
Deep Learning for Intrusion Detection on Encrypted
Traffic

Christopher Lamprecht
∗

LMPCHR002myuct.ac.za
University of Cape Town

Cape Town, Western Province, South Africa

Lucas Carr
∗

CRRLUC003myuct.ac.za
University of Cape Town

Cape Town, Western Province, South Africa

Keywords: Deep Learning, Malware, Intrusion Detection,

Networks, Classification

1 Project Description
The last three decades have seen networks and computers

become important tools, ubiquitous to modern life. The wide-

spread adoption of these technologies has added a new di-

mensions of risk, in the form of malicious software, or mal-
ware. Malware is a term which encompasses several distinct

types of software which share a defining feature of installing

themselves on a system without permission, with the inten-

tion to cause some harm[8] [13]. While there are numerous,

important malware sub categories, we have chosen to focus

attention on ransomware and botnet malware’s. A botnet

is defined as a network of hosts - or, bots, infected with a

malware which gives control of the system to a single oper-

ator, the botmaster [1]. The botmaster can send instructions

to be executed by hosts - enabling attacks such as Denial of

Service (DoS), Cryptomining, as well as providing compute

resources for other brute-force attacks [1]. Ransomware is a

type of malware that locks a user/organisation out of their

device(s), demanding a ransom to be paid to the attacker in

order to regain access. Since 2018, ransomware has become

one of the most disruptive and commonly seen forms of

malware [11]. Despite organisations storing valuable infor-

mation on shared network volumes, to allow for backups,

and reduce the effects of ransomware, it is still shown that

65% of these victims lose their data, despite this measure

[3]. Hence, it is becoming increasingly more important to

combat specifically ransomware, to reduce the affects it has

on individuals and organisations.

Historically, networks were secured against malware at-

tacks through the use of a Network Intrusion Detection Sys-

tem (NIDS). A NIDS, functioning correctly, is able to identify

and block malware - or, more generally, blacklisted traffic -

from entering the network. NIDS were capable of this due

to the deployment of a broad range of techniques to identify

and classify traffic: specifically, port analysis, deep packet

inspection (DPI) and statistical modelling of packet flow

[20] [4]. However, more recent standard practice around

networking has made it difficult for the aforementioned de-

tection systems to function well. Port numbers have become

a less reliable indicator of an application type; moreover,

port obfuscation is a technique that masks the destination

port of some traffic [20]. Similarly, the adoption of dynamic

IP addresses has also made it difficult for NIDS, given that

NIDS rely on their ability to associate traffic from specific

IPs with devices - a difficult task if the IP address changes

frequently. Furthermore, much of modern internet traffic

undergoes some encryption protocol; notably, in 2017 ≈ 75%

of analyzed malware made use of encryption [18]. Encrypted

packets make conventional DPI inspection impossible since

they require access to the payloads contained in packets -

which are now encrypted [14]. It is important to recognize

that these practices are useful, and in many cases, the reason

for their adoption is that they offer significant security ben-

efits - port obfuscation, for example, can prevent attackers

from targeting specific ports for specially created attacks,

since their required ports no longer function as expected.

As a result, novel technologies which perform intrusion

detection - capable of working within the previously estab-

lished networking practices - are required. Machine Learning

(ML) applications are examples of such technologies; how-

ever, many existing ML-based intrusion detection models re-

quire carefully engineered feature selection, which is a slow

and difficult task [9] [20] [15]. Deep learning algorithms have

been proposed as solutions to this problem - Lotfollahi et al.

[9]successfully implemented a convolutional neural network,

and stacked autoencoder for the purpose of encrypted traffic

classification. The motivation behind these approaches is

that deep learning algorithms are well suited to automatic

feature extraction, extensible to extracting features from

encrypted data [21]. Moreover, deep learning models are ca-

pable of reasoning with a much higher dimensionality than

shallowML counterparts - which enables them to learn more

complicated patterns [20]. The trade-off of this, however, is

that these algorithms can be significantly more expensive to

train. Frequently, this is increase in resource requirements is

ignored, as measurements such as accuracy are considered

more important metrics when evaluating a model.

