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ABSTRACT 

The scarcity of electronic resources for many South African 

languages, such as isiXhosa, poses a barrier to text-based research 

and experimentation. To overcome this barrier, this paper 

investigates the feasibility of using mobile devices to automatically 

transcribe unstructured audio to generate a high-quality textual 

corpus using the PocketSphinx speech recognition toolkit across 

various dimensions such as background noise and conversational 

difficulties. The results reveal notable limitations, including high 

Word Error Rates (WER) and difficulties in capturing casual 

speech. Hardware differences and the rate of speech also influence 

performance. The results show that with the current data utilized, 

PocketSphinx is not viable for generating high-quality isiXhosa 

textual corpora on mobile devices, highlighting an urgent need for 

specialized model improvements. 

CCS CONCEPTS 

•  Computing methodologies → Natural language processing;  

•  Computing methodologies → Speech recognition;  

• Applied computing → Document management and text 

processing 

KEYWORDS 

Speech/language, automatic speech recognition, mobile devices,  

natural language processing, low-resourced languages, 

PocketSphinx 

1 INTRODUCTION 

In South Africa, nine out of the eleven official African languages 

lack electronic linguistic resources such as books or documents 

[1][2], which is detrimental to computational and statistical systems 

such as language models that rely on these documents. Access to 

high-quality linguistic resources, such as annotated corpora and 

core technologies, is one of the fundamental prerequisites for 

research, development, and assessment in Natural Language 

Processing (NLP) [2]. The development of speech technology is 

closely related to resource gathering since the statistical models that 

dominate Text-To-Speech (TTS) and Automatic Speech 

Recognition (ASR) systems depend on the availability of suitable 

resources for the determination of their parameters [3]. 

 

Automatic Speech Recognition (ASR) is the process of turning a 

speech signal into a series of words using an algorithm that is 

implemented as a computer program [39]. ASR is a technique that 

enables computing devices to translate human spoken words into 

computer-readable text via microphone or telephone input [40]. 

Speech recognition is distinct from voice recognition in that the 

former entails a machine's capacity to identify the words that are 

said (i.e., what is said), whereas the latter requires a machine's 

capacity to identify speaking style (i.e., who said something) [5]. 

 

The speech research community has demonstrated considerable 

interest in ASR for low-resource languages over the past decade. 

[6][7]. According to Berment [2004], a language is considered to 

be low-resourced if it lacks some (but not all) of the following 

characteristics: a distinctive writing system, linguistic knowledge, 

web resources, and electronic resources for speech and language 

technology [48]. It is crucial to emphasize that it differs from a 

minority language, which is a language spoken by a minority of a 

territory's people [8]. Only a small portion of the world's 

approximately 7,000 languages provide the materials needed for 

the application of human language technologies [9]. 

 

This project aims to explore and evaluate the feasibility of 

automatically transcribing structured and unstructured audio to 

create a high-quality textual corpus using standard speech tools and 

models. The project is divided into three components: transcription 

of structured audio, such as SABC broadcast news, transcription of 

unstructured audio using mobile devices in noisy or uncontrolled 

environments, and the creation of a gold standard corpus for 

transcription accuracy validation. This paper delves into the second 

component, examining the capability of mobile devices to capture 

and transcribe audio within casual or acoustically challenging 

environments. Given the rapid increase in mobile phone usage in 

Sub-Saharan Africa, which currently accounts for 60% of the 

population [10], even speakers of low-resource languages may 

collect and transcribe audio with their devices, highlighting the 

potential of mobile devices in linguistic resource development. 
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2 BACKGROUND 

2.1 IsiXhosa as a low-resource language 

More than 8 million people, or 16% of South Africa's population, 

speak isiXhosa (Xhosa) as their first language [15]. However, 

isiXhosa is classified as a low-resource language [2][16]. This 

means that digital information, linguistic models, and tools, as well 

as Information Retrieval (IR) services like search and translation, 

are scarce. The majority of South Africa's eleven official languages 

face this challenge. For this project, we will be using isiXhosa as 

the language of focus.  

 

2.2 The structure of speech 

Phonemes are the smallest structural component of speech and 

abstract speech signals [17]. Most languages have a particular 

collection of phonemes, with very similar sets. For example, 

IsiXhosa has 66 consonant phonemes, 18 of which are click 

consonants found in fewer than 2% of the world's languages [18]. 

