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Abstract
A recent increase in ransomware attacks has necessitated

tools that can detect threats within a computer network.

Machine learning (ML) has been proposed as a solution to

detect ransomware within network traffic. However, whilst

many ML models are developed to obtain high classification

accuracy, we also test their runtime memory performance

and inference times. We further test the effect training the

models on a reduced feature space has on the classification

and computational metrics. In this study, we evaluate multi-

layer perceptrons (MLP), 1-dimensional and 2-dimensional

convolutional neural networks (CNN) and long short-term

memory (LSTM). Experiments are performed to give insight

into each model’s ability to reduce its false positives (FPs).

We find a consistent increase in memory usage as the feature

space increases and that the lowest amount of FPs is obtained

when using 50% to 66% of the features. The study evaluates

17 models for their effectiveness in classifying ransomware

network traffic. Efficiency in this context is considered a

trade-off between accuracy, false positives, runtime memory

usage, and inference time.

Keywords: Deep Learning, Malware, Ransomware, Network

Traffic

1 Introduction
While cyberattacks have been prevalent for approximately

35 years, the recent increase in technology users has am-

plified the scope of technology threats, necessitating the

development of new methods of protection [35]. Malicious

software (malware), a type of cyberattack, is a term for soft-

ware installed on a user’s computer without their consent,

intending to cause harm
1
. Ransomware is a form of malware

that encrypts a user’s files/devices, denying them access to

these files/devices until a sum of money (the ransom) is paid

[34]. In 2022, there were 493 million ransomware attempts,

a 162.29% increase since 2019
2
. Richard et al. [43] reported

that this is due to attackers now being able to use Bitcoin to

receive payments, mitigating the risk of the payments being

traced back to them. Since then, Mott et al. [32] have shown

1https://www.cisco.com/site/us/en/products/security/what-is-
malware.html
2https://www.statista.com/statistics/494947/ransomware-attacks-per-
year-worldwide/#:~:text=In%202022%2C%20organizations%20all%
20around,nearly%20155%20million%20cases%2C%20respectively.

that ransomware has been the most common form of mal-

ware. Ransomware has also been the cause of catastrophic

monetary loss, projected to reach $265 billion (USD) by the

year 2031
3
. Certain variants, like the WannaCry worm [30],

have even posed potential risks to human life. While many

tools and practices exist for malware detection, this study

primarily focuses on the detection of ransomware due to the

seriousness of its impact.

Historically, networks were secured against malware at-

tacks through a Network Intrusion Detection System (NIDS),

a technology used for detecting vulnerability exploits on a

network and reporting them to the administrator. A function-

ing NIDS can identify and block malware - or, more generally,

blacklisted traffic - from entering the network. NIDS could

do this by deploying a broad range of techniques to iden-

tify and classify traffic: port analysis, deep packet inspection

(DPI) and statistical modelling of packet flow [8]. However,

more recent standard practice around networking has made

it difficult for the aforementioned detection systems to func-

tion well. Port numbers have become a less reliable indicator

of an application type due to port obfuscation. This tech-

nique masks the destination port of some traffic by selecting

random or changing port numbers for each communication

session [56]. Similarly, the adoption of dynamic IP addresses -

IP addresses that change over time - has also made it difficult

for NIDS, given that NIDS rely on their ability to associate

traffic from specific IPs with devices. Furthermore, much of

modern internet traffic undergoes some encryption protocol;

notably, in 2017 ≈ 75% of analyzed malware used encryption

[52]. Encrypted network packets, which are network packets

that have been encoded or scrambled before being transmit-

ted over a network, present a challenge for conventional

DPI inspection, as they necessitate access to the payloads

contained within the packets, which are now encrypted. [40].

Novel technologies that perform intrusion detection - ca-

pable of working within the previously established network-

ing practices - are required. Machine Learning (ML), a subset

of artificial intelligence (AI) that utilises data and algorithms

to replicate human learning, is a prime example of these

technologies. However, many existing ML-based intrusion

3https://cybersecurityventures.com/global-ransomware-damage-costs-
predicted-to-reach-250-billion-usd-by-2031/#:~:text=Ransomware%
20will%20cost%20its%20victims,payloads%20and%20related%
20extortion%20activities.
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detection models require carefully engineered feature selec-

tion, a slow and difficult task [23] [56] [42]. Deep learning

(DL) algorithms have been proposed to address this challenge.

These are neural networks consisting of many hidden layers

between the input and output, enabling the model to un-

derstand more complex patterns in the data. This makes DL

algorithms well-suited for automatic feature extraction, mak-

ing them adaptable to extracting features from encrypted

data [57]. Moreover, DL models can reason with a much

higher dimensionality than shallow ML counterparts, en-

abling them to learn more complicated relationships [56].

However, The trade-off is that these algorithms can be signif-

icantly more expensive to train and run due to their network

structures’ large number of parameters. Frequently, this in-

crease in resource requirements is ignored, as measurements

such as accuracy are considered more important metrics

when evaluating a model. As a result, deploying these DL

models on resource-constrained devices like IoT and smart

devices, where real-time execution is essential, can present

significant challenges [28]. Similarly, resource-constrained

networks, such as community networks, require lightweight

DL models that are efficient in terms of memory resource

usage whilst keeping a high classification accuracy [53].

This study aims to examine both qualitymetrics - accuracy,

false positives (FPs), and false negatives (FNs) - and footprint

metrics - memory consumption and inference time - related

to detecting ransomware within encrypted network traffic

using deep learning models. Additionally, the models are

trained with inputs of varying lengths (network packets of

different sizes in bytes) to assess the impact of input size on

the quality and footprint metrics. The main objectives of this

study are:

1. Assess the performance of MLP, 1D CNN, 2D CNN,

and LSTM models in classifying encrypted network

traffic as benign or ransomware, considering the accu-

racy, false positive/negative rate, inference time and

runtime memory usage of the models.

2. Investigate the impact of using a window of samples

on the accuracy, false positive rate, inference time

and runtime memory consumption on an LSTM by

grouping multiple samples into one sample.

