
Project Proposal: Visual DSL Teaching Tool

Ahmed Ghoor
Computer Science

University of Cape Town
South Africa

ghrahm004@myuct.ac.za

Julian Janisch
Computer Science

University of Cape Town
South Africa

jnsjul010@myuct.ac.za

CCS CONCEPTS
• Programming Languages • Compilers • Computer
Science Education

KEYWORDS
Computer Science Education, Interactive Tools, Domain
Specific Languages, Compiler Theory

1 Project Description

1.1 What is the problem
The proposed research project will be to create and assess
an interactive visual tool for developing a Domain Specific
Language as part of the process of learning Compiler
Theory. The project will have to draw on established
educational theory, and the current research completed in
these fields, to address oversights in current
implementations.

1.2 Why is it important
Compiler Theory is an essential topic in Computer Science
Education. It teaches students how high-level source code
gets translated, through a pipeline of processes, to low-level
machine code that computers can understand and execute.
Computer Scientists should therefore have an
understanding and appreciation of the theory, as it is a
foundational topic of the science. Ensuring it is taught well is
then, by extension, very important.

1.3 What are the issues
Despite the importance of the subject, there are some
challenges that come with teaching compiler theory.

1.2.1 Concepts. Dealing with low-level translation
process concepts can be complicated, and some of the
theory is quite abstract [1]. Simplified practical problems
that help students actively engage with the material need to
be created to assist students’ understanding of these

concepts. As we will show later in the paper, coming up with
this practical problem is the subject of much debate.

1.2.2 Interest. Students are not always interested in the
subject. The theory does not seem to have immediate or
obvious market relevance. In other words, the likelihood that
they would be using this skill set in a job seems low to
students. [2]

1.4 Related Work
1.4.1 Use of Interactive Visualisation.
1.4.1.1 Simulators. In order to address the challenge of

helping students understand abstract concepts and complex
algorithms in Compiler Theory, several attempts have been
made to develop interactive simulators to visualise aspects
of Compiler Theory. Stamenkvic et al. [3] surveyed several
different simulators and evaluated them based on their
characteristics and features, as well as the amount of
Compiler Theory topics covered.

For example, LISA, developed by Mernik and Zumer [4],
covered the most amount of Compiler Theory topics
(46.2%) by animating the deterministic finite-state automata,
Syntax Analysis with a Syntax Tree and the check for
Semantic rules with a Semantic tree that highlights
dependencies.

Another example is JFlap which covered 38% of
Compiler Theory content and with a focus on defining
automata and grammar [4]. Notable distinct features include
a graphic editor for drawing many types of automata and,
unlike LISA, JFLAP has the ability to convert
nondeterministic finite automata into deterministic automata
and transform automata into appropriate regular grammar

1.4.1.2 Compiler Creators. There are some Compiler
creating tools that are not designed for educational
purposes, but still provide interactive visualisations to aid
the language-building process. Jetbrains’ MPS, an
open-source language workbench that lets developers
develop new Domain Specific or General Purpose
Languages, uses a projectional editor, which means that it

mailto:ghrahm004@myuct.ac.za
mailto:jnsjul010@myuct.ac.za

does not limit developers to text editing but makes it
possible to visualise and edit a representation of the
Abstract Syntax Tree [5]. And ANTLR, a lexical and parser
generator that supports multiple languages, has a useful
graphical interface for interactively visualizing parse trees
and debugging grammars as you build your compiler,
shown in Figure 2 below [6].

Figure 2

1.4.2 Use of Domain-Specific Languages. An approach
that this project will draw on is the use of Domain Specific
Languages. Henry [2] presents a strong argument for using
domain-specific languages (DSLs) for the practical
component of Compiler Theory Courses. This approach
involves having students design and implement compilers
for languages tailored to specific domains, such as scientific
computing or embedded systems.

This can help students see the relevance of
learning compiler theory [2] as they are learning how to
produce working versions of domain-specific programming
languages that can address gaps, as opposed to
reinventing the wheel by developing smaller versions of
existing languages.

It could also help students develop a deeper
understanding of the unique challenges and requirements
that could be present in different application domains and
learn how to adapt compiler design principles to meet those
needs. Shatalin et al. [7] pointed out that it is rare that
developers have both the knowledge of Compiler Theory
and domain knowledge to know when to use Domain
Specific Languages.

