
DSLDoodle: An Interactive Teaching Tool for Designing
and Visualising DSLs

Ahmed Ghoor
University of Cape Town

South Africa
ghrahm004@myuct.ac.za

Abstract
Compiler Theory is an essential and foundational topic in
Computer Science Education. It teaches students how high-
level source code gets translated to low-level machine code
that computers can understand and execute. Despite its sig-
nificance, research shows that students often struggle to
see the relevance of the subject and have difficulty under-
standing the concepts. To address these challenges, this work
presents DSLDoodle, a simple interactive tool that allows
students to design their own Domain-Specific Languages
(DSLs) while simultaneously visualising the underlying data
structures. The tool focuses on Domain-Specific Languages,
which are becoming increasingly prevalent in various indus-
try sectors, thereby highlighting the real-world relevance
of Compiler Theory. Furthermore, the visualisation feature
of DSLDoodle assists in demystifying abstract concepts, al-
lowing students to grasp the intricacies of how compilers
operate. Preliminary evaluations suggest that the integra-
tion of tools like DSLDoodle into the curriculum can boost
student engagement and foster a deeper understanding of
Compiler Theory. This work underscores the potential of
visual interactive tools in Computer Science Education in
general.

CCS Concepts: • Programming Languages; • Compilers;
• Computer Science Education; • Visualisation;

Keywords: Computer Science Education, Interactive Tools,
Domain Specific Languages, Compiler Theory

1 Introduction and Motivation
1.1 What is the Project
The software engineering project aims to develop and evalu-
ate an interactive visual tool for creating Domain-Specific
Languages as a means to enhance the learning of Compiler
Theory.

1.2 Importance of the Project
Compiler Theory is an essential topic in Computer Science
Education. It teaches students how high-level source code
gets translated, through a pipeline of processes, to low-level
machine code that computers can understand and execute.

UCT, September 11–06, 2023, Cape Town, South Africa
.

Despite this, the teaching of Compiler Theory is accom-
panied by certain challenges that DSLDoodle attempts to
address:

Conceptual Complexity The translation process involv-
ing low-level concepts can be intricate and abstract.
Students often struggle to grasp these concepts [45].
Developing simplified practical problems to engage
students and facilitate their understanding of such ab-
stract concepts is a pressing requirement, as detailed
later in this paper.

Lack of Interest Students sometimes exhibit disinter-
est in Compiler Theory due to its perceived lack of
immediate practical relevance. The subject’s applica-
tion in real-world scenarios might not be evident to
students, leading to reduced motivation [19].

DSLDoodle aims to address these challenges. An interac-
tive visual tool can potentially facilitate a more engaging
learning experience that enhances students’ understanding
of Compiler Theory concepts [45]. In addition, using Domain
Specific Languages can potentially highlight examples of the
practical relevance of Compiler Theory in industry, thereby
increasing students’ interest in the subject [19].

2 Theoretical Background and Related
Work

2.1 Computer Science pedagogy
While there is extensive literature in Computer Science Ed-
ucation (CSE) relevant to teaching Compiler Theory, this
paper narrows its focus to concepts specifically relevant to
the topic. Some of these concepts will be referenced later in
the paper, which will explicitly highlight their relevance.

2.1.1 Constructivism. A learning theory that emphasizes
the active role of the learner in constructing their own under-
standing of the subject matter. Students don’t just passively
receive information. Rather, they tend to build their own un-
derstanding of new knowledge upon pre-existing knowledge
by constructing mental models.[5]

2.1.2 Constructivism. Constructivism points out that stu-
dents don’t just absorb information. They actively build on
pre-existing knowledge to form their own understanding by
constructing mental models.[5]



UCT, September 11–06, 2023, Cape Town, South Africa Ahmed Ghoor

2.1.3 Cognitive Load Theory. Given our limited working
memory [55], this theory suggests breaking down complex
concepts into smaller parts. This reduces extraneous cogni-
tive load and allows students to gradually build the complete
skill. [42]

2.1.4 Problem-Based Learning. This active learning ap-
proach pushes students to collaboratively solve real-world
problems, helping them think critically and get a deep un-
derstanding of the concepts.[21]

2.1.5 Zone of Proximal Development. This concept,
introduced by Lev Vygotsky, refers to the difference between
what a learner can dowithout help andwhat they can achieve
with guidance and support [4].

2.1.6 Active Learning. Active learning emphasizes the
importance of engaging students, rather than passively trans-
mitting information. It can involve group discussion, tracing
algorithms, coding assignments and what-if scenarios [29].
Interactive tools, providing immediate feedback and allow-
ing students to explore the impact of changes, have been
shown to assist with active learning [32]. The next subsection
explores this more.

2.1.7 Interactive Tools. Using interaction in teaching
tools can be powerful for enhancing students’ understanding
of complex concepts in computer science. Below is a review
of some effective interaction techniques.

• Immediate feedback Interactive tools can provide
immediate feedback on students’ work, allowing them
to quickly identify and correct errors, play with differ-
ent scenarios, and develop a clearer understanding of
the consequences of their actions [8].

• Visualizations Interactive visualization techniques
can play a big role in facilitating students’ understand-
ing of complex concepts in computer science. It can
help bridge the gap between practical coding assign-
ments and the theory taught in class [45]. By providing
interactive visual representations of the code’s data
structures, and algorithms, visualization tools can help
students to build mental models and make connections
between different theoretical concepts [5].

2.2 Compiler Theory
The subject of Compiler Theory explains how high-level
source code gets translated, through a pipeline of processes,
to low-level machine code that computers can understand
and execute. There are various stages in this pipeline, namely:
Lexical Analysis, Syntax Analysis, Semantic Analysis, Code
Optimization and Code Generation [3]. This project will
narrow its focus on creating a DSL Teaching Tool for the
front end of the pipeline; the Lexical, Syntax and Semantic
Analysis.

2.2.1 Lexical Analysis. Lexical analysis is carried out
by a lexical analyzer. The analyser takes in the stream of
characters in a source program and then breaks it up into a
stream of tokens. Based on the lexical rules, usually defined
by Regular Expressions, each token is assigned a type, e.g.
Identifier, Integer, Operator etc. [33] For example:

• Character Input Stream: num = 10
• Output of Lexical Analyzer: <id, “num”>, <op, “=”>,
<int, “10”> , where each <...> represents an individual
token.

The lexical rules can be represented using Automaton
diagrams. For example, if the rule for a coding comment was
defined as r’[#][a-z]+’, the resultant automata would be:

2.2.2 Syntax Analysis. Also known as parsing, the Syn-
tax Analyser ensures that the program conforms to a set of
grammar rules by taking in a series of tokens and outputting
an abstract syntax tree (AST). [33] Example Input Stream:
<int, “4”>,<op,“+”>,<int,“3”>,<op,“+”>, <int,“2”>
Abstract Syntax Tree:

A program could pass the Lexical Analyser by having valid
tokens, but could still not be a valid program. The Syntax
Analyser, or Parser, ensures that the series of tokens in the
program is valid [3].

2.2.3 SemanticAnalysis. Before theAbstract Syntax Tree
can be sent to the next phase, the Semantic Analyser ensures
that there are no type or context errors using a Symbol Table.
For example, ensuring that variables are defined before they
are used, that expressions are type-consistent, or that an ar-
ray reference is in bounds, amongst other checks. Using the
Symbol Table to store the meaning of Symbols/Identifiers,
the abstract syntax tree is traversed to perform these checks.
[3]
The AST is then sent to the intermediate code generator

which converts it for the backend of the Compiler. That as-
pect of Compiler Theory, however, is not in the scope of
this project. Note that some textbooks don’t describe Se-
mantic Analysis as a separate step, but rather include it in



DSLDoodle: An Interactive Teaching Tool for Designing and Visualising DSLs UCT, September 11–06, 2023, Cape Town, South Africa

the previous step or consider it as a check that happens in
parallel[33].