3. Investigate the impact of dimensionality reduction on

accuracy, false positive rate, inference time and run-

time memory consumption across the deep learning

architectures (MLP, 1D CNN, 2D CNN, and LSTM) by

decreasing the feature space from 30 samples down

to 20, 15 and 5 samples.

The rest of the paper is structured as follows: Section

2 discusses some of the topics used in this study. Section

3 discusses the related work on malware and ransomware

detection. Section 4 describes the dataset, evaluation criteria,

andmodel architectures used in the paper. Section 5 discusses

the experiments performed to answer the research objectives.

Section 6 presents the results of the experiments and what

they imply. Lastly, Section 7 present the conclusions of the

paper.

2 Background
2.1 Multi-Layer Perceptron (MLP)
A Multi-Layer Perceptron (MLP), often referred to as a feed-

forward artificial neural network (ANN), consists of input,

hidden and output layers. These layers consist of intercon-

nected nodes, where each node processes the input data and

passes it to the next layer using weighted connections. At

every node, except for the input nodes, a weighted sum of all

previous nodes is passed into a non-linear activation func-

tion [53]. For binary classification, the outputs of the last

layer are passed into a sigmoid function, which maps the

output to a value between 0 and 1.

MLPS can learn relationships and patterns between linear

and non-linear data [15]. Despite this, an MLP can struggle

to learn more complex relationships and patterns within

data, highlighting its use as a baseline model. [10]

2.2 Convolutional Neural Network (CNN)
A convolutional neural network (CNN) is mainly used for

image pattern recognition tasks, excelling in processing and

analyzing visual data. They comprise three layers: convolu-

tional, pooling, and fully connected layers[37]. The convolu-

tion layer employs image kernels containing a limited set of

trainable parameters to capture significant spatial features

from the input. The pooling layer reduces the spatial dimen-

sionality of the data, and the fully connected layer consists

of neurons connected to every neuron in the successive layer.

CNNs are known for recognising patterns in highly dimen-

sional data [38]. Additionally, CNNs make use of sparsely

connected layers, where the neurons that make up a layer

have an imposed limit on how many outgoing connections

they can have - this has been seen to significantly reduce the

complexity of the model without a large impact on perfor-

mance [18]. 1D data can be applied to CNNs by converting

the data into an image format; for example, a network traffic

sample with 30 features can be converted into a 5 × 6 image.

2.3 Long Short-Term Memory (LSTM)
A Long Short-Term Memory (LSTM) model is a branch of

recurrent neural networks (RNN) that can capture long-term

dependencies in sequential data. Hochreiter et al. [19] in-

troduce the LSTM as a solution to the vanishing gradient

problem - a problem found during the training of neural net-

works where the gradients that update the network become

extremely small. At each state of an LSTM, the output of the

previous state is coupled with the input to produce an out-

put and the next state. LSTMs are well suited to sequential

data, time series, and any data where relationships between

samples are present.

2
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2.4 Encrypted Network Traffic
Network traffic is the data, called network packets, that flow

between devices on a computer network, allowing the de-

vices to communicate. The packets consist of the transmitted

content, called the payload, and the features necessary for

delivering the packets to their correct destination. Encryp-

tion happens when the data present in the network traffic

is encoded or scrambled using cryptographic algorithms

[26]. This is done to make communications more secure and

to protect user privacy. However, some malware uses this

encryption to hide its activity, disguising itself as safe en-

crypted traffic [39]. Encrypted network traffic also presents

challenges for traditional traffic classification approaches

because they rely on the payload, which is now scrambled,

making it difficult to extract valuable information [45]. ML

methods have been proposed to overcome this, as they can

still learn information in encrypted data [6].

Vinayakumar et al. [49] show that network traffic often

contains complex relationships and dependencies among

different packets. Ransomware traffic is known to have be-

havioural characteristics, with different ransomware strains

producing different network trafficwith unique relationships

between the network packets [31].

3 Related Work
3.1 Traditional Approaches to Traffic Classification

and Malware Detection
Due to the increase in malware and network intrusions, de-

tecting such malware before it inflicts substantial damage

has become a popular practice for protecting a computer

network. A common approach to network intrusion detec-

tion is deep packet inspection (DPI) [22][46]. This involves

inspecting the payload of each packet. Previously, methods

involved using regular expressions as signatures for the dif-

ferent protocols. However, these methods struggle when the

regular expressions need to be updated for each new proto-

col released. Moreover, these methods become less efficient

or unusable when dealing with encrypted traffic. To combat

this, Sherry et al. [46] proposed a system to perform DPI

with encrypted data through encryption schemes. However,

adopting this system has a large overhead, as the system

requires a different approach to the Hyper-Text Transfer Pro-

tocol (HTTPS), one of the most commonly used protocols in

network traffic.

To overcome the problems of DPI, ML has been proposed

as a method to classify network traffic and, hence, detect

malware. Modi et al. [29] performed ransomware detection

using machine learning on encrypted network traffic. Three

machine learning classifiers were used: a support vector

machine (SVM), random forest and logistic regression. The

results show that the random forest performs best, obtaining

an accuracy of 99.9% and a false-positive rate of 0%. However,

the dataset used byModi et al. contained only 20 ransomware

families and fewer than 700 ransomware samples. Further-

more, the classifiers were not tested on any unseen data.

Being able to detect unseen traffic is important, as Beaman

et al. [2] show that new ransomware variants necessitate the

capability of tools to identify not only familiar patterns but

also unseen ransomware.

An issue with the ML methods mentioned above is their

requirement for a carefully engineered feature selection, a

slow and painful task. As a result, ANNs have been proposed

due to their ability to learn these features independently.

Singh et al. [47] and Ben et al. [3] use an MLP to classify

benign and malware network traffic, obtaining accuracies

of 99.2% and 97.6%, respectively. Despite this success, due

to MLP’s simpler architecture, it can struggle to learn more

complex features and relationships in the data [53]. However,

this simplicity also means that the MLP is less computation-

ally expensive than more complex models [10], making it a

good baseline model to evaluate the performance of those

more complex models.