2 Problem Statement
2.1 Research Problem
There have been demonstrations of using deep learning ap-

proaches for both encrypted network traffic classification,

and intrusion detection, which have produced encouraging

1

https://orcid.org/1234-5678-9012
https://orcid.org/0000-0001-7464-8422


Lamprecht, et al.

results. However, the literature regarding the union of these

two areas, specifically, intrusion detection on encrypted net-

work traffic, is limited. Furthermore, much of the literature

on deep learning applications to network classification have

not given substantial weight to the computational expense

of the models they train - opting to view model accuracy as

the most significant evaluation metric. We recognize the im-

portance of considering computational cost as an important

metric for evaluating models; in the case of implementing

one of these models on a network in an intrusion detection

system for real time classification of traffic, a more efficient

model would be ideal [20]. This is compounded by the as-

sumption that this software would be deployed on a system

without considerable compute power.

We will implement deep learning models as binary classi-

fiers, where the classification task is to recognize encrypted

network traffic as either malicious or benign. The scope of

malware that will be considered will be limited to instances

of ransomware, and botnet sub-types. Three deep learning

models will be implemented for both ransomware and botnet

traffic. A one-dimensional convolutional neural network (1D-

CNN) was chosen due to CNNs effectiveness at recognizing

patterns in high dimensional data [12]; additionally, CNNs

make use of sparsely connected layers, where the neurons

which make up a layer have an imposed limit on how many

outgoing connections they can have - this has been seen to

significantly reduce the complexity of the model without

a large impact on performance [8]. In addition, a stacked

autoencoder (SAE) will be implemented. SAEs work by en-

coding some data into a vector with a lower dimensionality

than the input, and then decoding this in order to rebuild a

representation of the input data from the encoded data. The

reduced dimensionality of the encoded data forces the en-

coding function to prioritise features important to the input

data, acting as a form of dimensionality reduction [20][8].

There is precedent for choosing this model, as successful

implementations of SAEs for classifying encrypted traffic

can be seen in Zeng et al. [20] and Lotfollahi et al. [9] work

on encrypted traffic classification.

The final model we have chosen to implement is a long

short-term memory (LSTM) network; we regard LSTMs as a

good option for this problem due to their ability to analyze

long-term relations in sequential data; this property makes

them suited to learning features from network flows, which

contain sequential, time-related data [20]. Zeng et al. [20]

implemented an LSTM to classify encrypted traffic, which

achieved an accuracy of 99.22%.

In addition to this, a simpler multi-layer perceptron will

be created to provide a basis for benchmarking these deep

learning models against less complex neural networks. The

motivation behind the decision to train the models for each

malware sub-type separate stems from the recognition that

the profiles of ransomware and botnet malware are distinct.

Moreover, given the scarcity of literature regarding this prob-

lem, breaking the challenge ofmalware detection into smaller

components might be more conducive to successful experi-

mentation.

2.2 Research Questions
This research project aims to determine how effective deep

learning algorithms are at detecting encrypted ransomware

and botnet traffic - where effectiveness is a measure of the

accuracy of a model balanced against the computational cost

of training that model. It should be noted that this ques-

tion, as well as the required experimentation steps, will be

undertaken for ransomware and botnet traffic individually.

1. How successful - where success is a measure of accu-

racy and F1-Score - are the implemented deep learning

models when classifying encrypted network traffic as

either benign or malicious traffic?

2. How successful - where success is a measure of accu-

racy and F1-Score - is the less complex MLP model

when classifying encrypted network traffic as either

benign or malicious traffic?

3. How expensive - where expense is a measure of train-

ing time, memory usage, and inference time - are the

DL models, relative compared to an MLP, for applica-

tions of classifying encrypted malware traffic?

4. Which of the implemented deep learningmodels, CNN,

LSTM and SAE produces the highest degree of accu-

racy?

3 Procedures and Methods
3.1 Dataset Selection
Despite the comprehensive amount of research that has been

done on malware detection using DL, the datasets used in

the evaluation of the past research are rarely made pub-

lic. On top of the limited amount of datasets available, the

datasets selected need to fulfil the following criteria: they

must contain encrypted network traffic, they must contain

either ransomware or botnet-specific traffic and they must

consist of relatively new (past 5 years) network traffic that

resembles the current flow of network traffic and malware.