1.5 Oversights in previous work

1.5.1 Not Cross-Platform. None of the interactive
visualisation simulators, that cover a substantial amount of
theory, are built for multiple platforms. This makes them
difficult to use across all the platforms that students use. A

web app or an app for multiple platforms using tools like
Flutter, with as many visualisations as LISA and JFlap,
could be a potential solution.

1.5.2 Minimal Coding. While the implementations of
the simulators illustrate the underlying data structures quite
clearly, there is often not much coding required. This level of
abstraction might make the gap between the interactive
simulators and using a real-world parser too great.

1.5.3 No Compiler Backend Visualisations. Almost
all visualisations we found are focused on the front end of
the compiler [3]. Significantly less work has been done on
backend visualisation.

1.5.4 No Tracking of Variables Across Compilation
Stages. Since the only visualisation tools we found do
either frontend or backend visualisation, there are none that
can be used to track individual variables as they travel
through the compiler, from source to generated code.

2 Problem Statement
The need for an Interactive Visual Domain Specific
Teaching Tool can be justified both by the arguments that
the concepts are perceived to be complex and irrelevant by
students, and by the amount of research that has been
done, and is still being done, in universities all over the
world.

2.1 Project Problem
2.2.1 Front-End. There are a lot of current attempts to

visualise the Front-End of the Compiler. However, as
mentioned above, none of the implementations currently
work across multiple platforms and the simulators with the
best visualisations often don’t require much coding.

To address these gaps, this paper proposes building an
app that allows students to fully code up a domain-specific
language, while simultaneously being able to view multiple
underlying data structures, and that works across multiple
platforms.

The proposal is for it to also draw on the positive lessons
of using Domain-Specific Language [2] in a simple, familiar
language like Python. Ply, a lexer and parser generator for
creating DSLs, is a user-friendly Python implementation of
Lex and Yacc that can be used [8].

Essentially, this aspect of the project will look at the
educational value of a cross-platform app that wraps
Python’s PLY and ANTLR’s interface, with more
visualisations of the underlying data structures.

The educational value being the app’s ability to solve the
two current observed challenges, namely to aid in the
understanding of complex compiler topics and make the
subject more interesting.

2.2.2 Back-End. There are very few visualisation tools
for code optimisation and visualisation. Additionally, there
don’t seem to be any that visualises the entire compilation
process. Since papers on visualisation tools commonly
conclude that visualisations help students to understand
compilers better, it makes sense to explore how further
visualisations can improve the process. Finally, back-end
visualisations tend to be implemented for a specific
language. This leaves an opening to create a system that
could generate back-end visualisations for any user-created
DSL.

2.2 Project Aims

2.2.1 Ahmed Ghoor - Front-End.
1) Asses how useful do students find a cross-platform

compiler creation app, with increased
visualisations of underlying data structures, in
understanding complex compiler theory concepts.

2) Assess to what extent does the implementation of
a cross-platform app with interactive visualisations
and domain-specific language coding capabilities
in a familiar language like Python increase student
engagement and interest in compiler subjects.

2.2.2 Julian Janisch - Back-End.
1) Design visualisations for code optimisation and

code generation, and assess their usefulness to
students learning compiler theory.

2) Assess how useful tracking and visualising the
transformations that individual variables undergo
during code optimisation and code generation is
when teaching compiler theory.

3 Procedures and Methods

3.1 Program Architecture
The tool can be split up into a GUI and a compiler. The
compiler can then further be divided into a front-end and a
back-end.

3.1.1 GUI. The GUI will be written using Flutter, a
declarative Dart-based application framework [9]. The GUI
will provide the following key features:

- An interface to define tokens and a grammar (i.e.
the DSL)

- An interface to enter source code in the defined
language.

- Visualisations of the compilation process

- Highlighting to track individual pieces of code as
they travel through the compiler

The Python code will be called from Dart, which is how the
GUI and the compiler will communicate.

3.1.2 Compiler. The compiler will be written in Python.
It will be built off of existing libraries and will provide the
functionality required by the GUI. Each stage will need to
output data in a specific format that provides the information
required for visualising that stage.

3.1.2.1 Front-end. The front-end will be in charge of
lexing, parsing and semantic analysis. The first two tasks
will be performed using the PLY library. The last one will
need to be implemented by creating an additional module in
python.

3.1.2.2 Back-end. The back-end will handle code
optimisation and code generation. This will be done using
LLVMLite, a Python library providing a wrapper around a
subset of LLVM’s features. LLVM is a project providing
many libraries and tools for compilation [10]. What we are
most interested in are the code optimisation and code
generation tools that it provides.