2.2.4 DSLs vs GPLs. Domain Specific Languages (DSLs)
are tailored for specific problem areas or application do-
mains, providing special constructs and syntax to efficiently
solve domain-specific problems, like SQL for databases[30],
HTML for web design[39] or MATLAB for mathematical
computing[49]. On the other hand, General Purpose Lan-
guages (GPLs) are broader, and versatile for numerous tasks,
but may not have the niche optimizations that make DSLs
efficient for specific tasks.[31]

2.3 Approaches to teaching Compiler Theory
Most approaches to teaching Compiler Theory aim for a
balance between teaching theoretical concepts and practical
assignments. Theoretical concepts are essential for under-
standing the underlying principles and are largely the same
across most courses [46]. The manner of integrating practical
work, however, is debated. Such assignments help solidify
the theory by providing students an opportunity to actively
learn by applying the abstract theory to a problem, as well as
help students see the practical relevance of the theory[19].

2.3.1 Case-Based Problems. Kundra and Sureka suggest
case-based teaching using real-world compiler design issues[24].
An example presented is using lexical analysis for spam email
detection. This makes students weigh real-world trade-offs
critically, arguably making ’learning easier and more inter-
esting.

2.3.2 AResearchActivity. In this method, students act as
beginner researchers, diving deep into existing knowledge
to find and fill gaps. Rooted in Constructivist theory and
problem-based learning, this approach pushes students to
comprehend theories post recognizing the related problem[34].

2.3.3 Mini versions of existing GPLs. A common ap-
proach is to have students develop a compiler for a simplified
version of an existing General Purpose Language (GPL).

Terry [48] developed CLANG, a simplified subset of Pascal,
and Rakic et al [40] developed "mini-C" language, in a similar
fashion. These projects allow students to apply theoretical
concepts to a mini version of a general language that still
contains most of it’s important characteristics.

2.3.4 Using Domain Specific Languages. An approach
that this project drew on is the use of Domain Specific Lan-
guages (DSLs). Henry[19] presents a strong argument for
using DSLs for the practical component of Compiler Theory
courses. Rather than recreating existing languages, students
develop compilers that can address domain-specific software
gaps, helping them appreciate the relevance and value of
the theory. It also enhances their understanding of domain-
specific challenges and could bridge the gap identified by

Shatalin et al., where few developers excel in both Compiler
Theory and knowing when to employ DSLs[37].

2.4 Tools for creating DSLs
Creating DSLs can be a challenging task, but there are several
tools and frameworks available to help developers in this
process. These tools vary in terms of features, functionality,
and target languages.

2.4.1 Traditional Tools.

• Lex and Yacc: These classic compiler tools, Lex for
lexical analysis and Yacc for parsing, have been avail-
able since 1975[25][23]. Open-source versions, Flex
and GNU Bison, are common alternatives. Together,
they assist in building compilers.

• ANTLR: ANTLR (Another Tool for Language Recog-
nition) is a flexible parser generator that supports var-
ious languages, including Java, C, Python and Go [36].
ANTLR can generate both lexical analyzers and parsers
which can automatically generate parse trees. The tool
also has a useful graphical interface for visualizing
parse trees and debugging grammars.

2.4.2 Modern Tools.

• JetBrains MPS (Meta-Programming System): Jet-
Brains MPS lets developers develop compilers. [37].
It’s built on a projectional editor which allows it to
edit a representation of the Abstract Syntax Tree [7].
It also assists in developing non-textual notation for
languages.

• Xtext: Part of the EclipseModelling Project and ecosys-
tem [13], Xtext can generate a serializer and smart
editor along with the parser, no additional code neces-
sary.

• Ply for Python: Ply (Python Lex-Yacc) is a lexer and
parser generator for Python. It is essentially a Python
implementation of Lex and Yacc that simplifies the
code generation step [3]. Ply provides a familiar and
simple interface for Python developers to create com-
pilers and interpreters for custom languages. Ply also
has helpful features, like error reporting, precedence
rules, and support for LR parsings.

2.5 Interactive Compiler Visualisations
2.5.1 In Education Simulators. Many isual simulators at-
tempt to help clarify complex compiler concepts. Stamenkvic
and others reviewed various simulators, ranking them by
features and topics covered[46].
This paper reviews the best interactive simulators sur-

veyed, according to the mentioned criteria, including a solu-
tion developed by Stamenkvic et al. the following year.

• LISA: LISA, developed by Mernik and Zumer [10][32],
is an interactive graphical simulator built using Java



UCT, September 11–06, 2023, Cape Town, South Africa Ahmed Ghoor

for Desktops. It covered the highest percentage of Com-
piler topics, at 46.2%, including all topics in the scope
of this paper. The closest was JFLAP at 38.8%, and most
other simulators covered less than 30% of the topics.
LISA illustrates Lexical Analysis animating the deter-
ministic finite-state automata, Syntax Analysis with a
Syntax Tree and the check for Semantic rules with a
Semantic tree that highlights dependencies.

• JFLAP: JFLAP is also a graphical simulator built using
Java for Desktops [38]. It covers 38% of the topics,
with a focus on defining automata and grammar [46].
Notable distinct features include a graphic editor for
drawing many types of automata and, unlike LISA,
JFLAP has the ability to convert nondeterministic finite
automata into deterministic automata and transform
automata into appropriate regular grammar [38].

• Stamenković and Jovanović: Based on their survey
and evaluation above, Stamenkovic and Jovanovic pub-
lished a paper on two alternative interactive graphical
simulation tools to visualise the theory underpinning
lexical and syntax analysis [45]. One is a web-based
tool, specifically for lexical analysis, and the other is
coded using Java, for desktops. The solution does not
seem to require coding. Rather the visualisation pro-
vides textboxes or objects, with a lot of guidance, to
input information. It then outputs the information, ei-
ther using easy-to-understand text or by visualizing
the relevant data structures.

2.5.2 In Compiler Creators. As shown in section 2.5,
there are compiler construction tools that are not designed
for educational purposes, but still provide interactive visu-
alisations to aid the language-building process. ANTLR’s
graphical interface is useful for visualizing parse trees and
debugging grammars and Jetbrains’ MPS’s projectional edi-
tor makes it possible to visualise and edit a representation
of the Abstract Syntax Tree [7].

2.6 Review Summary
The theoretical review revealed the educational benefit of
incorporating interactive techniques into education tools.
Reviewing the compiler theory covered in courses and past
approaches to teaching it, the teaching of Compiler Theory
seems to be no exception to this recommendation.
The applicability of such a tool is supported by both the

research showing the perceived complexity and irrelevance
of compiler concepts by students [10][45], and research that
has been done on building interactive tools and teachingwith
Domain-Specific Language assignments to address these re-
spective challenges [19][46].
There are many past implementations of an interactive

graphical compiler simulator [46]. That said, none of the mul-
tipurpose implementations, that cover a substantial amount

of theory, are built for multiple platforms. This makes them
difficult to use across all the platforms that students use.
Secondly, while the simulators illustrate the underlying

data structures quite clearly, there is often not much coding
required. This is understandable, as unconstrained code in-
put can make it difficult to consistently extract the relevant
information to produce visualisations. This level of abstrac-
tion, however, might make the gap between the interactive
simulators and using a real-world parser too great. A solu-
tion might be a middle ground between Ply, which draws
on traditional compiler principles in a familiar language and
the simulation features of the current interactive teaching
tools might be a solution to this.