Following these criteria and limitations, the datasets we have

found are the Open Access Dataset [2] for ransomware traf-

fic and the dataset provided by Modi et al [10].

The Open Access Dataset contains two types of samples,

infected encrypted traffic, captured whilst ransomware en-

crypts network-shared files and benign traffic, captured by

users using benign applications. The infected part of the

dataset contains 70 ransomware families, whose traffic was

captured over a 50-hour period of ransomware activity. The

2



Deep Learning for Intrusion Detection on Encrypted Traffic

dataset contains an eclectic variety of ransomware families,

so as to gather all the ways different ransomware traffic acts.

Additionally, the dataset contains ransomware traffic that

has had a high impact in the real world, all taken from the

years 2019 and up. The non-infected part of the dataset was

collected over a 2527-hour period (7640 files opened every

eight hours). This traffic does not contain any identifiable

information.

The dataset provided by Modi et al [10] only contains the

traffic from 20 ransomware, many of which are already in-

cluded in the Open Access Dataset [2], hence this dataset

will not be used.

For the botnet dataset, the Stratosphere Laboratory, and a

’sister project’ called Malware Capture Facility Project, pro-
vide an extensive repository of traffic capture datasets -

Stratosphere Laboratory calls these captures scenarios. Each
scenario consists of traffic from a specific malware, as well

as normal and background traffic, captured over a speci-

fied duration - where this duration ranges from a few hours

to several weeks. The inclusion of ’normal’ traffic is neces-

sary in order to allow the measuring of False Positives and
True Negatives [6]. We selected 25 relevant datasets from the

Stratosphere Laboratory’s repository to merge into a single

dataset for botnet traffic.

The data for each scenario was captured in a .PCAP file,

from which bidirectional network flows were extracted and

labelled. The labelled bidirectional network flows from each

scenario were generated from the .PCAP using the Argus
network tool, which supports the selection of which fields to

be included in the network flow - for example, including the

’pretrans’ field will included the percentage of packets re-

transmitted in the generated network flow. Around twenty

five of these ’scenarios’ were selected to be merged into a

single dataset, representing captures of seventeen different

botnet families, amongst other benign traffic. The number of

botnet families included was lower than desirable; however,

this is a consequence of there not being many publicly avail-

able datasets providing encrypted botnet traffic. Moreover,

the other qualities of this dataset - specifically, the fact that it

balances malware traffic with normal and background traffic,

as well as having clearly labelled bidirectional network flows

- make it desirable in spite of this shortcoming.

3.2 Pre-processing of Datasets
From the Open Access Dataset [2], three subsets will be

made, training, testing and unseen subsets. The training and

testing subsets will be made up of 50 hours of ransomware

traffic and 50 hours of benign traffic. Out of this, 80% will be

used for the training subset and 20% for the testing subset.

Ransomware traffic from 7 of the more recent ransomware

families will be used to create the unseen dataset, which will

be used to test the DL models on unseen ransomware traffic.

Lastly, a dataset, made up of 2477 hours of benign traffic will

be created that can be used to evaluate the number of false

positives that the models return. All the network traffic has

been pre-processed into the following format: each line is

one sample, each sample has 30 features, the label (1 if it is an

’infected’ sample and 0 if it is not) and the timestamp of the

last sample interval in the trace (in seconds since the begin-

ning of the trace). The features are separated by ’,’ because it

is a .csv file. The models will use IP payload bytes from each

packet as input (not including the label). This method al-

lows for analyzing both encrypted and unencrypted packets

and has been shown to improve traffic classification accu-

racy with deep learning models [9]. Shorter packets will be

padded with zeros to ensure they have the same number

of features. Normalizing the data will be done to algorithm

make the algorithms more robust and reduce training time,

which could save valuable resources when working with

low-resource networks. The first few bytes of the vector will

be masked to ensure that the models do not learn informa-

tion related to the port numbers. This will also save more

resources.