3.2 Implementation Strategy

To start, we will need to work together to set up the
development environment. This will include creating a git
repository, downloading required libraries and setting up a
minimal GUI and compiler. These will not need to be
functional, but will just serve as a common base from which
we will start work on our individual components. The

common GUI will be separated into 3 sections (On one
screen for desktop and separate screens for mobile),
drawing on ANTLR’s interface:

● Section one: A text box to add compiler creation
code (e.g. token rules, grammars etc)

● Section two: A text box to add a piece of input
code in the newly created language, for
processing.

● Section three: A section that outputs interactive
visualisations of the underlying data structures.

3.2.1 Front-end.
1. Take the lexer, parser and semantic analysis

Python code written in section 1 of the GUI Flutter
interface, send it to a Python script and build it
using PLY.

2. Take the high-level code written using the newly
created language’s rules from Section 2 and
process it through the new compiler.

3. Send the outputs back to the Flutter GUI to output
visualisations of the underlying data structures in
Section 3.

3.2.2 Back-end. The back-end will be implemented by
completing the following tasks:

● Take the front-end’s output and transform it into the
LLVM intermediate representation (IR)

● Run an LLVMLite optimisation pass on the IR code
● Add information to optimised code for visualisation
● Display code optimisation visualisation in Section 3

of the GUI
● Generate output code (most likely assembly)
● Add any additional information required for

visualisation
● Display code generation visualisation in Section 3

of the GUI.

We will use an agile approach, as that will encourage us to
build and test our software in a modular way. It will also help
us to always have a working piece of software as we
progress.

3.3 Evaluation

3.1.1 Evaluation Design. Given the time-frame in
which this project needs to be completed, it would not be
feasible to design the experiment exactly as it was laid out
in the initial Literature Review [11], by doing a randomised
control trial on the experience and effect on course marks
through using this tool in a Compiler Theory course. The

project will also not be able to do a longitudinal study by
observing the effect on a second compiler course.

The project will evaluate the tool by:
1) Providing it to students who have already studied a

university-level compilers course to complete
various tasks, before getting them to answer
questions about it through surveys and focus
groups.

2) Providing it to teaching staff to evaluate whether
the tool accurately captures the Compiler Theory
concepts taught in class.

3.1.2 Participants. The student participants will be
Honours students from the University of Cape Town, who
have previously taken a compiler course. The teaching staff
participants will be teachers that have previously taught a
compiler theory course. There would need to be a minimum
of just one teaching staff to provide an expert evaluation on
the content.

3.1.3 Measures. The project will gather qualitative and
quantitative data on the students’ experience with the tool.
Specifically, what they did and didn’t like about the tool, how
it compares to other tools they’ve encountered, and how the
tool affected the participants’ understanding of Compiler
theory, confidence in creating a compiler, interest in the skill
and the learning experience as a whole.

3.1.4 Procedure. The evaluation will occur in two
distinct phases: preliminary testing and ultimate evaluation.
A pilot study will first be conducted on the system to gather
insights on apparent concerns. This stage will involve focus
groups where participants examine the tool's functionalities
and provide verbal feedback. The subsequent phase entails
participants engaging with the tool and completing a
questionnaire in the absence of researchers.

4 Ethical, Professional and Legal Issues
In this study involving human subjects, addressing ethical
concerns is very important. Before engaging in the study,
participants must carefully review and sign a consent form.
Ethical approval will be obtained from both the computer
science department and the university. To ensure
confidentiality, no identifiable information about participants
will be disclosed in the published results. Data collected will
be stored on a password-protected computer, with access
limited to the pair of researchers, supervisor and
second-reader in this project. All software that will be
employed in this study will have been released under open
source licenses, and any software created during the
research process will be made available as open source
under the GNU General Public License.

5 Anticipated Outcomes

5.1 Anticipated DSLTool
We expect to create a tool which can be used to define a
domain-specific language, and which can compile source
code in that language into assembly. The tool will provide
visualisations of the code and underlying data structures at
every step as it is processed and transformed by the
compiler.

5.2 Anticipated Outcomes From Use
We expect that our tool will aid students in understanding
how compilers work, and do so more effectively than
existing tools. It will also make the subject matter and
building of compilers seem more interesting and relevant.
Success in this regard will be measured in our interviews
with and surveys completed by students, where we will take
the feedback gathered, analyse it, and draw our
conclusions.