Phonemes group together similar sounds, ignoring details such as 

speech pace or accent. Current approaches for converting speech to 

text frequently interpret the audio signal into phonemes and then 

build sentences using algorithms [17]. In contrast to the abstract 

nature of phonemes, phones are the physical basic sound units that 

include vowels or consonants with distinct characteristics[17][20]. 

For example, the phrase "hello there" might be phonetically broken 

down into HH, EH, L, OW, DH, EH, R. The context is frequently 

considered when attempting to identify which phoneme a spoken 

sound belongs to. Triphones are phones that are derived from 

context, taking into account the phones said before and after. 

Triphones create words, which create sentences [19].  

 

2.3 Speech recognition models 

Three models are employed in speech recognition systems for 

translations: the acoustic model, phonetic dictionary, and language 

model [19][26][24]. 

 

2.3.1 Acoustic model 

The acoustic model is used to convert data from an audio signal to 

the most probable phones uttered. It provides statistical mappings 

for each phone (or phoneme) and defines how words sound. Some 

speech recognition algorithms may use abstract statistical 

representations in their acoustic models [20]. 

 

2.3.2 Phonetic dictionary 

The link between words and their phones is mapped out in the 

phonetic dictionary. Due to varying pronunciations, certain terms 

in the dictionary may have many variations. The decoding time for 

speech recognition can be considerably impacted by the size of this 

model [20]. 

 

2.3.3 Language model 

To distinguish between words with similar sounding 

pronunciations, such as "two" and "too," speech recognition 

systems utilize language models to estimate the likelihood of word 

sequences. Context is crucial because words can change their 

meaning depending on the words they are used with. N-gram 

models, where the context is given by the (N-1) preceding words, 

are frequently used to estimate a word's likelihood by taking into 

account a certain number of prior words [19][20][24]. 

 

2.4 The speech recognition process 

In a speech recognition system, a recording of spoken words is used 

as the input, and the anticipated output is a string that accurately 

captures the spoken sentence. Pre-processing, feature extraction, 

decoding, and post-processing are the four main steps that may be 

used to summarize this translation process, as shown in Figure 1. 

[17][27]. 

 

 
Figure 1: The speech recognition process 

 

2.4.1 Pre-processing 

The audio signal must have a predetermined number of channels 

and, depending on the system, a frequency rate of typically 8000 

KHz or 16000 KHz to convert speech to text. During the pre-

processing stage, some speech recognition systems have the ability 

to re-sample the audio signal to the appropriate format. This phase 

involves making an effort to remove any speech-free portions of 

the audio signal. This includes silences, such as at the start or end 

of an audio clip, as well as noisy sections [20]. 

 

2.4.2 Feature extraction 

Before the actual decoding process can begin, certain filtering steps 

must be completed due to the enormous quantities of data that may 

be extracted from an audio file. Depending on the system, the data, 

which is now presumed to be speech, is broken up into overlapping 

frames that last around 25 milliseconds. In the next phases, 

parameters are taken from each of these frames to represent the 

audio signal. Feature vectors are a common term used to describe 

the resultant frames that were extracted from the data [20]. 

 

2.4.3 Decoding 

During the decoding phase in the speech recognition process, the 

most representative sentence for the feature vectors is chosen using 

Bayes Rule, represented as [20]: 

 

                     𝑤∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤{𝑝(𝑌|𝑠)𝑝(𝑠)}                                (1) 

 

where Y signifies feature vectors and S denotes the probable word 

sequence. For modeling stochastic signals, dynamic Bayesian 

networks called Hidden Markov Models (HMMs) are crucial. They 

connect audio signals to phones, each of which is identified by its 

HMM state. Using algorithms like the Viterbi or Forward, the most 

likely spoken sequence is determined [20][24]. Figure 2 shows how 

the speech waveform from the audio source was transformed into a 

series of fixed-size acoustic vectors via feature extraction. The 

decoder then makes use of the speech models to construct the word 

sequences that produce the feature vector. 
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Figure 2: An HMM-based recognizer architecture 

 

 

2.4.4 Post-processing 

In the post-processing phase, the list of likely spoken sequences 

determined by the Viterbi search is examined once again utilizing 

other sources of data to enhance the correctness of the transcription. 