Each dataset from the Stratosphere Laboratory contains

the traffic capture in .PCAP files, as well as a labelled, bidirec-

tional network flow. The network flows were generated with

the Argus tool, and contain 100 fields. These fields capture

measurements of a network traffic flow, and provide infor-

mation corresponding to features such as the duration of

the flow, source/destination port numbers and IP addresses,

network protocol, and a label of whether the flow represents

benign or malicious traffic. The selected datasets - which

each contain a network flow, and a representation of this net-

work flow in a .csv format - will be amalgamated into a single

dataset in the form of another .csv file. The final dataset will

be read in as a dataframe, where fields not considered to be

important will be dropped. After this process, the data will

be sectioned into x_train, y_train, x_test, y_test, x_validate,
y_validate. The purpose of this sectioning of the data is for
both cross-validation, as well as separating the features of a

flow from the label of the flow - for example, x_trainwill con-
tain all the fields of a network flow, while y_train contains

the label. Together, x_train and y_train make up a single

sample in the dataset. The training set will consist of 80% of

the original dataset, while testing and validation sets will be

10% each - this ratio was inspired by the finding of Gholamy

et al. [7].

For both the ransomware and botnet dataframes, after

the pre-processing steps have been completed, the training,

testing, and validation sets will be reshaped into tensors of

appropriate dimension for each respective model; for exam-

ple, a 2D-CNN requires a 4D tensor.

3



Lamprecht, et al.

3.3 Benchmarks and Evaluation
To determine whether using DL models is justified, a Multi-

Layer Perceptron (MLP) will be utilized as a benchmark to

establish the minimum level of performance required. The

MLP is chosen due to its simple structure and can be used

as a good starting point to establish a baseline performance.

Firdausi et al. [5] demonstrated the success of using an MLP

for malware detection (91% accuracy), further showing its

usefulness as a benchmark model. Additionally, the MLP

can be trained and tested using the same input data that is

given to the DL models. In contrast, other ML models might

require a different format of input data, and not be able to

work with the high dimensionality of the network traffic.

Due to the DL models having more parameters than tra-

ditional ML models, they can be more computationally ex-

pensive. The trade-off between computational complexity

and improved ability to learn patterns in the data will also

be tested using the benchmark established by the MLP ar-

chitecture. If the DL models attain higher accuracies but are

too computationally expensive, it may be argued that the

ML model is a better option for resource-constrained areas

such as community networks.

In terms of performance, the ML and DL models will be

evaluated based on predictive performance and computa-

tional efficiency.

The metrics that will be looked at to test the predictive

performance are accuracy, precision, recall and F1 score.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

The metrics that will be looked at for computational effi-

ciency will be inference time, memory requirements and

training time. Since the aim of the system is to detect mal-

ware in real-time, it is important that the system can do this

quickly. Hence, the time taken to make predictions on new

data will be used to measure computational efficiency. The

models need to minimise the amount of memory needed to

make these predictions. Therefore, the memory usage of the

models will be evaluated. This will be achieved by measuring

the memory that each model implementation uses. Addition-

ally, the training time of the models will be measured using

wall-clock time and batch time.

3.4 Implementation of ML and DL models
Our ML and DL models will be implemented using Python 3.

Python was chosen due to its simplicity, flexibility and most

of all its powerful libraries that can be used to implement the

models efficiently. TensorFlow will be used with the Keras
API running on top of it. These tools provide an easy, yet

efficient way of building and testing the models, without

sacrificing flexibility and allow for improved memory re-

quirements [19].

Pandas will be used for data manipulation and analysis,

providing easy-to-use data structures and analysis tools,

and improving efficiency when working with large datasets.

Numpy will add support for large, multi-dimensional arrays

and matrices by providing mathematical functions to operate

on these data structures.

The memory used by the models will be tested using

Python’s trace malloc.

Lastly,Matplotlib will be used as a plotting library, provid-
ing helpful visualisations for the data analysis.

3.5 Hyperparameter Tuning
Hyperparameters are modifiable parameters that are not

learned from the data, but set by the user, before training.

