Deep Learning for Malware Detection

Malware Detection is the process of identifying malicious software within a network, aiming to maintain the integrity, confidentiality, and availability of information. Deep Learning offers an approach which does not face the same limitations as classical detection systems. DL4MD presents an evaluation of deep learning models when tasked with detecting botnet and ransomware traffic.

Botnet Detection

When we reduce the feature space in botnet detection models, we observed a noticeable decline in their ability to accurately classify malware. Although these models perform well when tasked with identifying known malware, they faced challenges in a proto zero-day testing environment, which is designed to simulate attacks from yet-to-be-discovered or unknown malware types. Among all the models we tested, the deep Convolutional Neural Network (CNN) was the most effective in terms of its ability to generalize to these unknown botnets.

While we found that a reduction in feature space had an associated decline in memory usage, there was no apparent effect on inference time.

Model	Memory Use (mb)			Inference Time (ms)		
Features	23	37	74	23	37	74
CNN v1	422.39	422.91	465.89	0.0002	0.0002	0.0003
CNN v2	435.83	443.78	526.16	0.0002	0.0002	0.0003
٩E	457.02	428.02	457.02	0.0002	0.0002	0.0002
AE+CNN	475.42	485.50	490.94	0.0003	0.0002	0.0002
MLP	416.67	422.70	446.05	0.0002	0.0002	0.0002

Ransomware Detection

The LSTM model performs consistently well across all input sizes (5, 15, 20, 30). Increasing the amount of features used does not result in increased accuracy.

An increased number of features inputted into the model results in increased memory usage. The LSTM model achieves the lowest memory usage overall.

There is no universally perfect model, and a model selection should be tailored to the needs of the network.

■5 ■15 ■20 ■30

2D CNN

1D CNN

MIP

Model	False Positives	False Negatives	Inference Time (ms)
MLP	629	229	23
1D CNN	2	48	34
2D CNN	0	11353	37
LSTM	530	19	89
Window LSTM	1054	75	26

Conclusions

Our findings indicate that Deep Learning models are capable of detecting malware to an acceptible degree of accuracy. Moreover, we observed larger feature spaces being associated with increased memory utilisation and better classification performance. This highlights the need for more careful feature selection for less complex datasets which are yield the same classification performance. Finally, we recognise promising proof of concept that malware classifiers are able to generalise from their training data to entirely unknown malware famiilies.

University of Cape Town Department of Computer Science www.sit.uct.ac.za

Supervisors Dr. Josiah Chavula Prof. Geoff Nitschke

Authors Lucas Carr Cristopher Lamprecht