3 Methods
This paper presents a potential solution to some of the chal-
lenges highlighted in the theoretical review, namely an in-
teractive teaching tool for designing and visualising domain-
specific languages.

3.1 Project Aims
Based on the above review, this project has the following
aims:

1. Build and evaluate if a cross-platform compiler cre-
ation app, with increased visualisations of underlying
data structures, increases students’ understanding of
complex compiler theory concepts.

2. Evaluate if the implementation of the cross-platform
appwith interactive visualisations and domain-specific
language crafting capabilities in a familiar language
like Python can increase student engagement and in-
terest in compiler theory.

3.2 Requirements
The requirements of the system are based on the theoretical
review and the aims of this project. They include:

1. Cross-PlatformCompatibility:The application should
be accessible and functional on all major operating sys-
tems.

2. Visual Representation of Data Structures: The sys-
tem should provide clear visualizations of underlying
compiler data structures.

3. Domain-Specific LanguageCrafting:The tool should
allow users to design and test domain-specific lan-
guages within the context of a familiar language.

4. Interactive Interface: The user interface should be
intuitive and interactive, supporting real-time feed-
back.

5. Reliability and Robustness: The system should be
able to handle a wide variety of inputs and use cases
without crashing or producing incorrect outputs.



DSLDoodle: An Interactive Teaching Tool for Designing and Visualising DSLs UCT, September 11–06, 2023, Cape Town, South Africa

3.3 System Design
The system design process is the blueprint for the implemen-
tation, emphasising user experience and structural integrity.
It balances planning with adaptability and ensures the tool’s
reliability and functionality.

3.3.1 User-interfaceDesign. To design the User-Interface,
Ben Shneiderman’s Golden Rules of Design were incorpo-
rated wherever possible [43]. His rules include striving for
consistency, catering to universal usability, offering informa-
tive feedback, preventing errors, permitting easy reversal of
actions and reducing short-term memory load.
To maintain consistency, the layout, graphics and fonts

were designed with the aim of mimicking a user-friendly
Android application, which dominates themobile application
and operating system market share, especially in emerging
markets [1][16]. This also helps ensure universal usability
across technical backgrounds.
The app is also designed to be interactive, offering feed-

back whenever the user takes an action. When any of the
buttons are clicked, a visualization is created or a menu drops
down, when any other text boxes are clicked to input text,
they light up and when buttons are clicked, the GUI informs
the user if the action has been a success. This facilitates
letting users feel in control of the app.
Measures to avoid errors include labelling and adding

tooltips to text boxes, and ordering GUI elements in the
sequence of the action order.

If a language is badly specified and this is only discovered
later in the process, the program allows users to go back
and rebuild the language and visualisations, thus allowing
reversal of actions.
Lastly, in order to reduce short-term memory load, the

project draws inspiration from ANTLR’s web interface [36]
which compacts several sections of the program into one
screen (the user-defined DSL rules, generated visualisations
and the user’s DSL code) so that the user does not have to
remember information from one display to the other.

3.3.2 Software Design Pattern. The application followed
the Model-View-Controller (MVC) design pattern [9]. In this
framework, the "Model" encompasses the core data and logic,
serving as the application’s backbone. The "View" is the user
interface, presenting the model’s current state in a user-
friendly manner. Meanwhile, the "Controller" bridges the
Model and View, processing user input and updating the
view accordingly.

3.3.3 EngineeringMethodology. The engineering phase
largely followed the waterfall methodology for most of the
project with the incorporation of agile components towards
the end[11]. West et al. [54] coined the term “Water-Scrum-
Fall” and hypothesized that hybrid development methods
would become the standard, which certainly held true for
this project. The limitation of using a fully Agile approach

from the beginning, which would have been ideal, was that
the project had to wait for ethical clearance before it could
have access to students to provide feedback on the tool. This
methodology involved gathering requirements and specifica-
tions to develop the application through a literature review
and engagements with the project proposer and supervisor.
While building the application, Alpha system tests were con-
stantly run to test the robustness of the application. Once
ethical clearance was received, Beta testing could commence.
This is where Agile software development methodologies
were incorporated. 10 users, split into 4 groups, individually
tested and provided feedback on the application. After all
users in a group had completed testing of the application, the
feedback was incorporated into the app during four separate
sprints [41].

3.3.4 System Testing Methodology. System Testing con-
sists of Alpha and Beta testing. Alpha testing in this project
consisted of a series of white box tests designed by the re-
searcher. Beta testing entailed giving the application to users
outside of the development process to play with.[22]
To do Alpha testing, the project separately tested func-

tions and modules in the code to ensure that each individual
segment of the code was working as it should [35]. The Unit
tests can be seen in the dsldoodle_test.py file. Each test has
its own folder containing a text file with the test input and
PNG files of the correct output.
As mentioned above, Beta testing involved splitting 10

users into 4 groups and having each user test and provide
feedback individually. At each iteration, the users were com-
pletely different. This allowed users to test the improvements
without having the data skewed by the users that suggested
the improvement.

Details of the User Testing methodology are explained in
the next section.

3.4 Evaluation Methodology
Given the time frame in which this project needs to be com-
pleted, it was not feasible to design the experiment exactly as
it was laid out in the initial Literature Review [17], by doing
a randomised control trial on the experience and effect on
course marks through using this tool in a Compiler Theory
course. The project will also not be able to do a longitudinal
study by observing the effect on a second compiler course.
The project will evaluate the tool by providing it to students
who have already studied a university-level compilers course
to complete a few tasks with and without the tool, before
getting them to answer questions about it through surveys
and interviews.

3.4.1 User Testing Methodology. User testing informed
the Beta System Testing and Evaluation process. To do user
testing, the study aimed to have 10 participants from the
University of Cape Town who completed the Computer Sci-
ence Honours course on Compilers in the last two years. The



UCT, September 11–06, 2023, Cape Town, South Africa Ahmed Ghoor

student participants were Honours students from the Uni-
versity of Cape Town, who have previously taken a compiler
course.

3.4.2 User Testing Procedure.

1. Building a DSL without the tool
Before interacting with the tool, students were given
working language rules written in Ply and tasked with
printing the lexical tokens, abstract syntax tree, and
then tweaking the rules to observe changes in said
tokens and tree. During this phase, students were given
a verbal recap of the relevant Compiler Theory, were
allowed to access Ply docs and the internet, and could
ask any questions about Ply or Compiler Theory while
they were completing the task. The objective of this
step was to refresh students’ memory of Compiler
Theory and what coding in Ply entails to help them
set a mental benchmark to use when evaluating the
tool.

2. Cognitive Walk-Through [26]
Students were then given the tool and prompted to
explore the application without any external guidance.
Throughout this exploration, students were encour-
aged to verbally share their thoughts, shedding light
on their firsthand interactions and impressions. The
objective of this process was to gather insights into
how intuitive and user-friendly the tool is.

3. Self-assessment of Tool Experience (Quantita-
tive)
Post familiarisation, but before external guidance was
given, students were presented with a set of statements
on an anonymous form to gauge to what extent their
experience aligned with the statements, measured on
a Likert scale with 5 levels from Strongly Disagree (1)
to Strongly Agree (5) [2]. The statements were:
• "I feel confident in my ability to utilize this tool."
• "The design and functionality of the tool are clear
and intuitive."

4. Building a DSL with the Tool
Students were then given instructions on how to use
the tool and the same Ply base code provided in Step
1. They were then tasked with tweaking the language
rules while observing changes in the lexical and syn-
tax visualizations, and tweaking the DSL code while
observing changes in all three visualizations.