The values of the hyperparameters control the learning pro-

cess, and selecting the right ones is essential to improve

performance. Some of these hyperparameters are learning

rate, epoch size, number of hidden layers, number of neurons

in each layer, etc.

We will choose a random search to find the best values

for the hyperparameters. This involves randomly selecting

hyperparameter values from a predefined range in order to

find the best combination of hyperparameter values. This

technique will allow us to explore a wide range of values.

The random search will be performed on Python using the

Sci-kit machine learning framework.

4 Ethical, Professional and Legal Issues
With regards to the datasets, they can contain sensitive user

network information, making consent to use the data es-

sential. Seeing as the datasets we will be using are made

public, this should not be an issue but must be confirmed.

Additionally, there is always a risk of bias in DL models and

datasets, thus, making it important to ensure the algorithms

and data do not perpetuate bias and/or discriminate against

certain groups, individuals or networks. An example of this

would be data that only contains one form of malware or

algorithms trained on data specific to only one network type.

4



Deep Learning for Intrusion Detection on Encrypted Traffic

Any negative consequences of the project should be taken

responsibility for. This includes but is not limited to false

positives or negatives, missed malware detection and incor-

rect malware detection. Measures should be put in place to

mitigate these risks.

5 Related Work
Zeng et al. [20] present a framework for a deep learning-

based network encrypted traffic classification and intrusion

detection framework. In the paper, three deep-learning algo-

rithms are tested and employed. These are namely, a Convo-

lutional Neural Network (CNN), a Long Short-Term Memory

(LSTM) and a Stacked Auto-Encoder (SAE). The authors

also address storage and computational expense factors by

providing a lightweight framework. The paper accurately

classifies encrypted traffic, with the CNN obtaining an accu-

racy of 99.85%. While LSTM obtains an accuracy of 99.41%

for intrusion detection. The paper does not specifically target

ransomware and hence may come short when detecting the

vast amounts of ransomware families.

Modi et al. [10] performed ransomware detection using

machine learning on encrypted network traffic. The au-

thors mention the lack of datasets containing encrypted ran-

somware network traffic and hence solve this by collecting

a dataset that was made public [16]. Three machine learning

classifiers were used, support vector machine (SVM), random

forest and logistic regression. In the results, it is shown that

the random forest performs best, obtaining an accuracy of

99.9% and a false-positive rate of 0%. These results are ex-

ceptional, however, these machine-learning approaches are

computationally intensive and require large storage, making

them less ideal for resource constrained nodes.

Papadogiannaki et al. [14], recognizing the difficulty NIDS

have when handling encrypted traffic, propose an approach

which uses signatures based on payload sizes. This approach

attempts to generate a comprehensive language of malicious

traffic signatures, where a signature is defined as a sequence

of consecutive payload sizes; network flows are inspected

to see if they contain these signatures [14]. For example,

Papadogiannaki et al. [14] recognized that should a network

flow contained a sequence of four packets of respective sizes

22, 976, 48, 16, an intrusion attempt of a Hydra password

cracking tool has taken place. An important aspect of this

approach is the size of the signature - or, how many payload

sizes a signature refers to. If a signature is too short, it is likely

to result in false positives; false positives are particularly un-

desirable for IDS since they undermine the confidence of the

system, which can lead to ignoring real intrusion events.

A common approach to traffic classification and network

intrusion is payload inspection. This involves inspecting the

payload of each packet. Previously, methods involve using

regular expressions as signatures for the different protocols.

These methods struggle when the regular expressions need

to be updated for each new protocol released. Moreover,

these methods become less efficient, or unusable when deal-

ing with encrypted traffic. Sherry et al. [17] proposed a sys-

tem to perform deep packet inspection with encrypted data.

Although the paper only deals with the HTTPS protocol and

does not use deep learning, the importance of working with

encrypted traffic is highlighted.

6 Anticipated Outcomes
6.1 DL Models
By the end of this project, three models will be trained and

tested. These models will be a combined SAE and CNN (as

one model), an LSTM and an MLP. The MLP will be used as

an ML benchmark test against the DL models. The models

will be able to detect ransomware and worms from both

encrypted and unencrypted traffic. Their performance (accu-

racy) and computational efficiency will be tested to conclude

how effective these models are.

