As
Figure 5 describes, the Desktop Application (GUI) functions as fol-
lows:

(1) The knowledge base K is defined by either:
• entering it manually, a statement per line, in the pro-

vided text area.
• clicking the "Load Knowledge Base, K , from a File" but-

ton that opens a window for the user to choose a file
with predefined statements. The contents of the file
are then displayed in the manual entry text area.

(2) The user can optionally choose to pre-verify the knowledge
base by clicking the "Verify Knowledge Base" button.

(3) Once the knowledge base is verified, it is shown in the
correct format in the area provided.

(4) The user then inputs text that represents the defeasible
query 𝛼 .

(5) The user can optionally choose to pre-verify the defeasible
query by clicking the "Verify Query" button.

(6) Upon clicking the "Verify and Compute Defeasible Entail-
ment and Explanations" button, the program then:
• Uses the BaseRankForJustification algorithm to

base rank the statements and displays the results in
the appropriate text area.

• Uses the RationalClosureForJustification algo-
rithm to determine if K entails the query or not.

• Uses the KLMDefeasibleJustification algorithm to
calculate the defeasible justifications and explain why
and how the entailment holds.

(7) The resulting defeasible base ranking, discarded ranks, en-
tailment, justification and explanations are presented in the
output text areas provided.

(8) To conclude the program, the user can exit by clicking the
"Exit Application" button.

Figure 6 shows the functionality of the Console Application (CLI)
application described as follows:

(1) The path to the file containing the knowledge base K is
passed on the command line as the first parameter.

(2) The defeasible query 𝛼 is passed as a string on the command
line as the second parameter.

(3) When the user presses Enter, bothK and 𝛼 are verified and
any errors present are output to the console.

(4) The same methods and functions used by the GUI are em-
ployed also for the CLI-based tool.

10

https://tweetyproject.org
http://www.sat4j.org

(5) The resulting defeasible base ranking, discarded ranks, en-
tailment, justification and explanations are output to the
console.

The KLMDEETool receives two input parameters: a defeasible
knowledge base and a defeasible query. As illustrated in Figures
5 and 6, an exemplar input for the knowledge base is provided,
represented by K = {𝑎 |∼ 𝑤, 𝑎 |∼ ℎ, 𝑝 |∼ 𝑎, 𝑝 |∼ ¬𝑤, 𝑒 |∼ 𝑝, 𝑒 |∼
𝑤, 𝑠 |∼ 𝑒, 𝑠 |∼ ℎ}. For the query, such as 𝑠 |∼ 𝑤 , a user enters it
into the designated text field on the interface. Within the output
text areas, the tool presents a list of base-ranked statements, a se-
quence of discarded formula ranks from the knowledge base (if
any), along with the formulas that remain subsequent to each elim-
ination. The tool then furnishes credible defeasible justifications
concerning the specified defeasible entailment K |≈ 𝑠 |∼ 𝑤 . Lastly,
the KLMDEETool outputs a chronological explanation of how and
why the entailment was arrived at by combining all the various
outputs and commentary in a single text area.

5.5 Testing, Evaluation and Execution
In the realm of this paper, the rigorous evaluation of the
KLMDEETool is paramount. Unit tests played a pivotal role by metic-
ulously scrutinising individual components and algorithms to as-
certain their accuracy and correctness. These tests ensured that
the foundational building blocks of the KLMDEETool, responsible
for capturing complex inference patterns, operate flawlessly. To
practically achieve this, we used the JUnit 6 Java framework and
the developed tests are included in the source code.

Functional testing extended this scrutiny to assess the tool’s
compliance with specified requirements and its ability to effectively
perform the desired logical operations. In parallel, usability tests
delved into the user experience, ensuring that the tool’s interface,
interaction flows, and presentation align with user expectations and
promote efficient utilisation. Furthermore, performance tests gauged
the capacity of the KLMDEETool to handle intricate reasoning tasks
within feasible timeframes, guaranteeing its responsiveness and
scalability even when confronted with extensive knowledge bases
and complex entailment scenarios.