Higher level language models are typically employed to better 

consider grammar while choosing the most appropriate statement 

[28]. 

 

2.5 CMU Sphinx: PocketSphinx 

The speech recognition toolkit that was used for this project is 

CMU Sphinx’s PocketSphinx.  

 

PocketSphinx is a user-dependent speech recognition system. It 

was developed at Carnegie Mellon University (CMU), along with 

other speech recognition systems [29]. It is the quickest speech 

recognizer CMU has ever produced and was built to operate in real-

time on low-performance devices. To convert speech into text, the 

system employs a probabilistic method and Hidden Markov 

Models. 

 

Because a translation using PocketSphinx is user-dependent, the 

outcomes can considerably differ from speaker to speaker. The 

system is capable of being trained to adapt to any language or 

dialect. The trigram model, which PocketSphinx employs, is an N-

gram model with N = 3. When generating a word, N-gram models 

take into account the (N-1) preceding words. This suggests that 

word choice depends in part on context [30]. Numerous 

comprehensive acoustic models that have been tuned for various 

languages are available. For the purpose of this project, a new 

isiXhosa language model and an acoustic model were trained. 

 

2.6   Sequitur G2P: Grapheme-to-phoneme conversion         

Finding a word's pronunciation based on its written form is known 

as grapheme-to-phoneme conversion (G2P) [46]. A G2P model 

transforms a word from a collection of symbols or graphemes to a 

pronunciation from a collection of phones [47]. Sequitur G2P, a 

data-driven tool developed by Maximilian Bisani at RWTH Aachen 

University [46], is used to generate phonetic representations of 

isiXhosa words not present in the static dictionary. This tool is 

commonly used in speech recognition models. 

3 RELATED WORK 

Numerous studies have been conducted on how mobile devices can 

aid in the creation of electronic resources and documents, which 

can then be used to support studies in search engines, machine 

learning, and other language processing tasks.  

 

The rise of mobile devices as multifunctional recording tools has 

revolutionized ASR data collection, especially for languages with 

limited resources. The decreasing cost and growing availability of 

mobile devices, even in developing regions, have made dynamic, 

high-quality speech data collection more feasible [13]. Hughes et 

al. [2010] pioneered this trend with an Android application 

designed to easily gather varied and transcribed speech corpora 

[14]. Although powerful, this approach had limitations such as 

inaccuracies due to speaker errors. Lane et al. [2010] further 

streamlined the speech data collection process, enabling speakers 

to record prompted speech directly on their phones, but faced 

challenges with the quality of recordings [42]. These collection 

methods largely focus on "read speech," but their data have proven 

invaluable for developing ASR systems [13]. 

 

Reitmaier et al. [2022] introduced the Voice Notes Android app, 

capable of processing audio from apps like WhatsApp. Despite its 

capabilities, the ASR application has its shortcomings, including 

difficulties with uncommon phrases and the loss of certain 

metadata during transfers [43]. Meanwhile, the open-source 

program Woefzela, introduced by de Vries et al. [44], specifically 

targeted low-resource languages in developing regions. Despite 

quality control features, the collected data can sometimes be 

suboptimal, impacting the ASR systems' accuracy. Badenhorst et 

al. [45] later suggested more intricate quality checks, targeting 

transcription mismatches. 

 

Lakdawala et al. [11] presented an offline speech-to-text 

transcription system for healthcare organizations. It can be used by 

counsellors and non-governmental groups to capture talks during 

surveys, convert them to text, and then save the messages. This 

system includes an open-source application. The CMUSphinx 

toolkit is utilized for speech recognition. The system can recognize 

multiple languages. The language model, phonetic dictionary, and 

acoustic model are all utilized by the CMUSphinx toolkit. The user 

captures their voice using the mobile application, and the 

CMUSphinx toolkit analyses and transcribes it. The transcription 

file is saved as a text file in the device's memory; the user can use 

the application to upload and download data to and from the 

database server. Although the CMUSphinx speech recognition 

toolkit is dependable and accurate, mistakes happened 

nevertheless. Background noise, speaker accents, and rate of 

speech, among other things, also affected how accurately a 

transcript was made [11]. 