5. Post-task survey (Qualitative)
Upon completion of the tasks, students filled in an
anonymous survey to offer insight based on their ex-
periences. The survey contained questions related to
both the implementation of the tool, as well as the con-
ceptual approach behind the implementation. This is
so that the project could assess both the usefulness of
the particular implementation, as well as the concepts
behind the implementation that could provide insights

for similar tools. The latter evaluation is based on the
Technology Acceptance Model (TAM), an extensively
used theoretical framework designed to evaluate in-
dividuals’ acceptance of an information system [27].
The Questionnaire can be found in Appendix B.

3.4.3 Evaluation Method Reliability. This section will
discuss the reliability of the evaluation method chosen.
Iterative development and evaluation combined: It

may seem unusual to continue to develop the system while it
is in the process of being evaluated, so it is worth discussing
if this could affect the reliability of the results.

The reason for combining the two was that the ethics ap-
proval for accessing students for user testing arrived very
close to the submission deadline. Thus the choice was be-
tween doing no iterative development from user feedback
and doing it while evaluating the tool. The former was pre-
ferred for the benefits it offers in developing a more robust
and user-friendly system [11].
With regards to reliability, it is important to first note

that the improvements were not be in any fundamental con-
ceptual approaches to the implementation. As illustrated in
a following section, it affected aspects such as layout and
tooltips to make the tool more intuitive, as well as system
reliability. Additionally, it could be argued that any effect of
continuous development would likely not affect the reliabil-
ity of the results in a manner that would be favourable to the
tool or the concept being tested. Since, with this method, a
portion of the results would more likely be based on negative
feedback that the final tool no longer deserves, as the feed-
back would often be taken into consideration to improve the
tool in the next development sprint. It could thus be argued
that this decision would make the results a conservative
estimate of how effective it is in achieving its aims, which
would potentially increase the reliability of any positive con-
clusions.
Neutrality of Participants: The participants were all

honours students at the University of Cape Town and hence
would know, or know of, the researcher who is also a fel-
low Honours student. This could cause the participants to
be biased in their evaluations. To mitigate this, all surveys
submitted were anonymous and participants were reminded
that feedback given would be used to iteratively develop the
system, thus any constructive feedback would be useful to
the project and should not be avoided.
Level of Participants: The students testing the system

have already completed a Compiler Theory course, even
though this tool is designed to be used while the course
content is still being learnt. This, however, would likely not
affect the reliability of results in a major way. The tool is not
designed to replace any compiler theory content but to be a
supplement to it. Hence, any content that could potentially be
taken for granted while using the tool would not be "missed"
by the tool. The tool is an addition to the course. It could



DSLDoodle: An Interactive Teaching Tool for Designing and Visualising DSLs UCT, September 11–06, 2023, Cape Town, South Africa

also cause students to underestimate how effective the tool
is in helping them understand Compiler Theory concepts as
they have already learnt many of them. This is better than an
overestimate as, as mentioned above, a conservative estimate
of how effective the tool is in achieving its aims would be
favourable from a reliability perspective.

3.4.4 Ethical Issues. In this study involving human sub-
jects, addressing ethical concerns is very important [20]. Be-
fore engaging in the study, participants carefully reviewed
and signed a consent form. Ethical approval was obtained
from both the computer science department and the univer-
sity. To ensure confidentiality, no identifiable information
about participants was disclosed in the published results.
Data collected is stored on a password-protected computer,
with access limited to the researcher, supervisor and sec-
ond reader of this project. All software employed in this
study will have been released under open-source licenses,
and any software created during the research process will
be made available as open-source under the GNU General
Public License.

4 Development and Implementation
4.1 System Implementation
4.1.1 Language and Library Choices. The language and
library chosen for users to develop their DSLs are Python
and Ply respectively. Since Ply is a Python implementation
of Lex and Yacc [3], it allows students to gain exposure to
traditional compiler-building principles in a language that
they are already comfortable with. This choice allows stu-
dents to immediately focus on learning to build compilers
without first crossing a language barrier. This is based Lev
Vygotsky’s theory of the Zone of Proximal Development that
was explained earlier in the paper [4].

Following on from this, it made sense to build the entire
back-end in Python. Python has a large online community
and, potentially due to Python’s recent rise in popularity
due to its use in Statistics and Machine Learning, there
are also several libraries for building graphs and visuali-
sations in the language [18][44]Ȧfter some trial and error
with open-source libraries, this project decided to use the
libraries Graphviz[12] and Automata-lib[6]. Graphviz is an
open-source graph visualisation software that is quite flex-
ible. Automata-lib is built on top of Graphviz and assists
with visualizing Automaton. These libraries, although not
without their limitations, proved quite useful. One of the
more tricky aspects of this project on the engineering front
was automatically translating the various ways that the user
could define their DSLs into the specific format required by
these libraries.

The Python library chosen for the User-Interface (UI) was
Flet [14]. The project initially explored using the Dart lan-
guage, with its accompanying Flutter framework, in the front
end [47]. This would call a Python script to process the user

input and build visualisations which could then be sent back
to the User-Interface. One benefit of Flutter is that allows
a single code base to be compiled for multiple platforms
which would go a long way in ensuring the portability of
the program, a key consideration of the project. The default
UI is also relatively easy to use and looks like a modern An-
droid app as it is created and maintained by Google. From a
user-experience perspective, this helps to achieve Ben Shnei-
derman’s golden rule of consistency [43]. The reason for
the deviation to Flet is that Flet is a new Python library
that allows developers to build Flutter-like apps in Python
for multiple platforms without the need for any Dart code.
Therefore, since the rest of the application was being built
in Python, it made sense to keep it all in Python if the key
benefits of Flutter could be retained.

One limitation of the Flet library built on the Flutter frame-
work [15] that was observed at the time of development was
the inability to have the "tab" keyboard action create an in-
dentation in the text field when writing Python code. The
action, instead, switches to the next GUI element. However,
Python PEP8 guidelines suggest using spaces instead of tabs
[52] and an educational tool could justifiably encourage good
coding practices from students. It thus did not seem worth
the project’s time or sacrifice of other Flet library features to
rewrite much of the code base in another language to include
this feature.

4.1.2 ProgrammingTechniques. To facilitate understand-
ing and reusability, the code is modularised [50]. The code
is organised into several functions, each with a specific pur-
pose. For instance, "get_patterns_from_module()" returns
a dictionary of tokens with their respective regular expres-
sions which is then sent to generate_nfa(). For increased
modularisation, the Lexers and Parsers are also built using
separate modules.
The project also tried to keep the code clean and read-

able by using meaningful function and variable names like
traverse_ast_for_semantics and generate_nfa, which clearly
indicate their purpose, and generally follow PEP 8 guidelines
[52]. In addition to this, the code is extensively documented
with comments and function descriptions.

4.1.3 Maintainability and Portability. As demonstrated
above, the project makes a concerted effort to ensure that
the code is readable, well-documented, modular, and follows
the common PEP8 standards. All of which assist with main-
tainability [28]. Additionally, dependencies between compo-
nents are reduced by building some visualisations, such as
the automaton diagram, by calling a symbol dictionary that
is separate from the main program’s dictionary.
Portability is ensured by building the app using Flet, a

Python library that allows a single codebase to be compiled
formultiple platforms [28]. Furthermore, most of the libraries
chosen are relatively commonly chosen options for their



UCT, September 11–06, 2023, Cape Town, South Africa Ahmed Ghoor

tasks. This mitigates issues when installing external depen-
dencies.