To make testing easier in terms of logical understanding and
performance, we limited the number of statements in the input
knowledge base to a maximum of 10. All these tests were performed
by us. To evaluate the functional efficiency of the KLMDEETool, we
developed and executed multiple tests such as those depicted in
Figure 5. We examined scenarios involving inputs from a defeasible
knowledge base K , consisting of statements such as the following.
The desktop application (GUI) output of a full explanation for K |≈
𝑠 |∼ 𝑤 is shown in Figure 8.

(1) Animals typically are wild (𝑎 |∼ 𝑤)
(2) Animals typically hunt (𝑎 |∼ ℎ)
(3) Pets are animals (𝑝 → 𝑎)
(4) Pets typically are not wild (𝑝 |∼ ¬𝑤)
(5) ExoticPets are pets (𝑒 → 𝑝)
(6) ExoticPets typically are wild (𝑒 |∼ 𝑤)
(7) Simba is an ExoticPet (𝑠 → 𝑒)

or
6JUnit is a widely adopted open-source framework that provides a structured and
organised approach to writing and running unit tests in Java applications.

K = {𝑎 |∼ 𝑤, 𝑎 |∼ ℎ, 𝑝 → 𝑎, 𝑝 |∼ ¬𝑤, 𝑒 → 𝑝, 𝑒 |∼ 𝑤, 𝑠 → 𝑒}

Figure 8: GUI explanation output for K |≈ 𝑠 |∼ ℎ?

As the figures in Appendix C show, the tool produced accurate
defeasible entailment and justification results for each test scenario
executed, aligning well with the theoretical illustrations presented
in Sections 3 and 4. This feedback coupled, with a manual deter-
mination of a justification set and the verified concurrency from
our supervisor, was enough to determine and justify the correct
operation of the KLMDEETool.

6 DISCUSSION AND RELATEDWORK
Kraus, Lehmann, and Magidor [12] introduced the KLM approach
to defeasible reasoning through the proposition of a structured for-
mal framework. This framework aimed to tackle the complexities
brought about by non-monotonic reasoning and exceptions inher-
ent within formal logic systems. Within their work, Lehmann and
Magidor [14] not only explained the concept of Rational Closure
but also meticulously outlined the postulates governing rational
defeasible entailment. Additionally, they provided an algorithm for
determining the Rational Closure entailment.

In a unifying endeavour, Kaliski [11] compiled existing literature,
orchestrating a contemporary synthesis of KLM-style defeasible
reasoning into a thesis. This comprehensive compilation encom-
passes a unified assortment of theoretical contributions within the
KLM framework, serving as a valuable and consolidated point of
reference for researchers.

Horridge [10] embarked on a thorough exploration into classical
justification, meticulously delving into its computational aspects.
This exploration yielded algorithms for enumerating classical justi-
fications, further supplemented by an in-depth efficiency analysis
of these algorithms.

Everett et al. [8] expanded on the ideas of weak justification,
which were initially applied only to Rational Closure. This was done
by extending these ideas to include Relevant and Lexicographic
Closure and introducing algorithms to list these justifications. Ad-
ditionally, an assessment of a modified definition of strong justifica-
tion was done, taking into account specific challenges, and putting
forth an algorithm to identify such justifications in the context of
Rational Closure.

Chama’s [7] contribution revolved around introducing a concept
defined as defeasible justification for Description Logics, accompa-
nied by a tailored justification algorithm specifically designed for
Rational Closure defeasible entailment. Drawing from Horridge’s
algorithms, Chama’s approach aligns with the reasoning process
for Rational Closure, but with an emphasis on classical justification
rather than classical entailment.

11

In addition to providing the necessary theory on defeasible jus-
tification within the KLM framework and extending Chama’s algo-
rithms to propositional logic, Wang [18] took a pragmatic approach
by creating a software tool complete with a graphical user inter-
face. This tool effectively implements Rational Closure justification
algorithms enabling the exploration of a knowledge base against
specific queries. Despite its simplicity, the program correctly gen-
erates a set of justifications for the defeasible entailment based
on simple knowledge bases. In a validation effort, representative
examples were employed to evaluate the algorithm’s performance,
confirming its alignment with intuitive expectations.