 

Liu and Zhou [12] introduced a Chinese small-vocabulary offline 

speech recognition system based on the PocketSphinx toolkit. The 

language model is built through the online tool LMTool, and the 

acoustic models are renewed by enhancing the Sphinx models that 
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already exist. Then an offline speech recognition system that 

functions on an Android smartphone was created. The outcomes of 

the experiment demonstrated that the system used to recognize 

speech commands for mobile phones performs well in terms of 

recognition [12]. 

 

This paper contributes to the existing body of knowledge on 

mobile-based Automatic Speech Recognition (ASR) systems with 

an emphasis on isiXhosa, a South African language that is notably 

underrepresented in digital resources. While Hughes et al. and Lane 

et al. have previously conducted research to develop ASR 

technology, addressing issues like read speech and simplicity of 

data collection, the challenges of creating a high-quality textual 

corpus from unstructured audio in a low-resource language have 

not been investigated yet. Additionally, new variables such as 

hardware differences, gender of the speaker, and rate of speech are 

introduced in this paper. 

4 PROBLEM DEFINITION AND RESEARCH 

QUESTION 

 

4.1 Problem definition 

The scarcity of electronic linguistic resources for several South 

African languages hinders computational and statistical systems 

that rely on them. The lack of documents in these languages is an 

important issue, making it difficult to build high-quality text 

corpora required for text-based research. Collecting and producing 

these materials is often time-consuming, costly, and not feasible for 

low-resource languages [2]. As a result, it is critical to examine the 

usage of standard speech tools such as PocketSphinx to 

automatically transcribe unstructured audio, offering a critical data 

source for natural language processing. 

 

4.2 Research question 

How accurate is speech-to-text transcription of unstructured audio 

using the PocketSphinx speech recognition toolkit on mobile 

devices? 

Accuracy in this context, can be defined using the metrics of Word 

Error Rate (WER) and Levenshtein distance at both word and 

character level. The research question investigates if the 

PocketSphinx speech recognition toolkit, when used on mobile 

devices, can accurately convert unstructured audio into text. It 

specifically intends to evaluate the toolkit's ability to transform 

spontaneous and unscripted audio recordings into written text when 

used on mobile devices, which may include casual conversations or 

audio recorded in unpredictable environments. The emphasis on 

mobile devices is important because, given their varying hardware 

capabilities, potential for ambient noise, and other related factors, 

they offer unique challenges and benefits from desktop systems.  

 

5 EXPERIMENTAL METHODOLOGY 

5.1 Evaluation Metrics 

 

5.1.1 Word Error Rate 

The word error rate (WER) is a metric for assessing how accurate 

a speech recognition system is [20]. The number of errors that 

occurred during the translation of an audio stream may be 

determined by calculating WER. According to Anusuya and Katti 

[32], WER is determined by adding up all of the errors in the 

hypothesis and dividing them by the total number of words in the 

correct sentence. An error occurs when the sentence's hypothesis 

differs from the actual sentence due to an improper word 

substitution, word deletion, or word insertion. The word error rate 

is calculated using Equation 2. The key success factor for a speech 

recognition system is a low WER. 

 

𝑊𝐸𝑅 =  
𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠 + 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠 + 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠
                  (2) 

 

 

5.1.2 Levenshtein distance    

The Levenshtein distance (LD) is a measurement of how many 

modifications must be made to a word sequence to make it 

equivalent to another. For example, if the two phrases S1 ="how 

are you doing" and S2 ="what are you doing", the word "how" in 

S1 can be replaced with the word "what" to consist of the same 

words as S2. As a result, the Levenshtein distance between the two 

statements is 1 [37]. For this project, the Levenshtein distance at 

both word-level and character-level was used.  

 

             𝐿𝐷 = 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠 + 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠 + 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑠           (3) 

 

5.2 Training database preparation 

Since there are no previously trained language models or acoustic 

models in isiXhosa, a new language model and an acoustic model 

need to be trained. Training a new acoustic model requires using 

the command line prompts provided by CMU SphinxTrain [36]. 

SphinxTrain is a set of tools designed to create speech recognition 

systems for any language with adequate acoustic data, compatible 

with the CMUSphinx speech recognizer. 