6.2 Expected Impact
This section will discuss the expected impact the project will

have on research by applying DL models to ransomware and

worm detection with encrypted network traffic.

6.2.1 Expected Results. Research on malware detection

is abundant, but little focuses on detecting ransomware

and worms. Our goal is to achieve high accuracy and fast

detection times for these types of malware by using opti-

mal DL models with suitable hyperparameters. Similar re-

search [20][10] achieved over 90% accuracy when detect-

ing/classifying malware, and we aim for similar results. Our

DL models should be robust to new strains and outperform

traditional machine learning approaches in terms of speed,

accuracy, and resource consumption.

6.2.2 Effects. This project can impact various stakehold-

ers, including the cybersecurity community, businesses, and

individuals affected by ransomware or worms. The project

aims to minimize these risks and create opportunities for

further work in ransomware and worm detection with en-

crypted network traffic. It also contributes to the ongoing

development of DL methods for malware detection, with

broader implications for DL in other cybersecurity applica-

tions and fields.

6.3 Key Success Factors
In order to ensure the success of the project, a set of crite-

ria must be met. Primarily, an assessment of the suitability

of deep learning (DL) as a means of detecting ransomware

and worms with encrypted network traffic is required. The

5



Lamprecht, et al.

effectiveness of DL models must be evaluated based on vari-

ous metrics, including but not limited to accuracy, computer

resource consumption, detection time, false positives and

negatives. The targeted benchmark for accuracy is a thresh-

old of greater than 90% with minimal utilization of computa-

tional resources. To achieve the aforementioned objectives,

the DL models will undergo rigorous testing. By conducting

exhaustive experiments, the research questions should be

answered with certainty.

7 Project Plan
7.1 Risks
During the course of the project, there are certain risks that

we may face. Appendix A contains our risk assessment doc-

ument where we highlight these risks. In the document, the

risks are mentioned, their impact and probability of happen-

ing are shown, and lastly, ways of mitigating and managing

these risks are recommended.

7.2 Timeline
The project timeline commences on the 22nd of February and

ends on the 24th of October with a School of IT showcase.

The complete timeline for the project is shown in a Gantt

chart in Appendix A. The Gantt chart gives a breakdown of

the tasks (both individual and group work) to be completed

throughout the timeline of the project. The Gantt chart en-

sures that we start on our tasks early, allowing us ample time

to get feedback and make necessary changes.

7.3 Resources Required
7.3.1 Software. For the software, we will be using Python
3 to implement our DL models. The Python libraries we will

use are Numpy, TensorFlow, pandas, PyTorch and Matplotlib.
Scikit will be used for hyperparameter training. The Python

code will be implemented and executed on Google Colab to
allow us access to more powerful GPUs, and hence faster

training. Another essential piece of software are the datasets

that we will use to train our models on. The datasets we will

be using are the Open Access Dataset [2] discussed in Section

3.1, and a combination of datasets from the Stratosphere

Laboratory [6].

7.3.2 Hardware. Most of thework required for this project

will be completed on personal laptops. However, for the more

resource-intensive tasks such as training and testing, Google

Colab will be used for access to their more powerful GPUs.

This will allow for faster training, testing and detecting times.

Additionally, some training on the DL models may be per-

formed on our supervisor’s more powerful computer.

7.3.3 People. The people required to complete this project

are the two authors of this proposal, Chris Lamprecht and

Lucas Carr.

7.4 Milestones
Due Date Deliverable
20 March Literature Review Due

21 April Full Project Proposal

25 April Project Proposal

Presentation

2 May Revised Project Proposal

12 May Ethics Application

17 July Project Progress

Demonstration

28 August Complete Draft of final

paper

11 September Project Paper Final

Submission

15 September Project Code Final

Submission

26 September Final Project Demonstration

9 October Poster Due

16 October Website Due

24 October School IT Showcase

7.5 Deliverables
Below is a list of the deliverables that will be accumulated

throughout the course of the project.