3.2 Deep Learning Approaches for Malware
Detection

To learn more complex patterns and relationships within

data, deeper ANNs have been proposed, such as CNNs and

LSTMs. Mohammad et al. [23] reported that one-dimensional

(1D) CNNs are the optimal choice when working with net-

work traffic classification due to their ability to capture spa-

tial dependencies between adjacent bytes within the network

packets (1D data), which helps find patterns for each proto-

col or application. This is opposed to two-dimensional (2D)

CNNs, which recognize patterns in 2D data, such as images.

Aceto et al. [1] found that 1D and 2D filters obtain the same

results and hence state that network traffic can be considered

as 1D, mitigating the need for 2D filters. Furthermore, Wang

et al. [50] observed that a 1D CNN achieved higher accuracy

in classifying network traffic than a 2D CNN. Conversely,

Chen et al. [7] employed a 2D CNN model consisting of two

convolutional layers, two pooling layers, and three fully con-

nected layers to classify protocols and applications. They

transformed the initial time series data into 2D images using

reproducing kernel Hilbert space (RKHS) embedding. Their

2D CNN model demonstrated superior performance, obtain-

ing higher accuracy when compared to traditional machine

learning methods and an MLP in the task of protocol and

application classification. This distinction between the per-

formance of 1D and 2D CNNs paves the way for exploring

their application in our study.

The past works have demonstrated the effectiveness of

using CNNs for network traffic classification. Despite be-

ing more commonly employed in image-based applications,

CNNs have also achieved high levels of accuracy in this con-

text. However, CNNs can struggle when learning long-term

dependencies between the data, and the accuracies obtained

could be improved by considering such factors [31]. This

3
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study addresses the limitations of CNNs in learning long-

term dependencies by incorporating an LSTM (Long Short-

Term Memory) model. By leveraging an LSTM, we aim to

enhance classification accuracy and overcome the challenges

associated with CNNs in handling long-term dependencies.

LSTMs have shown their success in network traffic clas-

sification and malware detection. Dicks [10] used an LSTM

to classify network traffic into its source application. The

LSTM was compared to a simpler MLP, where the LSTM

outperformed the MLP in classification accuracy, showing

an LSTM’s success in learning relationships within network

traffic. However, the LSTM did suffer from slower predic-

tion speed and did not deal with malware network traffic

classification, let alone ransomware traffic. Homayoun et

al. [20] compared MLP, CNN and LSTM models, assessing

their effectiveness in detecting ransomware binaries. The

results demonstrated that the LSTMmodel outperformed the

MLP and CNN in this task. Similarly, Maniath et al. [24] used

an LSTM to classify ransomware traffic based on API calls,

obtaining an accuracy of 99.6%, further motivating using an

LSTM.

While the LSTM may seem superior to network malware

detection due to the underlying relationships with network

traffic, Zeng et al. [56] show a CNN outperforms an LSTM in

classification accuracy. Their work presented a framework

for deep learning-based encrypted network traffic classifica-

tion and intrusion detection and tested a CNN and an LSTM

for performing the same task. The paper accurately classifies

encrypted traffic, with CNN obtaining an accuracy of 99.85%.

In contrast, the LSTM obtains an accuracy of 99.41% for in-

trusion detection. To test this, our study compares CNNs

against an LSTM to assess which model performs better in

ransomware detection.

On top of detection tools being able to classify traffic as

ransomware, they also need to accurately detect benign traf-

fic and keep their false positive rate (FPR) low. Nguyen et

al.[33] emphasizes the significance of maintaining a low FPR

in malware detection. The authors highlight the potential

strain a system with a high FPR can impose on a network,

leading to serious malware threats being overlooked or ig-

nored. Furthermore, the authors address the challenge of

establishing an acceptable threshold for FPR, stating that

there is no universally agreed-upon measure. This is em-

phasized by Mell et al. [27], who discuss the difficulty of

measuring false alarms due to the diversity of networks.

This lack of consensus adds complexity to the task of effec-

tively balancing the trade-off between accurate detection

and minimizing false positives in malware detection systems.

As a result, our study investigates the ML model’s abilities

to keep a low FPR.

4 Methods
4.1 Dataset
This section discusses the dataset that will be used in this

paper. Selecting a good dataset is important to ML as it af-

fects the overall success of the ML model
4
. Despite the

comprehensive amount of research that has been done on

ransomware detection using DL, the datasets used in the

evaluation of the past research are rarely made public. On

top of the limited amount of datasets available, for this study,

the datasets selected need to fulfil the following criteria: they

must contain encrypted network traffic, they must contain

ransomware-specific traffic, and they must consist of rela-

tively new (past five years) network traffic that resembles

the current flow of network traffic and malware. Following

these criteria, we found the Open Access (OA) Dataset
5
[4]

and the dataset provided by Modi et al. [29].

4.1.1 Scenario. The OA Dataset is based on a file-sharing

network. This dataset assumes that files are accessed from

central repositories using a file-sharing protocol, a technique

commonly employed by many corporations to allow flexi-

ble access to files. The encryption observed within the OA

dataset arises from two main reasons: first, file-sharing pro-

tocols or encrypted VPNs to secure the traffic, and second,

the ransomware itself that writes encrypted content.

The OA dataset comprises two subsets: benign network

traffic and infected ransomware network traffic. The dataset

is unbalanced, containing significantly more benign traffic

than infected traffic. To address this issue, SMOTE
6
(Syn-

thetic Minority Over-sampling Technique) is employed to

oversample the infected subset to a ratio of 7:3, as depicted in

Fig 1. SMOTE was chosen due to its successful application in

various studies. Rustam et al. [44] used SMOTE to resample

their data, resulting in a classification accuracy increase of

4%. Gicic et al. [17] use SMOTE to oversample their imbal-

anced dataset, which increased the prediction accuracy of

their system. Oversampling the dataset was preferred, as

recent literature [25] indicates that it yields better results

than its counterpart, undersampling. A further weakness of

the OA dataset is that the network traffic is obtained in a

network of just over 300 staff users. In contrast, a network

with many more users may produce different traffic. This can

make it difficult for the DL models to generalise to networks

with more or fewer users and different network environ-

ments. However, this is the case with most network traffic

datasets, as no network environment is the same [27]. For

4https://www.aeologic.com/blog/the-importance-of-evaluating-datasets-
for-ai-development/#:~:text=Data%20is%20the%20lifeblood%20of,also%
20the%20potential%20for%20application.
5http://dataset.tlm.unavarra.es/ransomware/papers.html
6https://imbalanced-learn.org/stable/references/generated/imblearn.
over_sampling.SMOTE.html
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this reason, Gibert et al. [16] discuss the difficulty of com-

paring malware detection accuracies across different works

due to the differences in the datasets.