 

5.2.1 Building a language model 

To build a language model for isiXhosa, the language modeling 

toolkit for CMUSphinx (CMUCLMTK) was used. The CMU-

Cambridge Language Modeling Toolkit (CMUCLMTK) is a 

collection of UNIX software tools created to make language 

modeling work in the academic community easier [33]. To develop 

the language model, a reference text was constructed using the 

NCHLT isiXhosa Speech Corpus, a 56-hour speech collection 

comprised of orthographically transcribed utterances that capture a 

wide range of frequencies. Each entry in this corpus is presented in 

normalized text, enclosed by <s> and </s> tags. For a richer 

reference text, the initial text was combined with both the Lwazi 
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isiXhosa TTS corpus and Lwazi II isiXhosa TTS Corpus, which 

offer orthographic and phonemically aligned transcriptions. All 

these resources were obtained from the South African Centre for 

Digital Language Resources (SADiLaR) 1  and feature audio 

recordings of isiXhosa speech paired with their transcriptions. The 

combination of these corpora resulted in a comprehensive reference 

text, as exemplified by a snippet in Figure 3. After this, a 

vocabulary file encompassing every unique word from the 

reference text was formulated. Lastly, with this data, a language 

model was generated in the ARPA format [34]. 

 

 
Figure 3: A snippet of the isiXhosa reference text used to 

generate the language model. 

 

5.2.2 Phonetic dictionary and G2P model training 

The isiXhosa phonetic dictionary file was obtained from the 

NCHLT-inlang pronunciation dictionaries from SADiLaR, which 

are broad phonemic transcriptions for 15,000 common words in 11 

different languages [35]. The phonetic dictionary contains the 

phonetic representation of all the words contained in the 

transcription files as exemplified by a snippet in Figure 4, allowing 

the decoder to understand how to pronounce each word.  

 

 
 

Figure 4: A snippet of the phonetic dictionary that consists of 

the word and its corresponding phonetic representation. 

 

The NCHLT-inlang isiXhosa dictionary was limited and some 

words that were present in the transcription file were not present in 

the dictionary. SphinxTrain expects all words in the transcription 

file to be present in the phonetic dictionary. To solve this issue, a 

grapheme-to-phoneme model was trained using Sequitur G2P to 

generate the phonetic representation of new words based on words 

present in the NCHLT-inlang dictionary. The Sequitur G2P model 

was trained in three iterations and the final model was used to 

generate the phonetic representation of any new words that were 

not present in the current dictionary. 

 

5.2.3 Training database structure 

In the process of training an acoustic model, a training database is 

required. The database provides the data needed to create an 

acoustic model that extracts statistics from speech. The database 

                                                                 
1 https://sadilar.org/index.php/en/resources 

was divided into two sections: a training section and a testing 

section. The testing section was about 1/10th of the total data size 

and did not exceed more than 4 hours of audio. The database 

prompts with post-processing contained the following database 

structure: 

 

 
├─ etc 

│  ├─ your_db.dic                                 (Phonetic dictionary) 

│  ├─ your_db.phone                            (Phoneset file) 

│  ├─ your_db.lm.DMP                        (Language model) 

│  ├─ your_db.filler                              (List of fillers) 

│  ├─ your_db_train.fileids                  (List of files for training) 

│  ├─ your_db_train.transcription        (Transcription for training) 

│  ├─ your_db_test.fileids                    (List of files for testing) 

│  └─ your_db_test.transcription          (Transcription for testing) 

└─ wav 

   ├─ speaker_1 

   │   └─ file_1.wav                          (Recording of speech utterance) 

   └─ speaker_2 

      └─ file_2.wav 

 

Figure 5: The file structure for the database used for the 

acoustic model training 

 

In the structure of the speech recognition training database in 

Figure 5, several file types play distinctive roles. The *.fileids files 

are text documents that enumerate the names of individual 

recordings, or utterance IDs, by providing file-system paths relative 

to the wav directory. Complementing this, the *.transcription files 

provide transcriptions corresponding to each audio recording. The 

actual audio data is stored in the *.wav folder. It is crucial to ensure 

consistency between these recordings and their transcripts; any 

discrepancies can drastically reduce recognition accuracy. The 

your_db.dict file serves as the phonetic dictionary, presenting each 

word followed by its phonetic representation on a new line. The 

your_db.phone file houses the list of phones, detailing a list of 

phone sets that correspond to the phonetics in the dictionary as 

shown in Figure 6. For the language model, it is stored as a DMP 

in the your_db.lm.DMP file. Lastly, the your_db.filler file functions 

as the filler dictionary, accounting for non-linguistic sounds like 

breaths, "hmm", or laughter, which the primary language model 

does not cover. 