7 CONCLUSIONS
This paper begins with an overview of knowledge representation
and reasoning, introducing how propositional logic is utilised for
expressing and representing such reasoning. It then distinguishes
between classical reasoning and defeasible reasoning using practi-
cal examples. The challenges of comprehending conclusions drawn
from defeasible reasoning are highlighted, and the role of justifica-
tions in explaining defeasible entailments and aiding user under-
standing is discussed. The paper addresses this need by presenting
algorithms developed by Chama [7] and extended byWang [18] that
compute justifications for the KLM-style Rational Closure variant
of defeasible entailment.

The primary contribution of this paper is a software system tool
implementing the proposed defeasible entailment and justification
algorithms. Following the multi-tier architecture pattern, the soft-
ware provides both a CLI and a GUI for user interaction. Users can
input a defeasible knowledge base and a defeasible query string,
and the tool displays the resulting base ranking, discard rankings,
defeasible entailment, justification set, and the corresponding ex-
planations in a user-friendly manner. To validate its effectiveness,
the tool underwent a thorough testing encompassing a range of
representative test cases. Therefore, the KLMDEETool can be used
as a debugging service for knowledge bases. The source code of the
tool is publicly available on GitHub.

8 FUTUREWORKS
The algorithms and principles explored in this paper concerning
explanations for Rational Closure entailment are rooted in the work
and propositions done by Chama [7] and further extended byWang
[18]. Future research endeavours could potentially leverage this
outcome to apply it to other conceptions of defeasible entailment
within the KLM framework or even across broader contexts of de-
feasible entailment. The optimised algorithms for justification could
be extended to other entailment formalisms such as Lexicographic
Closure and Relevant Closure.

The KLMDEETool serves as a rudimentary solution for simple de-
feasible justification suitable for straightforward knowledge bases.
Enhancements to the tool’s scalability and efficiency are viable
improvements. A comprehensive assessment of the tool’s perfor-
mance would provide insight into its limitations. Such assessments
should consider factors such as the size of the knowledge base, the
intricacies associated with identifying justifications, and various
adjustable parameters of the tool. The KLMDEETool can be extended

further to other defeasible reasoning formalisms such as Lexico-
graphic Closure and Relevant Closure. The logical operations can
also be modified and tested with bigger knowledge bases and com-
plex queries. Natural Language Processing (NLP) techniques and
tools could also be employed to provide more robust explanations,
perhaps in a user’s chosen language.

ACKNOWLEDGEMENTS
I want to thank my supervisor, Professor Tommie Meyer, for his
unwavering patience, guidance and invaluable insights. I also thank
Mr Gary Stewart for the valuable feedback and progress valuation.
I am also grateful to my colleague, Orefile Morule, for the numerous
discussions about knowledge, representation, reasoning and life.
For endless prayers and encouragement, I dedicate this work to my
loving family, especially my mother Alice and Auntie Lillian. May
the good Lord bless them all, abundantly.

REFERENCES
[1] Mordechai Ben-Ari. 2012. Propositional logic: Formulas, models, tableaux. Math-

ematical Logic for Computer Science (2012), 7–47.
[2] Berre, Daniel Le. 2008. SAT4J SAT Solver. https://www.sat4j.org. Accessed:

2023-08-17.
[3] Ronald J Brachman and Hector J Levesque. 2004. Actions. In Knowledge Repre-

sentation and Reasoning. Elsevier, 285–303.
[4] Gerhard Brewka and Markus Ulbricht. 2019. Strong explanations for nonmono-

tonic reasoning. Description Logic, Theory Combination, and All That: Essays
Dedicated to Franz Baader on the Occasion of His 60th Birthday (2019), 135–146.

[5] Giovanni Casini, Thomas Meyer, Kodylan Moodley, and Riku Nortjé. 2014. Rele-
vant closure: A new form of defeasible reasoning for description logics. In Logics
in Artificial Intelligence: 14th European Conference, JELIA 2014, Funchal, Madeira,
Portugal, September 24-26, 2014. Proceedings 14. Springer, 92–106.

[6] Giovanni Casini, Thomas Meyer, and Ivan Varzinczak. 2019. Taking Defeasible
Entailment Beyond Rational Closure. In Logics in Artificial Intelligence. Springer
International Publishing, Cham, 182–197.

[7] Victoria Chama. 2020. Explanation for defeasible entailment. Master’s thesis.
Faculty of Science, University of Cape Town, Rondebosch, Cape Town, 7700.