6 Project Plan

6.1 Risks
6.1.1 Complexity. Compilers are complex pieces of

software. We may run into challenges when implementing
ours, especially since we are aiming to support any DSL
that can be defined within the limits of the tool. To mitigate
this, we will be making use of existing libraries that will
handle some of the more challenging tasks for us.

6.1.2 Time Constraints. We only have a limited
amount of time in which to complete the project before we
need to perform user testing. There are a lot of features that
we could add to the tool, so we will need to ensure we only
implement a small subset of those. Additionally, we will
make the program highly modular, so that if we don’t finish a
module, we still have a functional tool. Compilers lend
themselves to a modular architecture, so this should be
achievable.

6.1.3 Bugs Surface During User Testing. Bugs are
an inevitable part of software engineering. However, we
need to ensure that they do not affect the user testing
process in any significant way, as the feedback gathered is
what we need to answer our research questions. We will
minimise this risk in two ways. Firstly, we will limit the scope
of the project. This reduces the number of places in which
bugs could arise, and gives us more time to write good
code. Secondly, we will test our program thoroughly. We will
do integration testing to ensure the separate stages and
libraries all work together, and end-to-end testing to ensure
a smooth user experience.

6.2 Timeline
Please see the GANNT Chart under Appendix A.

6.3 Required Resources
We already have access to the following required
resources:

● computers for software development
● shared storage for a git repository
● various software libraries (all publicly available)

The only resources we do not yet have access to are a
group of students and at least one, but preferably more,
teaching staff willing to test our tool. We will focus on finding
these participants later in the project.

6.4 Deliverables
The following deliverables are still to be submitted:

● Final project proposal
● Completed DSLTool software
● Final paper draft
● Final paper
● Website
● Poster

6.5 Milestones
The milestones for the project are as follows:

● Project Proposal Presentation: 25 April
● Final Project Proposal Due: 28 April
● Ethics Applications Preferred Deadline: 5 May
● Initial Software Feasibility Demonstration: 22 May
● Ethics Application Final Deadline: 26 May
● Complete Draft of Final Paper Due: 28 August
● Project Paper Final Submission: 11 September
● Project Code Final Submission: 15 September
● Final Project Demonstration: 26 September

6.6 Work Allocation
6.6.1 Ahmed Ghoor - Front End. Ahmed will be

working on the Front-end of the Compiler (not the front-end
as in the user interface): Lexing, Parsing and Semantic
Analysis. He will create the GUI visualizations in Flutter, as
well as the code to do the processing in Python under the
hood.

6.6.2. Julian Janisch - Back End. Julian will be
working on the backend of the compiler. He will transform
the data that the frontend outputs into something that the
backend will understand, i.e. into data that can be passed
through the optimisation and code generation phases. He
will also create visualisations of these phases of
compilation.

REFERENCES

[1] Stamenkovia, S. and Jovanovia, N. (2021) “Improving participation and
learning of compiler theory using educational simulators,” 2021 25th
International Conference on Information Technology (IT) [Preprint].

[2] Henry, T.R. (2005) “Teaching compiler construction using a domain
specific language,” Proceedings of the 36th SIGCSE technical
symposium on Computer science education [Preprint].

[3] Stamenković, S., Jovanović, N. and Chakraborty, P. (2020) “Evaluation of
simulation systems suitable for teaching compiler construction courses,”
Computer Applications in Engineering Education, 28(3), pp. 606–625.

[4] Mernik, M. and Zumer, V. (2003) “An educational tool for teaching
compiler construction,” IEEE Transactions on Education, 46(1), pp.
61–68

[5] Campagne, F., 2014. The MPS language workbench: volume I (Vol. 1).
Fabien Campagne.

[6] Parr, T., 2013. The definitive ANTLR 4 reference. The Definitive ANTLR 4
Reference, pp.1-326.

[7] Pech, V., Shatalin, A. and Voelter, M., 2013, September. JetBrains MPS
as a tool for extending Java. In Proceedings of the 2013 International
Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools (pp. 165-168)

[8] Amiguet, M., 2010. Teaching compilers with python.

[9] Tashildar, A., Shah, N., Gala, R., Giri, T. and Chavhan, P., 2020.
Application development using flutter. International Research Journal of
Modernization in Engineering Technology and Science, 2(8),
pp.1262-1266.

[10] The LLVM Compiler Infrastructure Project. Retrieved April 23, 2023 from
https://llvm.org/.

[11] Ghoor, A. (2023) “Literature Review: Domain Specific Language
Teaching Tool,” University of Cape Town - Computer Science
Department - CSC4019Z].

Appendix A: Gannt Chart