The dataset provided by Modi et al. [29] only contains

the traffic from 20 ransomware, many of which are already

included in the OA Dataset; hence, this dataset is not used.

Numpy
7
and Pandas

8
were used to read in and manipulate

the data.

Figure 1.Dataset Distribution

4.1.2 InfectedDataset.
The infected traffic in

the OA dataset contains

over 120 hours of ran-

somware traffic, consist-

ing of 94 samples from

43 ransomware families,

with some families hav-

ing multiple samples.

The ransomware fam-

ilies and the year in

which the most recent

binary was obtained can be seen in Table 8 in the appendix.

The traffic has been captured and updated from 2015 to 2021.

Different samples have different amounts of network packets

as each sample varies in traffic trace duration time.

4.1.3 BenignDataset. The benign traffic in theOAdataset

contains normal traffic - network traffic where user activity

was not significant - generated by around 300 users on a

network campus over one week (excluding weekends). The

network traffic for each day is put into its subset.

4.1.4 Preprocessing. Four data groupsweremade to train,

test, and assess the models. These groups are the train set,

validation set, test set, and extra test set. Each subset con-

tains benign and ransomware network traffic, except the

additional test set, which contains only benign traffic for

false positive testing. The test set contains unseen network

traffic. However, it also contains ransomware from the same

families that are present in the train set.

4.2 Evaluation Criteria
The deep learning models are tested on the following crite-

ria: Model Accuracy, False Positives, False negatives, Runtime
Memory and Inference Time. The effectiveness of the mod-

els is determined by considering a trade-off among these

criteria. However, accuracy and false positive rate are the

most important factors to be prioritized. Numerous metrics

are employed to evaluate the models, and ascertaining the

model’s overall effectiveness requires consideration of all

these metrics.

7https://numpy.org/
8https://pandas.pydata.org/

False Positives (FPs) are given higher importance than

accuracy due to their ability to give a true performance indi-

cation and the effect they can have on organisations using the

ransomware detection system [33][12][5]. Whilst accuracy

is not as important as FPs, it indicates the model’s overall

performance and remains unbiased toward any particular

class. Inference time and runtime memory usage are given

lower importance due to unreliable measurement methods

and variability. Park et al. [41] show that inference time can

be sped up using more powerful hardware, meaning that

inference time can change according to which computer the

models are run on. Courtaud et al. [9] delve into the inaccu-

racy of memory inference measurements caused by induced

delays. Similarly, Section 4.2.5 discusses a paper [14], which

provides insights into the unpredictability of measuring run-

time memory usage.

However, it should be noted that the inference time and

runtime memory usage measurements were all obtained in

the same environment, under the same conditions, and there-

fore still have an impact on the importance of the models.

Additionally, the importance of the metrics can be adjusted

if a user wishes to favour them differently. For example, if

the user is more interested in inference time, they can give

it higher importance.

4.2.1 Accuracy. Accuracy is the number of correct predic-

tions divided by the total number of predictions and char-

acterizes the model’s overall performance across all classes.

It is useful when the different classes all have the same im-

portance. In this case, each ransomware strain is assumed

to have an equal capability to inflict damage, and therefore,

accuracy provides a good indication of the model’s perfor-

mance. However, in the case of an imbalanced dataset, such

as the one used in this study, accuracy can be misleading,

as a high accuracy can still be obtained if only the major-

ity class is correctly predicted. Therefore, other metrics are

considered when evaluating the model’s performance.

4.2.2 False Positives. In the context of this study, a false

positive (FP), is when a model classifies benign traffic as

ransomware. An FP will require the network owner to shut

down the network and suspend business operations until the

ransomware or false positive is thoroughly inspected. Brewer

et al. [5] report that this can result in a loss of productivity

and safety, impacting the security team’s response to real

threats
9
.

As a result, a model that can detect ransomware well but

produces false positives on benign network traffic is as detri-

mental as a model with a poor ability to detect ransomware.

Either way, the organisation/network owner will experience

disruptions and downtime.

9https://www.lupovis.io/the-dangers-of-false-positives-in-cybersecurity-
and-how-to-avoid-them/
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Furthermore, while accuracy is a valuable metric, its per-

formance indication can be obscured if its proportion to the

number of samples is small [33]. This aspect is particularly

relevant to this study, as a model may exhibit high accuracy,

but if it processes a large number of samples, such as net-

work traffic, and produces a significant number of FPs, it can

negatively impact the security of a network. The potential

impact of false positives on a network underscores the im-

portance of considering both accuracy and false positive rate

as crucial evaluation metrics for the model’s effectiveness

[12].

Establishing a baseline for an acceptable FP rate is difficult,

as different tools and organisations deal with FPs differently.

Nguyen et al. [33] state that there is no threshold for an

appropriate number of FPs and propose a system for selecting

a threshold. However, Yang et al. [54] proposes a DL model

called DeepMal for detecting malware traffic. DeepMal can
detect 70% of malware whilst keeping the false alarm rate

below 3%. This is the baseline that the models use for their

FPR to be deemed ’successful’.

4.2.3 FalseNegatives. False negatives (FNs) - ransomware

traffic classified as benign - also hold significance due to

their ability to ascertain the model’s reliability. A model

might demonstrate proficiency in detecting benign traffic,

yielding a low FP rate. However, it could still exhibit sub-

par performance when identifying ransomware incorrectly,

categorizing it as benign.