[8] Lloyd Everett, EmilyMorris, and ThomasMeyer. 2021. Explanation for KLM-Style
Defeasible Reasoning. In Southern African Conference for Artificial Intelligence
Research. Springer, South Africa, 192–207.

[9] Michael Freund. 1998. Preferential reasoning in the perspective of Poole default
logic. Artificial Intelligence 98, 1 (1998), 209–235. https://doi.org/10.1016/S0004-
3702(97)00053-2

[10] Matthew Horridge. 2011. Justification based explanation in ontologies. Ph. D.
Dissertation. University of Manchester, UK.

[11] Adam Kaliski. 2020. An Overview of KLM-Style Defeasible Entailment. Master’s
thesis. Faculty of Science, University of Cape Town, Rondebosch, Cape Town,
7700.

[12] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. 1990. Nonmonotonic
reasoning, preferential models and cumulative logics. Artificial Intelligence 44, 1
(1990), 167–207. https://doi.org/10.1016/0004-3702(90)90101-5

[13] Daniel Lehmann. 1999. Another perspective on Default Reasoning. Annals of
Mathematics and Artificial Intelligence 15 (11 1999). https://doi.org/10.1007/
BF01535841

[14] Daniel Lehmann and Menachem Magidor. 1992. What does a conditional knowl-
edge base entail? Artificial Intelligence 55, 1 (1992), 1–60. https://doi.org/10.
1016/0004-3702(92)90041-U

[15] Orefile Morule. 2023. Justifications for Classical Entailment. Honour’s thesis.
Faculty of Science, University of Cape Town, Rondebosch, Cape Town, 7700.

[16] Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. 2005. Debugging OWL on-
tologies. In Proceedings of the 14th international conference on World Wide Web.
633–640.

[17] Savitch Walter and Mock Kenrick. 2016. Absolute Java (6th ed.). Pearson Educa-
tion, Boston.

[18] Steve Wang. 2022. Defeasible Justification for the KLM Framework. Master’s
thesis. Faculty of Science, University of Cape Town, Rondebosch, Cape Town,
7700.

[19] Jeffrey L Whitten and Lonnie D Bentley. 2007. Systems Analysis and Design
Methods (7th ed.). McGraw-Hill/Irwin, New York, USA.

12

https://www.sat4j.org
https://doi.org/10.1016/S0004-3702(97)00053-2
https://doi.org/10.1016/S0004-3702(97)00053-2
https://doi.org/10.1016/0004-3702(90)90101-5
https://doi.org/10.1007/BF01535841
https://doi.org/10.1007/BF01535841
https://doi.org/10.1016/0004-3702(92)90041-U
https://doi.org/10.1016/0004-3702(92)90041-U

A ALGORITHMS
A.1 Compute All Justifications Algorithm
To compute all justifications, Horridge suggests a method that
utilises the HS-Tree approach to discover all classical justifications
for a Description Logics entailment. This technique, initially in-
troduced in theory by Reiter, was designed to identify the small-
est set that overlaps with a given collection of conflicting sets
within a defined universe. Additionally, the HS-Tree technique can
be employed to dynamically identify these conflicting sets [18].
Algorithm 7: ComputeAllJustifications
Input: Knowledge base K and entailment 𝛼
Output: Set of Justifications J

1 𝑆𝑤𝑜𝑟𝑘𝑖𝑛𝑔 := K ;
2 𝑋𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 := ∅;
3 𝑋𝑟𝑒𝑠𝑢𝑙𝑡 := ∅;
4 J𝑟𝑜𝑜𝑡 := ComputeSingleJustification(𝑆𝑤𝑜𝑟𝑘𝑖𝑛𝑔, 𝛼) ;
5 𝑋𝑟𝑒𝑠𝑢𝑙𝑡 := 𝑋𝑟𝑒𝑠𝑢𝑙𝑡 ∪ {J𝑟𝑜𝑜𝑡 };
6 𝑣𝑟𝑜𝑜𝑡 := GetFreshNode(J𝑟𝑜𝑜𝑡) ;
7 Enqueue(𝑣𝑟𝑜𝑜𝑡 ,𝑄) ;
8 SetRoot(𝑇ℎ𝑠𝑡 , 𝑣𝑟𝑜𝑜𝑡) ;
9 while𝑄 ≠ ∅ do
10 𝑣ℎ𝑒𝑎𝑑 = Dequeue(𝑄) ;
11 𝑗ℎ𝑒𝑎𝑑 = GetLabel(𝑣ℎ𝑒𝑎𝑑) ;
12 for 𝛽 ∈ 𝑗ℎ𝑒𝑎𝑑 do
13 𝑆𝑝𝑎𝑡ℎ = GetPathToRootLabelSet(𝑣ℎ𝑒𝑎𝑑 ,𝑇ℎ𝑠𝑡) ∪ {𝛽 };
14 if 𝑆𝑝𝑎𝑡ℎ ∉ 𝑋𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 then
15 𝑋𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 = 𝑋𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 ∪ {𝑆𝑝𝑎𝑡ℎ };
16 J′