4.2 Educational Visualizations
4.2.1 Lexical Analysis. The lexical analysis breaks down
code into a sequence of tokens and is visualised with an
NFA automaton diagram and a lexical analysis table. Based
on the regular expression token definitions, the automaton
diagram produced shows all ways of getting to a final token
definition state from a start state. Furthermore, contrary to
most educational automaton diagrams, the states are named
with explanatory names to better facilitate an understanding
of the underlying process.
The diagram is built using the automata-lib[6] library, a

python library built on Graphviz[12]. Automata-lib requires
the NFA to be defined with a particular syntax. This syntax
was produced by first extracting the token definitions from
the Python module and building a dictionary. The dictionary
is then sent to the generate_nfa function which builds a
series of dictionaries to capture and process all the individual
transitions and input them into a Python code string to be
executed.
The lexical table is produced when the DSL code is com-

piled. Based on the regular expression token definitions, the
code is analysed and split up to produce a table of values
from the code with their respective token type. Ply provides
the function to split the code up into token values with their
respective token types [3]. This was transferred to a Flet data
table which could be visually displayed.

4.2.2 Syntax Analysis. The Syntax Analysis uses the lex-
ical and the syntax rules, along with the sample DSL code, to
visualise an abstract syntax tree (AST). Ply outputs an AST
as a tuple of nested tuples [3]. This is then converted to the
syntax required by Graphviz which is then executed to build
a tree and output it to a PNG which can be displayed [12].

4.2.3 SemanticAnalysis. The Semantic Analysis traverses
the AST to perform semantic checks. Ply does not provide
dedicated functionality for this. To illustrate what semantic
analysis can do, the code provides users with the ability to
check if a variable has been used before being defined and
if it is being defined more than once non-mutability is a
criterion).

The algorithm takes in the Ply-defined Rules, in addition
to the name of the tokens used for variable assignment and
symbols provided by the User in separate text fields. It then
builds and queries a symbol table as it traverses the tree to do
the semantic checks. Errors and the variable names causing
the error are appended to an array. Both the symbol table
and the errors are visualised with Flet Data tables.

5 Results and Discussion
5.1 Results of System Tests
The primary focus of the system testing was to ensure that
DSLDoodle was functionally sound, providing accurate visu-
alizations of underlying data structures, and could support
the crafting of domain-specific languages in Python. System
testing was divided into Alpha and Beta phases [22].

5.1.1 Alpha Testing. The core functionalities and aspects
of the DSLDoodle tool were tested during this phase:

• Lexer and Parser Creation: All the functions associ-
ated with creating lexers and parsers were tested. The
system was able to correctly generate tokenizers for
the provided test cases and could parse sample source
codes without any errors.

• Visualization Mechanism: The functionality that
transformed the underlying data structures into vi-
sual graphics was tested with varied DSL definitions.
The generated AST, automaton diagrams and tables
matched the expected outputs, as confirmed by com-
parison with the stored PNG and text files.

• Performance: The application was able to handle
larger DSL definitions and source codes without sig-
nificant delays or crashes.

The dsldoodle_test.py file contains detailed unit tests for
each segment.

5.1.2 Beta Testing. During the Beta testing phase, users
identified several bugs and limitations in the system:

• Program breaking in the back-end: Users in the
first user testing group identified actions that broke
the system.

• Semantic Analysis Difficulties: Users highlighted
that they struggled to understand how to use the se-
mantic analysis functionality before it was explained.
While the tool provided capabilities to analyze seman-
tics, it wasn’t always straightforward to apply.

• Diagram size: As the lexical rules for a language in-
creased, it became harder to see details in the automa-
ton diagram.

After each iteration of the Beta test, feedback was col-
lected, bugs were addressed, and improvements were made
in the next development sprint.

5.1.3 Final System Performance. Post-iterative develop-
ment and evaluation:

• The program was made more decoupled and modu-
larised to ensure that actions out of the norm did not
break the entire system [50].

• Semantic labels we rewrittenmultiple times and tooltips
were added to make semantic analysis tasks more intu-
itive. The position of the semantic analysis check was
also moved to make the flow of tasks more intuitive
which seemed to help as well.



DSLDoodle: An Interactive Teaching Tool for Designing and Visualising DSLs UCT, September 11–06, 2023, Cape Town, South Africa

• The automaton diagram was made significantly larger
to make it easier to see.

5.2 Results of User Tests
5.2.1 Self-assessment of tool experience. This short
survey was given to users before instructions and a demon-
stration on how to use the tool was given. The objective was
to gather insights into how intuitive and user-friendly the
tool is. As explained above, students rated a set of statements
to gauge the extent to which their experience aligned with
the statements, measured on a Likert scale with 5 levels from
Strongly Disagree (1) to Strongly Agree (5). The results were:

Confidence (Blue):Most respondents feel quite confident
in their ability to utilize the tool, with the highest number of
responses for rating 5 (the maximum rating). The distribu-
tion is generally skewed towards higher confidence levels,
with no respondents giving lower confidence ratings (1 and
2).

Design & Functionality (Red): The distribution of rat-
ings regarding the design and functionality of the tool is more
evenly spread out. Ratings 3 and 4 have notable percentages,
indicating that while many users find the tool design ade-
quate, there’s room for improvement.

Average (Purple): The average ratings are primarily con-
centrated around the scores of 3 - 4.5. The highest percentage
of respondents has an average rating of 4.5. The mean of the
average ratings is 4.0. This suggests that the overall senti-
ment towards the tool, when considering both confidence
in their ability to use it and the design & functionality, is
positive. However, there’s still room for improvement, as the
very highest average rating (5.0) isn’t on the distribution.

It’s important to note that the results above represent stu-
dents’ experience before any instructions were given. Once
instructions were given, the students were able to use the
application confidently. It also includes ratings from user
experiences before software improvements as the software
was being developed based on the feedback.

5.2.2 Post-Task Survey. The post-task survey looked to
discern if the tool proved advantageous, clarified any com-
piler theory concepts, had any beneficial features or had any
conceptual shortcomings or strengths. It also attempted to
assess if a tool with this conceptual approach would add
additional value to a Compiler Course, specifically with re-
gards to enhancing students’ comprehension of compiler
theory concepts and increasing interest and engagement
in the course. Lastly, it assessed if the tool’s cross-platform
capability would be useful.
Advantageous Aspects of the Tool: The majority of

respondents indicated that they found the tool advantageous
for their tasks. This question did not specifically ask for
a a reason, but common reasons still given were the auto-
mated visualisations allowing them to; visualise their code,
understand how lexical analysis and parsing work and pre-
vent getting confused when needing to make changes. Other
reasons given were the logical separation of defining the
rules of the compiler and "implementing actual parsing" and
explaining errors they made.

Clarification of Compiler Theory Concepts: Most re-
spondents stated that the tool helped clarify their understand-
ing of some compiler theory concepts. 30% of respondents
stated that the tool didn’t clarify anything beyond what they
already knew but of that 30%, all selected "Yes" to the ques-
tion asking if they thought a tool like this would have helped
clarify concepts during their compiler theory course and



UCT, September 11–06, 2023, Cape Town, South Africa Ahmed Ghoor

67% mentioned that it helped with managing or debugging
their code.

Beneficial Features of the Tool: For this question, sev-
eral respondents reiterated the benefit of having automated
visualisations in making it easier and faster to debug their
code. Respondents also mentioned the connection between
the code and the visual representation of the automaton
diagram and the AST as being beneficial. Other beneficial
features mentioned were the "implied sequence in which
things have to be done in the tool ... [which] helps with
understanding how the order of these things is important",
refreshing their memory of semantic analysis and making it
less confusing than having to run the code without the tool.

Conceptual Shortcomings and Improvements: Users
in the first user testing group identified a few bugs in the
system, including actions that broke the system and created
an automaton diagram that was too small to see. After the
first update, users in the second, third and fourth testing
groups did not experience this. A commonly identified lim-
itation of the tool throughout most of the testing was the
ability to identify how to use the tool to correctly perform
a semantic analysis before an explanation. Each sprint at-
tempted to improve on this and users in the final group didn’t
have as much of a problem figuring it out before an explana-
tion. Suggestions for improvements included having more
prompts and explanations throughout the system, modular-
ising the section for inputting language rules and having
further semantic options.