 

 
Figure 6: A snippet of some of the phone sets that can be found 

in the phonetic dictionary. 

 

5.3 Acoustic model training 

The training of the acoustic model was done in two iterations. The 

first iteration involved using data from the NCHLT isiXhosa 

Speech Corpus. The trained acoustic model in the first iteration had 
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a limitation where it did not recognize words that were not included 

in the NCHLT isiXhosa Speech Corpus or the NCHLT-inlang 

isiXhosa dictionary. To overcome this limitation, the second 

iteration of the acoustic model training involved extending the 

dictionary and transcription file to include more words by 

combining the NCHLT isiXhosa Speech Corpus with the data from 

the Lwazi isiXhosa TTS corpus and Lwazi II isiXhosa TTS Corpus. 

The Word Error Rate (WER) and Sentence Error Rate (SER) of the 

model were computed by the decoder using the test portion of the 

training database and the reference transcripts throughout the 
training phase. The training results are shown in Table 1. 

During the training of the acoustic model, an error emerged from 

backward.c indicating: "Failed to align audio to transcript: final 

state of the search is not reached." This was due to a mismatch 

between the audio in the database and its corresponding 

transcription. To address this, prompts that did not align properly 

were filtered out as they can compromise the acoustic model's 

quality. The solution was to activate the forced alignment stage 
during the training process. 

The word error rate for the first iteration of the acoustic model 

training is 30.1% which indicates that, on average, 2442 out of 8107 

words transcribed by the model were incorrect when compared to 

the reference transcription. An SER of 33.2% indicates that 920 out 

of 2770 sentences transcribed by the model were incorrect in some 

way when compared to the reference transcription. From Table 1, 

it can be seen that extending the dictionary and transcription file in 

the second iteration did not improve the WER but slightly 

decreased it by 0.1%, however, the SER remained the same. This 

was because the training data was extended so that the system could 
recognize more words and the test data remained the same. 

Table 1: Results for the first and second iterations of the 

acoustic model training 

Iteration Error rate 

evaluation 

Error Transcription 

errors 

Iteration 1  Sentence Error 

Rate (SER) 

33.2% 920/2770 

Word Error Rate 

(WER) 

30.1% 2442/8107 

Iteration 2 Sentence Error 

Rate (SER) 

33.2% 920/2770 

Word Error Rate 

(WER) 

30.2% 2442/8107 

 

5.4 Android app integration and implementation 

To enable speech recognition on a mobile device, the acoustic 

model previously trained, the phonetic dictionary and the language 

model need to be integrated into an Android app. The CMUSphinx 

official website contains a demo Android app that uses 

PocketSphinx to do speech recognition in English [38].  

 

5.4.1 Integration of speech models  

The default demo app contains a directory called “models”, where 

it stores all the models required for speech recognition. By default, 

the app uses grammar files to create grammar-based searches and 

recognize digits. It also uses language models in the DMP format 

to recognize phones and weather forecasts in English. To recognize 

English words, the app makes use of the Carnegie Mellon 

University Pronouncing Dictionary, which is an open-source 

machine-readable pronunciation dictionary for North American 

English that contains over 134,000 words and their pronunciations 

[50].  

To modify the app to recognize isiXhosa words instead, the trained 

isiXhosa models and phonetic dictionary were added to the 

“models” directory. These models were then referenced directly in 

the main activity program called PocketSphinxActivity.java. 

 

5.4.2 Customizations and Configurations 

The default app is designed to present three different recognition 

demos. When the app detects the key phrase "oh mighty computer," 

it prompts users to select one of three demo options: "digits," 

"weather," or "phones." The "digits" demo detects digits from 0 to 

9, the "weather" demo recognizes weather forecasts and the 

"phones" demo demonstrates phonetic recognition capabilities. The 

main functionality of the app is found in the 

PocketSphinxActivity.java file.  