=

ComputeNonIntersectingJustification(𝑆𝑝𝑎𝑡ℎ, 𝑋𝑟𝑒𝑠𝑢𝑙𝑡) ;

17 if J′
== ∅ then

18 𝑆𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = 𝑆𝑤𝑜𝑟𝑘𝑖𝑛𝑔 \ {𝑆𝑝𝑎𝑡ℎ };
19 J′

=

ComputeSingleJustification(𝑆𝑤𝑜𝑟𝑘𝑖𝑛𝑔, 𝛼) ;
20 𝑆𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = 𝑆𝑤𝑜𝑟𝑘𝑖𝑛𝑔 ∪ {𝑆𝑝𝑎𝑡ℎ };
21 end
22 𝑣𝑓 𝑟𝑒𝑠ℎ = GetFreshNode(J′) ;
23 𝑒 = GetFreshEdge

(
(𝑣𝑓 𝑟𝑒𝑠ℎ, 𝑣ℎ𝑒𝑎𝑑), 𝛽

)
;

24 𝑇ℎ𝑠𝑡 = 𝑇ℎ𝑠𝑡 ∪ {𝑒 };
25 if J′

≠ ∅ then
26 𝑋𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑋𝑟𝑒𝑠𝑢𝑙𝑡 ∪ {J′ };
27 Enqueue(𝑣𝑓 𝑟𝑒𝑠ℎ,𝑄) ;
28 end
29 end
30 end
31 end
32 return 𝑋𝑟𝑒𝑠𝑢𝑙𝑡 ;

A.2 Compute Single Justification Algorithm
This algorithm is designed to calculate a single justification for
an entailment in Propositional Logic. It algorithm is built upon
the sub-algorithms ExpandFormulas and ContractFormulas re-
spectively. Initially, the algorithm identifies a subset 𝑆 from
the knowledge base K that leads to the query’s entailment
using the ExpandFormulas algorithm. Subsequently, this set 𝑆
is reduced using the ContractFormulas algorithm, aiming to

find the smallest subset of 𝑆 that still entails the query [18].
Algorithm 8: ComputeSingleJustification
Input: Knowledge base K and entailment 𝛼
Output: Justifications J

1 if 𝛼 ∈ K then
2 return 𝛼 ;
3 end
4 𝑆 := ExpandFormulas(K, 𝛼) ;
5 if 𝑆 == ∅ then
6 return ∅;
7 end
8 J := ContractFormulas(𝑆, 𝛼) ;
9 return J

B KLMDEETOOL DESIGN DIAGRAMS
B.1 PERT Chart
A PERT (Program Evaluation and Review Technique) Chart, is a
project management tool used in software development and other
industries to visualize and plan the tasks and dependencies within a
project. It consists of nodes (representing project tasks) connected
by arrows (representing task dependencies). The chart helps project
managers and teams estimate the project timeline, identify criti-
cal paths, allocate resources efficiently, and manage the project’s
progress effectively. It is particularly useful for complex projects
with many interrelated tasks [19], which are applicable in this case.
The PERT Chart for the KLMDEETool is shown in Figure 9.

Figure 9: The KLMDEETool PERT Chart

Software development typically involves several phases, which
can vary depending on the specific developmentmethodology being
used. Here are the five phases we employed for developing the
KLMDEETool as described by Whitten and Bentley [19]:

(1) Planning and Analysis - The team conducted a thorough
examination of the project’s requirements.