Conceptual Strengths: The primary strength of the tool,
as identified by respondents, lies in its automated visuali-
sation of "very abstract concepts", especially the diagrams
it produces. Respondents explained that it helps to under-
stand the "logic behind the code/rules", how the inputs are
related and "flow through the compiler" and what the errors
in your code are directly. One respondent argued that the
main conceptual strength is that "the tool encourages one to
play around with a DSL. It is nice to have a sandbox to play
around with and be able to visualize a DSL."
Value in Compiler Course: 90% of participants stated

that a tool with this conceptual approach would have been
a valuable asset in enhancing their comprehension of the
theory during their Compiler course, with 10% uncertain.
The responses to the question about whether a tool with
this conceptual approach would have increased their engage-
ment and interest in compiler theory during their Compiler
Course also had 90% "Yes" responses with "10%" uncertain.
No respondents selected "No" for either.

Platform Preferences:

Most respondents (70%) would use a tool like this as a na-
tiveWindows application and 60% as aWeb Application. The
second most preferred desktop platform for a tool like this
was Linuxwith half the respondents, while 30% of the respon-
dents would use a Mac version of the application. Notably,
since none of the respondents selected both Android and
iOS simultaneously, at least 40% of the respondents would
use a tool like this as a native mobile application.

6 Discussion
6.1 System Test Discussion
6.1.1 Relevance of Alpha Testing. Alpha testing pri-
marily focused on the technical capabilities of DSLDoodle.
Achieving substantial code coverage was instrumental in
ensuring that the tool’s outputs were reliable. The success
of the lexer, parser, and visualization tests indicated that the
tool’s core mechanism was sound, which served as a good
foundation for the functionalities built on top of it.

6.1.2 Feedback-Driven IterativeDevelopment. The feed-
back received during the Beta phase was invaluable. While
Alpha testing ensured that the output was technically sound,
Beta testing highlighted areas of usability and reliability that
were not immediately apparent in the development phase. An
example was the semantic analysis that users had difficulty
with. It’s possible that users had some difficulty figuring
out without the additional explanation because, unlike with
lexing and parsing, they had never used a program that au-
tomated semantic analysis. In their Compiler Theory course,
they used Ply without any visualisation tool, and Ply pri-
marily has dedicated functionality for lexing and parsing [3].
By embracing a feedback-driven approach, DSLDoodle has
been refined into a tool that is both more user-friendly and
technically robust.

6.2 Tool and Concept Evaluation Discussion
6.2.1 Intuitiveness and User Experience. The initial
self-assessment results indicated that the majority of the
participants found the DSLDoodle tool to be intuitive and
user-friendly, even before receiving any explicit instructions
on its usage. This is an encouraging sign, as it suggests that
users can easily get started with the tool, potentially making
it more likely to be adopted in educational settings [51].



DSLDoodle: An Interactive Teaching Tool for Designing and Visualising DSLs UCT, September 11–06, 2023, Cape Town, South Africa

However, there is still room for improvement, as indicated
by the spread in the "Design & Functionality" ratings.

6.2.2 Educational Potential. The post-task survey re-
sults reinforced the educational potential of DSLDoodle.
Many respondents acknowledged the tool’s ability to clarify
certain compiler theory concepts which speaks to its effec-
tiveness as a teaching aid. Furthermore, respondents repeat-
edly cited the automated visualizations as being particularly
beneficial, showcasing that a visual, interactive approach
can bridge the gap between abstract theoretical concepts
and tangible understanding.

6.2.3 Practical Utility. Beyond educational insights, the
tool’s ability to aid in debugging and managing code was
also highlighted by respondents. This underscores the tool’s
practical utility, implying that it could be useful even beyond
a purely educational context.

6.2.4 Cross-PlatformBenefits. The results from the post-
task survey question on platform preferences show that stu-
dents would use a tool like this on multiple different plat-
forms. The results highlight the benefit of having a cross-
platform application and hence support the decision to de-
velop that application with Flet, which allowed the project
to compile one code base for multiple platforms.

A notable result is that 40% of respondents included a na-
tive mobile application in their selection. None of the respon-
dents attempted to use DSLDoodle on mobile, so the veracity
of their estimation could be challenged from that angle. The
result, however, could also potentially be an underestimate
of the number of students that would use a tool like this on
mobile. Aweb application, whichmany respondents selected,
can also be used on mobile. Furthermore, all students in the
study have access to a desktop computer or laptop, which is
not the case for many students interested in higher learning
in South Africa due to socio-technical marginalization [53].
Therefore a mobile compiler teaching tool like DSLDoodle
can potentially also assist with accessibility and inclusivity.

6.2.5 Limitations and Areas of Improvement. While
the iterative development and evaluation approach has helped
address some of the initial challenges, there are still areas
of improvement that emerged from the feedback. The is-
sues surrounding the semantic analysis segment highlight
an important design challenge.

6.2.6 Conceptual Strengths as an Educational Tool.
DSLDoodle’s conceptual strengths, as acknowledged by the
respondents, largely revolve around its visual and interactive
nature. Visualizing abstract concepts has long been regarded
as an effective pedagogical strategy, and the feedback con-
firms this. The sandbox nature of the tool, which allows
students to play and experiment with DSLs, is another sig-
nificant strength, promoting an active learning approach
[29].

6.2.7 Implications for Compiler Theory Education.
The feedback suggests that tools like DSLDoodle can serve
as a valuable supplementary tool for the practical component
of a Compiler Theory course. Given the positive feedback
on the tool’s potential to enhance comprehension and en-
gagement, educators could consider integrating similar tools
into their curriculum.

6.2.8 Benefit of building DSLs. Based on the literature
review, the project theorised that it may be beneficial to have
students build a Domain Specific Language (DSL) to increase
student engagement and interest, as opposed to some of the
other previously mentioned approaches to having a practical
component in a Compiler Course [19]. Interestingly, none of
the respondents explicitly highlighted the use of DSLs as a
reason for the tool increasing their engagement or interest in
the subject, despite 90% of participants stating that a tool like
this in their Compiler Course would have done so. This does
not necessarily mean that it wasn’t a factor in the experience,
but simply that it wasn’t raised in the responses. One poten-
tial reason for this is that the participants were already given
DSLs to build for the practical component of their Compiler
Theory course. Therefore, unlike the visualisations, it was
not something different from the evaluation benchmark in
their mind, based on previous experience.

6.3 Key Takeaways
The key takeaways from the above discussion are:

1. Visualization Aids Comprehension and Engage-
ment: One of the overarching findings from the user
feedback was the immense value derived from the vi-
sualization capabilities of DSLDoodle. It supports the
pedagogical viewpoint that interactive visualization,
especially in subjects with a high degree of abstraction,
can significantly improve understanding.

2. Cross-Platform capabilities are useful: The re-
sults show that students would use a teaching tool like
DSLDoodle on multiple different platforms. Creating
a tool that can be used natively on multiple platforms
is clearly useful, and potentially makes the tool more
accessible and inclusive.

3. Practical Utility BeyondEducation:AlthoughDSLDoo-
dle was developed with an educational focus, the feed-
back highlighting its potential for debugging and man-
aging code opens doors for its application beyond ed-
ucational contexts.

4. DSLDoodle as a Supplementary Tool: Feedback
consistently underscored the potential of an applica-
tion like DSLDoodle as a complementary resource in
Compiler Theory courses. Its integration could effec-
tively bridge the gap between theoretical lectures and
practical understanding, as well as potentially increase
engagement and interest in Compiler Theory courses.