Zhu et al. [58] and Yewale et al. [55] report the importance

of measuring the FNs and FPs in tandemwhen usingMLmod-

els to detect malware to evaluate the overall performance.

However, while FNs remain important, recent literature em-

phasizes that false positives (FPs) receive greater attention

in the context of malware detection systems. Hence, they are

given higher significance in the evaluation process [5][12].

4.2.4 Inference Time. For ransomware detection to be

successful, it must be able to detect the ransomware quickly.

If the tool does not detect the ransomware before too much

data is encrypted, it can be considered useless [13]. There-

fore, inference time - the time taken for a model to make a

prediction - is another metric used to determine the success

of the models in this study. There is no ’standard’ time to

detect ransomware, as each ransomware family behaves and

acts differently. To determine a baseline inference time that

a DL model needs to achieve, we use an experiment done

by Splunk’s SURGe team
10
whereby they timed how long it

took some of the most popular ransomware families (some

of which occur in the dataset) to encrypt 100 000 files. It was

reported that it took 42 minutes and 54 seconds to encrypt all

the files (38.85 files are encrypted every second). This means

that it takes 25.74 milliseconds on average to encrypt one

10https://www.darkreading.com/application-security/here-s-how-fast-
ransomware-encrypts-files

file. This is the inference time the DL models must achieve

to obtain a successful inference time.

To determine the inference time for a single sample, we

record the cumulative time taken by the model during each

iteration of the inference process using Pythons time mod-
ule11. Then, we divide this accumulated time by the total

number of samples in the test set to obtain the desired met-

ric. This method of measuring inference time has been used

successfully by Wang et al. [51]

4.2.5 RuntimeMemory Usage. DLmodels that consume

excessive memory during runtime can lead to failed jobs

and decreased productivity. Furthermore, such models may

encounter challenges when deployed on systems with lim-

ited computational resources, such as small IoT devices[28].

Therefore, the memory used up at runtime is an important

metric to evaluate the effectiveness of a DL model. However,

Gao et al. [14] discuss the limitations and difficulties of mea-

suring accurate runtime memory usage for the following

reasons: hidden implementation details, the difficulty of ex-

tracting hidden factors and the differences in the types of DL

models. As a result, this study compares the runtime memory

usage of various models within the same environment and

conditions rather than establishing a specific threshold for

what qualifies as ’acceptable’ runtime memory usage.

4.3 Architecture and Hyperparameter Selection
Hyperparameters are modifiable parameters not learned

from the data but set by the user before training. The values

of the hyperparameters control the learning process and,

consequently, the model’s performance. Therefore, selecting

the right ones is essential. We used KerasTuner*, a hyperpa-

rameter optimization framework that automates much of the

work to find the best hyperparameters for our DL models.

Josi et al. [21] demonstrated the effectiveness of utilizing

KerTuner to fine-tune hyperparameters, resulting in a test

accuracy of 80.96%. This serves as motivation for its adoption

in this study. The hyperparameters that undergo tuning are

the neurons in each layer, activation functions at each layer

if dropout is needed, and the specific dropout values to be

used.

The models created and used in this study were imple-

mented using the open-source library Keras12, which pro-

vides an interface to the TensorFlow library13 - an open-

source library for ML. The model architectures and hyperpa-

rameter values can be seen in Table 5 in the appendix.

11https://docs.python.org/3/library/time.html
12https://www.tensorflow.org/guide/keras
13https://www.tensorflow.org/
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5 Experiment Procedure
5.1 Summary of experiments performed

Table 1. Experiments and Research Objectives

Experiment Description Brief Deception Of Target Objec-
tive

1

Establishing a simple MLP baseline

and training DL models.

Objective 1: Evaluate ML models

for encrypted traffic classification.

2

Varying window on input.

Objective 2: Sliding window

3

Testing for false positives.

Objective 1&2

4

Varying input feature-length. Objective 3: Dimensionality

reduction effect on models

5.2 Experiment 1: Establishing MLP baseline and
training DL models

To determine whether using DL models for ransomware

detection is worth the additional cost, a simple MLP is used

as a benchmark model to perform the same task. Firdausi

et al. [11] demonstrated the success of using an MLP for

malware detection, highlighting its value as a benchmark

model. The other DL models (CNNs and LSTMs) use features

that an MLP does not have, such as convolutional layers and

gates. The MLP can also be used to decide whether these

additional features are necessary or not when it comes to

ransomware detection. Moreover, the MLP can be trained

and tested using the same input data provided to the DL

models. In contrast, other ML models might necessitate a

different format of input data and may struggle to handle

the high dimensionality of network traffic.

From here, the DL models (1D CNN, 2D CNN and LSTM)

are trained and tested, obtaining each model’s evaluation

metrics mentioned in Section 4.2.

5.3 Experiment 2: Using a sliding window
The LSTM model undergoes a variation for this experiment:

a sliding window of samples is employed. In contrast to

the previous approach of analyzing individual samples in

isolation, this experiment involves taking multiple samples,

grouping them into a window, and treating the windowed set

as a single sample for evaluation, making a window LSTM

(WLSTM). The LSTM is chosen in this experiment due to

its success in past works [24][20][10]. Oord et al. [36] use a

sliding window approach with time series data to capture

dependencies over time to generate realistic audio samples,

showing its success in capturing temporal dependencies. To

our knowledge, the windowed approach has not been used

for ransomware classification in previous works.

5.4 Experiment 3: Testing for false positives
Two methods are employed to evaluate the FPs obtained by

the DL models. The first method involves counting the num-

ber of FPs the models generate on the test set. The second

method utilizes six days of exclusively benign network traffic

to assess howmany FPs the DL model produces over six days

without ransomware traffic. This returned number is divided

by the number of samples in the traffic to determine the num-

ber of FPs per record. This gives a more realistic overview of

the ability of the models, as just looking at the false positives

on the test set does not give a true representation. For ex-

ample, if we have a 1% false positive rate (FPR) and the test

set consists of 100 samples, with five being malicious, then

the expected number of FPs is 95*1%=0.95 FPs
14
. Whereas,

if there were one million samples, this would bump to 9

999.95 FPs. Hence, testing for the number of FPs received on

a purely benign dataset shows the model’s true performance

under real conditions. Furthermore, this method tested the

model’s generalisability to new, unseen, benign traffic.