Several important changes were made while switching from the 

default PocketSphinx application to the new isiXhosa app. Firstly, 

the named searches for "digits," "phones," and "menu" were 

removed, reducing the application's functionality to primarily focus 

on keyword activation and recognition of isiXhosa words. The 

activation keyword was changed from "oh mighty computer" to 

"ubuntu," reflecting a term more culturally appropriate to the 

isiXhosa language and that is present in the isiXhosa phonetic 

dictionary. The acoustic model and dictionary paths in the 

setupRecognizer function were also adjusted to refer to the 

isiXhosa acoustic model and phonetic dictionary. A transcription 

logging system was also added, ensuring that recognized speech is 

reported to Android's Logcat for debugging and analysis. Details of 

the inner workings of the app and design can be found at [38]. 

 

5.4.3 App functionality 

Upon launching the app, there's a brief initialization period for the 

recognizer. Following this, the app uses the device's microphone to 

await audio input. The app listens for the “ubuntu” key phrase that 

triggers the recognition process. Once this key phrase is detected, 

the app shifts into a continuous recognition mode until the end of 

the audio input. Subsequently, it displays the transcription of the 

audio on the screen as seen in Figure 7. 



September 2023, Cape Town, South Africa F. Tohab et al. 

 

 

 

Figure 7: A demonstration of how the Android app works 

 

5.5 Experimental Design 

The experimental design is set up to rigorously assess the 

performance of the isiXhosa speech recognition system across 

diverse scenarios. The evaluation process consists of performing 

transcriptions using a variety of audio types such as audio with 

ambient background noise, spontaneous casual conversations, and 

audio clips of varying speech rates. Other factors such as the 

hardware of the device and the gender of the speaker are also taken 
into consideration. 

5.5.1 Baseline audio 

The baseline audio recordings that were used for the evaluation 

process are unstructured and structured audio recordings obtained 

from the gold standard corpus (the third component of the project), 

which consists of audio samples and their corresponding 

transcription. For the structured audio, SABC broadcast news that 

has been transcribed as part of the gold standard corpus was used. 

The unstructured audio used consisted of audio samples that had 

two or more people engaging in casual conversations in a noisy 

environment. The baseline audio also had a mixture of male and 

female speakers as well as speakers who spoke at different speeds. 

For this project, approximately 53 minutes of both structured and 
unstructured audio samples were used. 

5.5.2 Data preprocessing 

To experiment with diverse scenarios, the baseline audio needs to 

be segmented into smaller chunks and manipulated to either 

remove or add background noise and normalization if needed. 

Segmentation: The duration of the audio samples used for the 

experiments was originally 10 minutes each. To better align with 

PocketSphinx’s design for processing shorter utterances, these 

audio samples were segmented to produce shorter, more 

manageable chunks using the AudioSegment module from the 

pydub Python library. The structured audio samples (SABC 

broadcast news) were segmented by speaker and the unstructured 

audio samples were segmented in one, two, and three-minute 
segments.  

Artificial background noise: Another key part of the experiment is 

to see how well the speech recognition system performs with audio 

that has background noise. For consistency, the structured audio 

samples segmented in the previous step were used as the baseline 

audio for this step. A Python script using the pydub Python library 

for audio file manipulation was used to introduce controlled levels 

of city-traffic background noise to the previously segmented audio 

samples. The script combined the clean audio with background 

noise at varying decibel levels, ranging from -20dB to 0dB in 4dB 

increments, and new audio samples with varying volumes of noise 
were produced. 

Casual Conversations: This is audio data of two or more people 

engaging in casual conversations in isiXhosa with overlaps, 

interruptions, code-switching, and other casual speech 

characteristics. A Python script was used to preprocess the casual 

audio samples to remove background noise and add normalization 

using the pydub, numpy, and scipy.signal libraries. Each audio file 

was initially converted to a mono format in the processing pipeline, 

ensuring a coherent single-channel representation across all files. 

This conversion simplifies the audio by representing it with a single 

set of samples instead of numerous channels, which might add 

variability. The discrete signal amplitudes from the audio were 

retrieved as samples for further mathematical calculations after 

conversion. A Butterworth low-pass filter with a cutoff frequency 

of 4000 Hz is used to handle high-frequency noise and interference. 