• Two Literature Reviews discussing the background of

the project and previous deep learning approaches to

the detection of malware in encrypted network traffic.

• A Project Proposal

• A software feasibility demonstration

• A complete final paper that discusses and evaluated

the deep learning approaches and their success to-

wards detecting ransomware and worms within en-

crypted network traffic.

• A project poster highlighting the key aspects of our

research objectives

• A web page that contains the details and deliverables

of our project

7.6 Work Allocation
The project involves shared and individual work stages. Both

group members will implement the MLP benchmark model,

while Lucas and Chris will individually build, tune, test and

evaluate DL models for detecting worms/botnets and ran-

somware, respectively. As each partner works with different

datasets, they will handle their data pipeline, including data

organization and labelling.

6



Deep Learning for Intrusion Detection on Encrypted Traffic

8 Appendix
8.1 Risk Matrix

Risk Description Impact (1-4) Probability (1-5) Mitigation Management
The project not being

completed in the re-

quired time

4 2 Work daily on the

project Be sure to meet

all deadlines

Constant communica-

tion with partner and

supervisor, to ensure

work is being done

One partner not con-

tributing their weight

3 2 Keep up to date with

each other’s work, and

help the other partner

get up to speed if they

fall behind

i. Keep an updated to-

do list

ii. Follow the Gantt

chart

Poor communication

with partner

3 1 Maintain a good re-

lationship with your

partner, and adjust to

each other’s schedules

Have daily/semi-daily

meetings to discuss

what work has and is

being done

Poor communication

with the supervisor

4 2 i.Maintain a respectful

relationship with the

supervisor

ii. Ensure that we lis-

ten to the supervisor’s

advice

Keep consistency with

the weekly meetings

and arrange additional

meetings if needed.

Partner falls sick and

is unable to do their

work

2 2 i. Do not leave work

until the last minute,

so that if your partner

does fall ill, they will

have time to recover

ii. Keep up to date with
your partner’s work so

that you can fill in gaps

Keep up constant com-

munication between

partners to see how

their well-being is.

We are unable to

answer our research

questions

4 1 i. Ensure that research
questions are specific

enough so that their

goals are clear and

reachable

ii. Start working on

the project early to in-

crease the time needed

to answer the ques-

tions

Track Progress

Our models do not

perform as we expect

them to

3 4 Ground the problem

statement, and hypoth-

esis in reality - this

might be based off find-

ings of related works

The case where our

findings do not match

our expectations is not

necessarily a bad re-

sult; since these find-

ings could provide use-

ful insight into the dif-

ficulty of the problem

7



Lamprecht, et al.

8.2 Gantt Chart

8



Deep Learning for Intrusion Detection on Encrypted Traffic

References
[1] Abu Rajab, M., Zarfoss, J., Monrose, F., and Terzis, A. A mul-

tifaceted approach to understanding the botnet phenomenon. In

Proceedings of the 6th ACM SIGCOMM Conference on Internet Measure-
ment (New York, NY, USA, 2006), IMC ’06, Association for Computing

Machinery, p. 41–52.

[2] Berrueta, E., Morato, D., Magaña, E., and Izal, M. Open repository

for the evaluation of ransomware detection tools. IEEE Access 8 (2020),
65658–65669.

[3] Berrueta, E., Morato, D., Magaña, E., and Izal, M. Crypto-

ransomware detection using machine learning models in file-sharing

network scenarios with encrypted traffic. Expert Systems with Appli-
cations 209 (2022), 118299.

[4] Cheng, Q., Wu, C., Zhou, H., Kong, D., Zhang, D., Xing, J., and

Ruan, W. Machine learning based malicious payload identification

in software-defined networking. Journal of Network and Computer
Applications 192 (2021), 103186.

[5] Firdausi, I., Erwin, A., Nugroho, A. S., et al. Analysis of machine

learning techniques used in behavior-based malware detection. In

2010 second international conference on advances in computing, control,
and telecommunication technologies (2010), IEEE, pp. 201–203.

[6] Garcia, S., Grill, M., Stiborek, J., and Zunino, A. An empirical

comparison of botnet detection methods. computers & security 45
(2014), 100–123.