5.5 Experiment 4: Varying input feature-length
When inputting data into models, Lotfollahi [23] demon-

strated that larger feature spaces can bring greater compu-

tational cost. As a result, a common approach to try and

reduce the computational cost of ML models is to train the

models on a reduced feature set. Weisz [53] demonstrated

that when using a decreased feature space, the prediction

accuracy decreases. However, this decrease results in more

packets being predicted per second.

All measurements were done under the same environment

and conditions for inference time and runtime memory us-

age metrics. The experiment was run on a 64-bit operating

system (OS) with an 11th Gen Intel(R) Core(TM) i7-1165G7

@ 2.80GHz 2.80 GHz processor and 16 GB of RAM. There

were no applications open other than a terminal.

6 Results and Discussion
6.1 Model Comparison
Table 2 presents the percentage accuracy, FPs, FNs, aver-

age inference time and average runtime memory usage ob-

tained by the binary classifier models when detecting be-

nign/ransomware traffic on the test set. The average values

across ten inferences were obtained for inference time and

runtime memory usage.

6.1.1 Accuracy and False Positives for Ransomware
Detection. The LSTM model is shown to obtain the highest

accuracy. We theorise that this is due to the LSTM’s ability to

handle sequential network traffic, learn long-term dependen-

cies, extract features and deal with noisy data, supporting

the finding done in previous work by Vinayakumar et al.[49].

This was expected due to the LSTM’s ability to learn sequen-

tial data, such as network traffic. Conversely, the windowed

LSTM (WLSTM) performance was not as favourable regard-

ing accuracy and FPs. This outcome suggests that grouping

samples into a window diminishes the temporal resolution

of the data. This contrasts the expected results, whereby a

14https://textbook.cs161.org/network/intrusion-detection.html
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Table 2. Percentage accuracy, False Positives, False Negatives, Inference Time and Runtime Memory Usage for each model on

the OA dataset

%Accuracy False
Positives

False
Negatives

Inference
Time (𝜇s)

Memory
Usage (MiB)

MLP 99.20 629 229 23 1961

1D CNN 99.18 2 48 34 1972

2D CNN 96.95 0 11353 37 1993

LSTM 99.85 530 19 89 1745

WLSTM 98.79 1054 75 26 6379

windowed approach would increase the temporal resolution

[36]. The 2D CNN obtained the worst accuracy. However,

it obtained the lowest number of FPs, along with the 1D

CNN. This indicates that the benign network traffic may

exhibit more spatial patterns than the CNNs can capture.

Still, ransomware traffic may contain complex patterns that

the CNNs cannot capture, thereby agreeing with previous

work showing the dependencies within ransomware traffic.

This would result in the CNNs being able to obtain fewer

FPs but not performing well when classifying ransomware

traffic. This is further shown by looking at the FNs obtained

by the 2D CNN, meaning that it could not classify much of

the ransomware traffic. Notably, the MLP obtained a higher

accuracy than both CNNmodels but reported many FPs. The

results also suggest that the imbalanced dataset may have

affected the learning of the models. With more benign net-

work traffic, the models may be able to generalise better on

the benign traffic and not so well on ransomware traffic, ex-

plaining the lower accuracies but better false positive return

rate. This also indicates that the LSTM may handle this class

imbalance better.

6.1.2 Inference Time and RuntimeMemory Usage for
Ransomware Detection. The MLP achieves the fasted av-

erage inference time of 0.0023 milliseconds, and the LSTM is

the slowest with 0.0089 milliseconds. This aligns with previ-

ous research demonstrating an MLP as a more lightweight

model choice. We hypothesize that this is attributed to the

simpler architecture of MLPs and their utilization of ma-

trix multiplications, which are inherently faster than the

calculations in LSTMs or CNNs. Both CNN models achieve

similar inference times, having a difference of 0.0003 mil-
liseconds. However, CNNs might exhibit swifter inference

times than LSTMs, owing to their capability to parallelize

convolutions and pooling operations. The LSTM achieves

the lowest runtime memory usage, with all other models

obtaining similar values. We also hypothesize that this is

because the LSTM processes data sequences step by step,

holding less memory. However, the WLSTM exhibits dimin-

ished memory efficiency during runtime, implying that each

window of samples needs increased memory resources for

data storage and processing. This trade-off in memory ef-

ficiency is a notable advantage regarding faster inference

times. All models achieve an acceptable inference time of

below 25.74 milliseconds, as discussed in Section 4.2.4.

6.2 False positives

Table 3. False Positives obtained on six-day dataset

Total False Positives
per 100 records

MLP 87549 1.6381

1D CNN 638 0.0119

2D CNN 216345 4.0479

LSTM 213 0.0040

WLSTM 1479 0.0277

Table 3 presents the FPs and FPs per 100 records that each

binary classifier model obtained over six days when classify-

ing benign traffic. The dataset used to obtain these results

contains only benign traffic, categorized across the six dis-

tinct days during which the network traffic was recorded.

The table displays then shows the number of FPs obtained

per 100 records. This was obtained by dividing the FPs accu-

mulated over the six days by the total number of samples in

the six traffic days, and then further multiplying this to get

the FPs per 100 records.

The LSTM and 1D CNN outperform MLP and 2D CNN in

their ability to minimise the number of false positives they

return. This contradicts the results in Section 6.1, where the

2D CNN obtained the lowest FPs. This could be due to the

2D CNN being overfitted to the test set but not generalizing

well to new data. The success of the LSTM and 1D CNN

aligns with previous work, showing their success in working

with network traffic [20] [23]. The WLSTM obtained low

FPs, indicating that it can identify meaningful relationships

within benign traffic. This contrasts with the previous results,

where the WLSTM obtained many FPs on the test set. We

hypothesise that the WLSTM model is more sensitive to the

test set, which includes both ransomware and benign traffic,

while the additional test set only comprises benign traffic.