UCT, September 11–06, 2023, Cape Town, South Africa Ahmed Ghoor

7 Future Work
Given the findings and the identified areas of improvement,
the following paths are suggested for future endeavours:

• Explanatory Features: To address issues the chal-
lenges surrounding the semantic analysis segment, ad-
ditional modules or tutorials can be integrated into the
tool to offer clearer explanations and demonstrations.

• Replication with a different participant pool: To
further test the hypothesis regarding the effectiveness
of DSLs in bolstering interest, the evaluation could
be carried out amongst students who were not previ-
ously given assignments on building Domain Specific
Languages while being taught compiler theory.

• Advanced Debugging Capabilities: Building upon
its practical potential, the tool can integrate advanced
debugging features, making it a more comprehensive
solution for developers working with DSLs.

• Back-end of the Compiler: Very little previous work
has been done on visualising compilation stages at the
back-end of the compiler (code optimisation and gen-
eration) [46]. Adding this was part of the initial plan
before the second researcher on the project had to
leave. Adding these capabilities to the tool in future
work could be a novel contribution to Compiler Edu-
cation.

8 Conclusions
The development and subsequent testing of DSLDoodle emerged
from a pressing need to address the inherent challenges faced
in teaching Compiler Theory, namely the conceptual com-
plexity and lack of interest. As highlighted throughout the
discussion, this tool not only showcased its potential to make
abstract concepts more comprehensible and increase interest
and engagement in the subject, but it also demonstrated a
degree of utility in practical contexts beyond education.

DSLDoodle is a potentially very effective tool in enhancing
Compiler Theory education. Its design ethos, grounded in
interactive visualisation and domain-specific languages, has
proven its worth. As education continues to evolve in the
digital age, tools with the conceptual approach of DSLDoodle
are poised to play a pivotal role in shaping how compiler
theory is taught and understood.
Future work could explore incorporating additional ex-

planatory features, replicating the evaluation with different
participant pools, incorporating more debugging features
to build the application into a developer tool and adding
visualisations of processes at the back end of the compilation
process.

References
[1] [n. d.]. Operating System Market Share Worldwide. https://gs.

statcounter.com/os-market-share Accessed: 01 September 2023.

[2] I Elaine Allen and Christopher A Seaman. 2007. Likert scales and data
analyses. Quality progress 40, 7 (2007), 64–65.

[3] M. Amiguet. 2010. Teaching compilers with python.
[4] N. Anderson and T. Gegg-Harrison. 2013. Learning computer science

in the ‘comfort zone of proximal development’. In Proceeding of the
44th ACM technical symposium on Computer science education. https:
//doi.org/10.1145/2445196.2445344 Preprint.

[5] M. Ben-Ari. 1998. Constructivism in computer science education. ACM
SIGCSE Bulletin 30, 1 (1998), 257–261.

[6] caleb531. 2023. Automata: A Python Library for Simulating Finite
Automata, Pushdown Automata, and Turing Machines. https://github.
com/caleb531/automata Accessed: 2023-05-08.

[7] F. Campagne. 2014. The MPS language workbench: volume I. Vol. 1.
[8] A.T. Corbett and J.R. Anderson. 2001. Locus of feedback control in

computer-based tutoring: Impact on learning rate, achievement and
attitudes. In Proceedings of the SIGCHI conference on Human factors in
computing systems. 245–252.

[9] John Deacon. 2009. Model-view-controller (mvc) architecture.
Online][Citado em: 10 de março de 2006.] http://www. jdl. co.
uk/briefings/MVC. pdf 28 (2009).

[10] Saumya Debray. 2002. Making Compiler Design Relevant for Students
Who Will (Most Likely) Never Design a Compiler. In Proceedings of
the 33rd SIGCSE Technical Symposium on Computer Science Education.
220–223.

[11] Alina Mihaela Dima and Maria Alexandra Maassen. 2018. From Wa-
terfall to Agile software: Development models in the IT sector, 2006
to 2018. Impacts on company management. Journal of International
Studies (2071-8330) 11, 2 (2018).

[12] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North,
and Gordon Woodhull. 2002. Graphviz—open source graph drawing
tools. In Graph Drawing: 9th International Symposium, GD 2001 Vienna,
Austria, September 23–26, 2001 Revised Papers 9. Springer, 483–484.

[13] M. Eysholdt and H. Behrens. 2010. Xtext: implement your language
faster than the quick and dirty way. In Proceedings of the ACM interna-
tional conference companion on Object oriented programming systems
languages and applications companion. 307–309.

[14] flet dev. 2022. flet. https://github.com/flet-dev/flet. GitHub repository.
[15] Flutter. 2021. Issue 79775. https://github.com/flutter/flutter/issues/

79775 GitHub repository issue.
[16] Diptiban Ghillani and Diptiben H Gillani. 2022. A perspective study

on Malware detection and protection, A review. Authorea Preprints
(2022).

[17] A. Ghoor. 2023. Literature Review: Domain Specific Language Teaching
Tool. (2023). University of Cape Town - Computer Science Department
- CSC4019Z.

[18] Alec Helbling, Duen Horng, et al. 2023. ManimML: Communicat-
ing Machine Learning Architectures with Animation. arXiv preprint
arXiv:2306.17108 (2023).

[19] T.R. Henry. 2005. Teaching compiler construction using a domain spe-
cific language. In Proceedings of the 36th SIGCSE technical symposium
on Computer science education. Preprint.

[20] Daryl HHepting. 2006. Ethics and usability testing in computer science
education. ACM SIGCSE Bulletin 38, 2 (2006), 76–80.

[21] C.E. Hmelo-Silver. 2004. Problem-based learning: What and how do
students learn? Educational Psychology Review 16, 3 (2004), 235–266.

[22] Ajay Jangra, Gurbaj Singh, Jasbir Singh, and Rajesh Verma. 2011. Ex-
ploring testing strategies. International Journal of Information Tech-
nology and Knowledge Management 4 (2011), 297–299.

[23] S.C. Johnson. 1975. Yacc: Yet another compiler-compiler. Vol. 32. Bell
Laboratories, Murray Hill, NJ.

[24] D. Kundra and A. Sureka. 2016. An experience report on teaching
compiler design concepts using case-based and project-based learning
approaches. In 2016 IEEE Eighth International Conference on Technology
for Education (T4E). Preprint.

https://gs.statcounter.com/os-market-share
https://gs.statcounter.com/os-market-share
https://doi.org/10.1145/2445196.2445344
https://doi.org/10.1145/2445196.2445344
https://github.com/caleb531/automata
https://github.com/caleb531/automata
https://github.com/flet-dev/flet
https://github.com/flutter/flutter/issues/79775
https://github.com/flutter/flutter/issues/79775


DSLDoodle: An Interactive Teaching Tool for Designing and Visualising DSLs UCT, September 11–06, 2023, Cape Town, South Africa

[25] M.E. Lesk and E. Schmidt. 1990. Lex A Lexical Analyzer Generator.
Technical Report.

[26] Thomas Mahatody, Mouldi Sagar, and Christophe Kolski. 2010. State
of the art on the cognitive walkthrough method, its variants and
evolutions. Intl. Journal of Human–Computer Interaction 26, 8 (2010),
741–785.

[27] Nikola Marangunić and Andrina Granić. 2015. Technology acceptance
model: a literature review from 1986 to 2013. Universal access in the
information society 14 (2015), 81–95.

[28] Mari Matinlassi. 2004. Evaluating the portability and maintainabil-
ity of software product family architecture: Terminal software case
study. In Proceedings. Fourth Working IEEE/IFIP Conference on Software
Architecture (WICSA 2004). IEEE, 295–298.