[7] Gholamy, A., Kreinovich, V., and Kosheleva, O. Why 70/30 or 80/20

relation between training and testing sets: A pedagogical explanation.

[8] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.
[9] Lotfollahi, M., Jafari Siavoshani, M., Shirali Hossein Zade, R.,

and Saberian, M. Deep packet: A novel approach for encrypted

traffic classification using deep learning. Soft Computing 24, 3 (2020),
1999–2012.

[10] Modi, J., Traore, I., Ghaleb, A., Ganame, K., and Ahmed, S. De-

tecting ransomware in encrypted web traffic. In Foundations and
Practice of Security: 12th International Symposium, FPS 2019, Toulouse,
France, November 5–7, 2019, Revised Selected Papers 12 (2020), Springer,

pp. 345–353.

[11] Mott, G., Turner, S., Nurse, J. R., MacColl, J., Sullivan, J.,

Cartwright, A., and Cartwright, E. Between a rock and a hard

(ening) place: Cyber insurance in the ransomware era. Computers &
Security 128 (2023), 103162.

[12] O’Shea, K., and Nash, R. An introduction to convolutional neural

networks. arXiv preprint arXiv:1511.08458 (2015).
[13] Pachhala, N., Jothilakshmi, S., and Battula, B. P. A comprehen-

sive survey on identification of malware types and malware classifi-

cation using machine learning techniques. In 2021 2nd International
Conference on Smart Electronics and Communication (ICOSEC) (2021),
pp. 1207–1214.

[14] Papadogiannaki, E., Tsirantonakis, G., and Ioannidis, S. Network

intrusion detection in encrypted traffic. In 2022 IEEE Conference on
Dependable and Secure Computing (DSC) (2022), pp. 1–8.

[15] Rezaei, S., and Liu, X. Deep learning for encrypted traffic classi-

fication: An overview. IEEE communications magazine 57, 5 (2019),
76–81.

[16] Sherif Saad, Issa Traore, A. A. G. B. S. D. Z. W. L. J. F. P. H. Detecting

p2p botnets through network behavior analysis and machine learning.

100013.

[17] Sherry, J., Lan, C., Popa, R. A., and Ratnasamy, S. Blindbox: Deep

packet inspection over encrypted traffic. In Proceedings of the 2015
ACM conference on special interest group on data communication (2015),
pp. 213–226.

[18] Wang, Z., Fok, K.W., and Thing, V. L. Machine learning for encrypted

malicious traffic detection: Approaches, datasets and comparative

study. Computers & Security 113 (2022), 102542.
[19] Weisz, S., and Chavula, J. Deep learning traffic classification in

resource-constrained community networks. 22.

[20] Zeng, Y., Gu, H., Wei, W., and Guo, Y. 𝑑𝑒𝑒𝑝 − 𝑓 𝑢𝑙𝑙 − 𝑟𝑎𝑛𝑔𝑒 : a deep

learning based network encrypted traffic classification and intrusion

detection framework. IEEE Access 7 (2019), 45182–45190.

[21] Zheng, W., Zhong, J., Zhang, Q., and Zhao, G. Mtt: an efficient

model for encrypted network traffic classification using multi-task

transformer. Applied Intelligence 52, 9 (2022), 10741–10756.

9

http://www.deeplearningbook.org

	1 Project Description
	2 Problem Statement
	2.1 Research Problem
	2.2 Research Questions

	3 Procedures and Methods
	3.1 Dataset Selection
	3.2 Pre-processing of Datasets
	3.3 Benchmarks and Evaluation
	3.4 Implementation of ML and DL models
	3.5 Hyperparameter Tuning

	4 Ethical, Professional and Legal Issues
	5 Related Work
	6 Anticipated Outcomes
	6.1 DL Models
	6.2 Expected Impact
	6.3 Key Success Factors

	7 Project Plan
	7.1 Risks
	7.2 Timeline
	7.3 Resources Required
	7.4 Milestones
	7.5 Deliverables
	7.6 Work Allocation

	8 Appendix
	8.1 Risk Matrix 
	8.2 Gantt Chart

	References