Whilst the accuracies of the models never differ by more

than 2.5%, as seen in Section 6.1, and while the results show

low values for FPs per record, Section 5.4 discusses how

small changes in these values can result in many more FPs

8
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returned. This is likely due to the vast amounts of samples

present in network traffic. Even relatively small networks

can generate several terabytes of data daily [48].

As seen in Table 3, the LSTM and MLP obtain significantly

fewer FPs than the CNN models, with the LSTM achieving

the lowest FPs per record. We speculate that this results

from both benign and ransomware traffic exhibiting tem-

poral patterns and long-term dependencies [31] that the

LSTM can capture, therefore agreeing with previous work

and motivating its use in ransomware detection. However,

the WLSTM accumulates more FPs per record than the MLP

and LSTM, indicating that the windowed approach dimin-

ishes the model’s ability to learn patterns and relationships.

This further agrees with the discussion in Section 6.1.

To answer the first research objective, the results show that

there isn’t a universally "perfect" model for detecting ran-

somwarewithin encrypted network traffic. Instead, the choice

of model should be tailored to the network’s specific require-

ments. For instance, if an organization’s security team aims

to minimize FPs and computational resources are not a con-

straint, a model with low FPR but high runtime memory

usage could be the preferred option.

To answer the second research objective, our findings

indicate that employing a window of samples in conjunc-

tion with an LSTM, where four samples are grouped as one,

does not yield favourable outcomes regarding ransomware

classification.

6.3 Varied Input Length
Figure 2a presents how the evaluation accuracy for each

model changes based on how many features are inputted

to each model. The number of features used for this exper-

iment is 5, 15, 20 and 30. The depicted trend in the figure

demonstrates that when the maximum features are inputted,

all models obtain high accuracies. This is not the case when

fewer features are used. Whilst there are changes in model

accuracy across the different-sized inputs, there is no con-

sistent trend across all models. This does not align with

previous work, whereby more features resulted in greater

accuracies [53]. This indicates that feature redundancy or

irrelevance might exist for the dataset utilized in this study.

In such cases, the latter features in the samples might not be

as significant as the initial ones. However, on closer inspec-

tion, the LSTM consistently maintains high accuracy across

all features. This indicates that the LSTM can adapt well to

the various levels of input information.

Figure 2b depicts the FPs accumulated per 100 records

by each model concerning the number of features used for

model training. These FPs were obtained from the additional

benign test set. Observing the figure reveals a "sweet spot"

for all models, where the lowest number of false positives

occurs when the models are trained with 15 and 20 features.

From this, we hypothesize that employing a small number

of features, such as 5, may not provide the models with

sufficient information for effective learning. Conversely, uti-

lizing all available features might introduce redundancy and

confusion in the final portions of the feature sequence, pos-

sibly due to overlap and leading to an increased number of

false positives. To investigate this further, future work could

include random sample selection experiments. These experi-

ments would help determine whether the training success of

the models depends more on the number of features utilized

or the specific features chosen. The models could also be

tested on a different dataset to see if the same patterns occur

when inputting a similar amount of features.

On further inspection, the MLP is an outlier in that it

returns no false positives when working with only five fea-

tures. This indicates that a simpler model architecture, such

as found in an MLP, is more effective in learning meaningful

patterns when working with fewer features.

While specificmodels exhibit promising outcomes in terms

of accumulated FPs when trained on fewer samples, it’s im-

portant to analyze these FPs in conjunction with the accu-

racies of the models, as presented in Table 6. The 2D CNN,

returning 0 FPs for 15 features, only obtains an accuracy

of 76.92%. The MLP, obtaining 0 FPs for five features, has

an accuracy of 76.92%. Models that return a low amount

of false positives but cannot classify ransomware are not

useful to the user. The LSTM, however, obtaining 0 FPs on

20 features, still keeps a high accuracy of 99.97%, indicating

that the LSTM can still learn the temporal differences and

long-term relationships in the data using 20 features.

Table 4. False positives rates across different features

5
features

15
features

20
features

30
features

MLP 100% 95.25% 98.55% 0.0070%

1D CNN 70.76% 0.013% 0% 0.0023%

2D CNN 0.0097% 100% 100% 0%

LSTM 11.96% 68.55% 0.51% 1.87%

Table 4 present the FPRs for the various models across all

feature sets. The FPRs of the models were obtained from the

test set, not the additional benign set. According to prior lit-

erature [54], an acceptable FPR is considered below 3% while

maintaining a classification accuracy above 70%. Similarly

to inference time, there is no trend in the FPRs obtained by

the models across the different feature sets. Interestingly, the

2D CNN, which accumulates a daily average of 0 FPs for 20

and 15 features, obtains an FPR of 100% for both feature sets.

This suggests that the 2D CNN is more sensitive to certain

features in the test set that are not present in the additional

benign test set, such as ransomware network traffic.

Figure 2c depicts that as more features are input into the

models, the runtime memory usage increases consistently

across all models. This aligns with previous work [53]. We
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(a) Accuracy (b) False Positives (c) Runtime Memory Usage (d) Inference time

Figure 2. Comparison of the model metrics at different numbers of features

speculate that this is due to features adding to the dimension-

ality of the data, thereby requiring more memory to store

and process the data. When considered alongside Figure 2a,

this correlation provides additional motivation to assess the

models’ success beyond sole accuracy. For instance, delving

into the model’s memory usage can yield more profound

insights when observing scenarios where accuracy remains

unchanged.

Figure 2d shows that the change in inference time for most

models across different features is not as prominent, with

the biggest change observed being only 37 𝜇s. This indicates
that the number of features might not as strongly influence

inference time. We postulate that this is due to the data being

processed in the same batch sizes and the memory access

patterns of the models being similar. However, there is a clear

distinction between the models having different inference

times, with the LSTM having the greatest inference times

across all features and the MLP the least. This could result

from the complex architecture of the LSTM requiring greater

computations to make an inference and the simpler MLP

architecture requiring less.