(2) Design - Create a blueprint for the software’s architecture
and user interface.

(3) Build or Implementation - Write the actual code for the
software based on the design specifications.

13

(4) Testing - Software undergoes rigorous testing to identify
and fix bugs, ensure functionality meets requirements, and
assess performance and security.

(5) Maintenance - The software is deployed to production envi-
ronments for end-users to access and utilize. Deployment
may involve configuration, setup, and ongoingmaintenance

B.2 Use-Cases Diagram

Figure 10: The KLMDEETool Use-Cases Diagram

B.3 Class Diagram

Figure 11: The KLMDEETool Class Diagram

B.4 UML Diagram

Figure 12: The KLMDEETool UML Diagram

C KLMDEETOOL TESTING AND EXECUTION
For the following a defeasible knowledge base K , we tested the
KLMDEETool with different defeasible queries.

(1) Animals typically are wild (𝑎 |∼ 𝑤)
(2) Animals typically hunt (𝑎 |∼ ℎ)
(3) Pets are animals (𝑝 → 𝑎)
(4) Pets typically are not wild (𝑝 |∼ ¬𝑤)
(5) ExoticPets are pets (𝑒 → 𝑝)
(6) ExoticPets typically are wild (𝑒 |∼ 𝑤)
(7) Simba is an ExoticPet (𝑠 → 𝑒)

or
K = {𝑎 |∼ 𝑤, 𝑎 |∼ ℎ, 𝑝 → 𝑎, 𝑝 |∼ ¬𝑤, 𝑒 → 𝑝, 𝑒 |∼ 𝑤, 𝑠 → 𝑒}

For the different input query scenarios executed below, for em-
phasis, we only show the explanation output part for both the
Desktop (GUI) and Console (CLI) applications. The explanation
output includes all the information shown in other sections, such as
the knowledge base K , defeasible query 𝛼 , base ranked statements,
discarded base ranks, entailment and justification.

C.1 K |≈ Simba |∼ Wild (K |≈ 𝑠 |∼ 𝑤)?

Figure 13: GUI explanation output for K |≈ 𝑠 |∼ 𝑤?

Figure 14: CLI explanation output for K |≈ 𝑠 |∼ 𝑤?

14

Defeasible Entailment and Explanations

C.2 K |≈ Simba |∼ Hunt (K |≈ 𝑠 |∼ ℎ)?

Figure 15: GUI explanation output for K |≈ 𝑠 |∼ ℎ?

Figure 16: CLI explanation output output for K |≈ 𝑠 |∼ ℎ?

C.3 K |≈ ExoticPet |∼ Wild (K |≈ 𝑒 |∼ 𝑤)?

Figure 17: GUI explanation output for K |≈ 𝑒 |∼ 𝑤?

Figure 18: CLI explanation output for K |≈ 𝑒 |∼ 𝑤?

	Abstract
	1 Introduction
	2 Background
	2.1 Propositional Logic
	2.2 Entailment
	2.3 Explanations

	3 Defeasible Entailment
	3.1 The KLM Approach
	3.2 The KLM Properties
	3.3 Materialisation and Dematerialisation
	3.4 Rational Closure
	3.5 Alternatives to Rational Closure

	4 Defeasible Explanations
	4.1 Defeasible Justification

	5 System Design and Implementation
	5.1 Requirement Analysis and Design
	5.2 System Architecture
	5.3 System Implementation
	5.4 Functionality and Usage
	5.5 Testing, Evaluation and Execution

	6 Discussion and Related Work
	7 Conclusions
	8 Future Works
	References
	A Algorithms
	A.1 Compute All Justifications Algorithm
	A.2 Compute Single Justification Algorithm

	B KLMDEETool Design Diagrams
	B.1 PERT Chart
	B.2 Use-Cases Diagram
	B.3 Class Diagram
	B.4 UML Diagram

	C KLMDEETool Testing and Execution
	C.1 K Simba |-2.5mu Wild (Ks |-2.5muw)?
	C.2 K Simba |-2.5mu Hunt (Ks |-2.5muh)?
	C.3 K ExoticPet |-2.5mu Wild (Ke |-2.5muw)?