[29] J.J. McConnell. 1996. Active learning and its use in computer science. In
Proceedings of the 1st conference on Integrating technology into computer
science education - ITiCSE ’96. Preprint.

[30] J. Melton and A.R. Simon. 1993. Understanding the new SQL: a complete
guide. Morgan Kaufmann.

[31] M. Mernik, J. Heering, and A.M. Sloane. 2005. When and how to
develop domain-specific languages. ACM computing surveys (CSUR)
37, 4 (2005), 316–344.

[32] M. Mernik and V. Zumer. 2003. An educational tool for teaching
compiler construction. IEEE Transactions on Education 46, 1 (2003),
61–68.

[33] T.Æ. Mogensen. 2009. Basics of compiler design. Torben Ægidius
Mogensen.

[34] F. Moreno-Seco and M.L. Forcada. 1996. Learning compiler design as
a research activity. Computer Science Education 7, 1 (1996), 73–98.

[35] Kshirasagar Naik and Priyadarshi Tripathy. 2011. Software testing and
quality assurance: theory and practice. John Wiley & Sons.

[36] T. Parr. 2013. The definitive ANTLR 4 reference. 1–326 pages.
[37] V. Pech, A. Shatalin, and M. Voelter. [n. d.]. JetBrains MPS as a tool for

extending Java. In Proceedings of the 2013 International Conference on
Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools. 165–168.

[38] M. Procopiuc, O. Procopiuc, and S. H. Rodger. 1996. Visualization
and Interaction in the Computer Science Formal Languages Course
with JFLAP. In Technology-Based Re-Engineering Engineering Education
Proceedings of Frontiers in Education FIE’96 26th Annual Conference.
121–125.

[39] D. Raggett, A. Le Hors, and I. Jacobs. 1999. HTML 4.01 Specification.
Technical Report recommendation, 24. W3C.

[40] Zoran S. Rakic, Predrag Rakic, and Tomaž Petric. 2014. miniC Project
for Teaching Compilers Course. In ICIST 2014. 2.

[41] Ken Schwaber. 1997. Scrum development process. In Business Ob-
ject Design and Implementation: OOPSLA’95 Workshop Proceedings 16
October 1995, Austin, Texas. Springer, 117–134.

[42] D. Shaffer, W. Doubé, and J. Tuovinen. 2003. Applying Cognitive
load theory to computer science education. In Annual Workshop of the
Psychology of Programming Interest Group. 333–346.

[43] Ben Shneiderman and Catherine Plaisant. 2010. Designing the user
interface: Strategies for effective human-computer interaction. Pearson
Education India.

[44] Ali Hassan Sial, Syed Yahya Shah Rashdi, and Abdul Hafeez Khan.
2021. Comparative analysis of data visualization libraries Matplotlib
and Seaborn in Python. International Journal 10, 1 (2021).

[45] S. Stamenkovia and N. Jovanovia. 2021. Improving participation and
learning of compiler theory using educational simulators. In 2021 25th
International Conference on Information Technology (IT). Preprint.

[46] S. Stamenković, N. Jovanović, and P. Chakraborty. 2020. Evaluation
of simulation systems suitable for teaching compiler construction
courses. Computer Applications in Engineering Education 28, 3 (2020),
606–625.

[47] A. Tashildar, N. Shah, R. Gala, T. Giri, and P. Chavhan. 2020. Ap-
plication development using flutter. International Research Journal
of Modernization in Engineering Technology and Science 2, 8 (2020),
1262–1266.

[48] P. D. Terry. 1985. CLANG - a Simple Teaching Language. SIGPLAN
Notices 20, 12 (dec 1985), 54–63. https://doi.org/10.1145/382086.382627

[49] The MathWorks, Natick, MA 2012. Matlab. The MathWorks, Natick,
MA.

[50] André van der Hoek and Nicolas Lopez. 2011. A Design Perspective
on Modularity. In Proceedings of the Tenth International Conference
on Aspect-Oriented Software Development (Porto de Galinhas, Brazil)
(AOSD ’11). Association for Computing Machinery, New York, NY,
USA, 265–280. https://doi.org/10.1145/1960275.1960307

[51] Sonya E Van Nuland, Roy Eagleson, and Kem A Rogers. 2017. Edu-
cational software usability: Artifact or Design? Anatomical sciences
education 10, 2 (2017), 190–199.

[52] Guido Van Rossum, Barry Warsaw, and Nick Coghlan. 2001. PEP
8–style guide for python code. Python. org 1565 (2001), 28.

[53] Marielle Venturino and Yu-Chang Hsu. 2022. Using whatsapp to
enhance international distance education at the University of South
Africa. TechTrends 66, 3 (2022), 401–404.

[54] DaveWest, Mike Gilpin, TomGrant, and Alissa Anderson. 2011. Water-
scrum-fall is the reality of agile for most organizations today. Forrester
Research 26, 2011 (2011), 1–17.

[55] B.G.Wilson and P. Cole. 1996. Cognitive teaching models. InHandbook
of research in instructional technology, D. H. Jonassen (Ed.). 601–621.

A Appendix
A.1 Appendix A: Automaton and AST Diagrams
A.1.1 An Automata Diagram. Diagram generated from
r"[#][a-z]+"

A.1.2 An AST Diagram. Diagram generated from parser
rules that define a calculator for binary literals.

https://doi.org/10.1145/382086.382627
https://doi.org/10.1145/1960275.1960307


UCT, September 11–06, 2023, Cape Town, South Africa Ahmed Ghoor

A.1.3 A Semantic Analyis. Tables generated from a se-
mantic check of the following code:
val = 1100
result = var + 111000 * 110001
val = 101

A.2 Appendix B: Post-Task Survey
• Did you find the tool advantageous for the tasks you
performed?
– Short Answer

• Did the tool clarify your understanding of any com-
piler theory concepts?
– Short Answer

• In what ways, if any, did the tool prove beneficial for
you?
– Short Answer

• Do you think a tool with this conceptual approach
would have been a valuable asset in enhancing your
comprehension of the theory during your Compiler
course?
– Yes / No / Maybe

• Do you think a tool with this conceptual approach
would have been a valuable asset in increasing your
engagement and interest in compiler theory during
your Compiler Course?
– Yes / No / Maybe

• Were there conceptual shortcomings or limitations in
the tool that you noticed, and how do you think they
can be improved?
– Short Answer

• Whatwould you consider as themain conceptual strengths,
if any, of the tool?
– Short Answer

• On what platforms would you use a tool with this
conceptual approach? (Select all that apply):
– Native Windows Desktop Application
– Native Linux Desktop Application
– Native Mac Desktop Application
– Web Application
– Native Android Mobile Application
– Native iOS Mobile Application


	Abstract
	1 Introduction and Motivation
	1.1 What is the Project
	1.2 Importance of the Project

	2 Theoretical Background and Related Work
	2.1 Computer Science pedagogy
	2.2 Compiler Theory
	2.3 Approaches to teaching Compiler Theory
	2.4 Tools for creating DSLs
	2.5 Interactive Compiler Visualisations
	2.6 Review Summary

	3 Methods
	3.1 Project Aims
	3.2 Requirements
	3.3 System Design
	3.4 Evaluation Methodology

	4 Development and Implementation
	4.1 System Implementation
	4.2 Educational Visualizations

	5 Results and Discussion
	5.1 Results of System Tests
	5.2 Results of User Tests

	6 Discussion
	6.1 System Test Discussion
	6.2 Tool and Concept Evaluation Discussion
	6.3 Key Takeaways

	7 Future Work
	8 Conclusions
	References
	A Appendix
	A.1 Appendix A: Automaton and AST Diagrams
	A.2 Appendix B: Post-Task Survey