The ratio of feature change to the alteration in other met-

rics is worth noting. The transition from 30 features to 20

marks a 33.33% difference in input size. Similarly, utilizing

the minimum number of features leads to an 83.33% reduc-

tion in the number of features employed. While these are

large changes in the feature space, the runtime memory us-

age and inference time do not undergo such large changes.

The greatest change in runtime memory usage due to a de-

creased input is 1171.26 MiB, and for inference time, 39 𝜇s.
This suggests that despite its model type, each model has an

inference time and runtime memory usage overhead, regard-

less of the number of features inputted into the model.

For the third research objective, our findings indicate that

training models with inputs of varying sizes impact accuracy,

false positives (FPs), and runtime memory usage, with the 20-

feature LSTM model showing the best results across these

metrics. However, The LSTM models achieve the slowest

inference time and MLPs the fastest. Despite this, there is

no significant effect on inference time when using inputs of

various sizes. This suggests that dimensionality reduction

does not have a large influence on the inference time of DL

models for ransomware classification. Accuracy trends are

not consistently influenced by reducing the number of fea-

tures across all models; tailored feature sets are crucial for

optimal accuracy. Notably, the LSTM consistently performs

well across all input sizes, providing evidence that suggests

the data in network packets is sequential. The optimal range

for minimizing FPs accumulated is using the first 50% to 66%

of the entire feature set. The results also show that larger

inputs lead to increased runtime memory usage.

7 Conclusions
In conclusion, this study evaluated the performance of vari-

ous ML models for classifying encrypted network traffic as

ransomware.

We found that there is no universally perfect model, and

the choice should align with specific network requirements.

Additionally, we observed that the number of features in-

putted into a model affects model performance, with the

20-feature LSTMmodel consistently performingwell. Dimen-

sionality reduction did not greatly impact inference time but

increased runtime memory usage. Lastly, combining a slid-

ing window of inputs with an LSTM did not yield favourable

results. Our findings emphasize the need for tailored model

selection, optimized input sizes, and carefully designed fea-

ture sets for effective ransomware detection in encrypted

network traffic.

For future work, network traffic could be collected from

multiple networks to make the models more generalisable

to different network environments. Secondly, to further in-

vestigate dimensionality reduction, rather than exclusively

selecting the first x features, future studies could involve ran-

domly selecting features to assess the significance of feature

quantity versus feature selection. Extending dimensionality

reduction experiments to different network traffic datasets

can also test whether similar effects manifest across various

datasets. To reduce the inaccuracies when measuring run-

time memory usage and inference time, future work could

further include measuring these metrics in a more isolated

environment, where these metrics can easily be controlled.
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A Architectures

Table 5. Model Architectures

Model Layer Type # Neurons Activation
MLP (lr=0.0001) Input 30 -

Dense 168 ReLu

Dropout 0.35 -

Dense 168 ReLu

Dropout 0.35 -

Dense 1 Sigmoid

1D CNN (lr=0.001) Input 30 -

Conv1D 104 Tanh

MaxPool1D 2 -

Dropout 0.5 -

Flatten - -

Dense 72 Tanh

Dropout 0.5 -

Dense 1 Sigmoid

2D CNN (lr=0.01) Input 30 -

Conv2D 8 ReLU

MaxPool2D 2 -

Dropout 0.25 ReLU

Flattern - -

Dense 136 ReLU

Dropout 0.25 -

Dense 1 Sigmoid

LSTM (lr=0.001) Input 30 -

LSTM 8 ReLu

Dropout 0.5 -

LSTM 8 ReLu

Dropout 0.5 -

Dense 1 Sigmoid

B Metric results

Table 6. # Features, Accuracy and False Positives

Model # Features Accuracy False Positives per 100 records
MLP 30 0.9920 1.6381

20 0.7717 0.0002

15 0.7802 0.0011

5 0.7692 0

1D CNN 30 0.9918 0.0119

20 0.9998 0.0193

15 0.9996 0.0388

5 0.8359 0.1716

2D CNN 30 0.9695 4.0479

20 0.9992 0

15 0.7692 0

5 0.9840 2.21589

LSTM 30 0.9985 0.0040

20 0.9987 0

15 0.9999 0.0089

5 0.9705 11.3870

12



Deep Learning for Ransomware Detection in Encrypted Traffic

Table 7. Inf time and Memory usage for different features

Model # features Inf Time ( 𝜇 s) Mem Usage (MiB)
MLP 30 23 1960.88

20 23 1507.25

15 23 1316.78

5 23 854.3132

1DCNN 30 34 1971.89

20 32 1516.15

15 32 1324.64

5 29 859.188

2DCNN 30 37 1992.802

20 64 1563.86

15 25 1317.04

5 62 875.542

LSTM 30 89 1745.03

20 64 1402.74

15 7 1239.03

5 63 863.69

C Ransomware Families

Table 8. Ransomware Families and Year of most recent sam-

ple

Ransomware Families

No. Family Year of most recent sample
1 Aleta 2017

2 Bart 2016

3 BitPaymer 2018

4 Cerber 2021

5 CryLock 2021

6 CrypMIC 2016

7 CrypFile2 2016

8 CryptoFortress 2015

9 CryptoMix 2016

10 CryptoShield 2017

11 Crysus 2021

12 Cryxox 2018

13 CTBLocker 2017

14 Dharma 2017

15 Diablo 2017

16 DMALocker 2016

17 Eris 2019

18 GrandCrab 2019

19 GlobeImposter 2017

20 Jaff 2017

21 Locky 2016

22 MakTub 2018

23 Maze 2019

24 Mole 2018

25 MRCR 2017

26 Netwalker 2021

27 Odin 2016

28 Phobos 2019

29 RansomX 2020

30 Razi 2021

31 Revenge 2018

32 Ryuk 2021

33 Sage 2018

34 Scarab 2019

35 Shade 2021

36 Shaofao 2020

37 Sodinokibi 2021

38 Spora 2017

39 Stop 2019

40 TeslaCrypt 2015

41 VirLock 2017

42 WannaCry 2021

43 Zeus 2017

D Formulas
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 +𝑇𝑁
𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 +𝑇𝑁
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