This filter is recognized for its smooth frequency response with no 

ripples [49]. A normalization process is used to ensure that the 

audio maintains a constant amplitude level over the entire dataset. 

This process adjusts the amplitude of the audio samples so that they 

fit inside the dynamic range of the int16 data type, thus increasing 
the volume without causing distortion. 

5.5.3 Different hardware 

The transcriptions of the audio were done on the Android studio 

emulator by default. However, to test how the hardware of the 

recognition device such as the quality of the microphone affects the 

transcription accuracy, different mobile phones were employed. 

The mobile phones used are the Samsung Galaxy A72, the 

Samsung Galaxy Pocket, and the Xiaomi Redmi 6A. These mobile 

devices were tested for transcription accuracy using a standardized 
25-second audio sample of a male speaker in a silent setting. 

5.5.4 Transcription procedure 

Since the PocketSphinx Android app uses a microphone to listen 

for input, the preprocessed audio was played on the Android app 

using a mobile phone with a good speaker (an iPhone). Once the 

app transcribed the audio, the transcription was recorded and saved 

to a text file. The transcription test was done on the Android studio 

emulator except for the hardware experiment section. For the 

hardware test, similar to the Android emulator, the audio was 
played from the iPhone onto the device’s microphone.  

Because the transcription varied each time the same audio was 

played, the transcription of each audio sample was done three times 

and the average WER and Levenshtein distance at both character 
and word level was taken to improve accuracy. 
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6 RESULTS AND DISCUSSIONS 

The table of results for the various experiments can be found in the 

Supplementary Information section. 

6.1 Background noise 

The presence of background noise in audio recordings greatly 

affects the transcription accuracy. To test how well the isiXhosa 

speech recognition system works with different volumes of 

background noise, 36 audio samples with durations that ranged 

between 4 and 28s and volumes of background noise that ranged 

between 0 and -20 dB were used. The results are presented in the 
graphs in Figures 8 and 9.  

A high background noise level of 0 dB resulted in an average WER 

of 1, which is considerably high given that the key success 

factor for speech recognition systems is a low WER. The standard 

deviation at this noise level was zero, meaning that the system 

consistently produced a WER of 1 for all samples. In comparison, 

at a quieter -20 dB, the system's mean WER improved to 0.94 with 

a standard deviation of 0.13, demonstrating improved transcription 

accuracy with lower levels of noise. The Levenshtein distance for 

0 dB is 34 at the word level and 285 at the character level. Their 

standard deviations, 18.35 and 127.42, indicate the dispersion or 

variability in these distances from their averages. Figure 9 

demonstrates a considerable drop in these distances when 

background noise levels decrease. The distances were 33 (word-

level) and 243 (character-level) at -20 dB. Their standard 

deviations, 18.90 and 120.89, show the distribution of outcomes 
around these averages. 

From the result, it is evident that the quality of the audio input is 

crucial for accurate transcription when using the PocketSphinx 

Android app for speech recognition, particularly for languages with 

complex phonetic structures like isiXhosa. As the volume of the 

background noise in the audio is decreased, the experimental 

findings in Figures 8 and 9 show a considerable reduction in both 

WER and Levenshtein distance. Phonemes, the smallest units of 

sound, are recognized individually by speech recognition 

algorithms to identify spoken information. These phonemes are 

obscured or distorted by ambient noise, leading to incorrect 

identification. More phonemes were correctly identified thanks to 

the reduction in the volume of the background noise, increasing the 
accuracy of transcription.  

 
Figure 8: The average WERs for decreasing volumes of 

background noise.  

 

Figure 9: The average Levenshtein distance at word and 

character levels for decreasing volumes of background noise.  

6.2 Casual conversations 

The effectiveness of the speech recognition system when it is 

presented with audio that is conversational with overlaps, 

interruptions, background noise, and other casual speech 

characteristics was examined using 30 audio samples that ranged 
between 1 and 3 minutes. The results are shown in Figure 10.  

The original audio samples produced an average WER of 1 with a 

standard deviation of 0.001, an average Levenshtein word distance 

of 141 with a standard deviation of 63, and an average Levenshtein 

character distance of 1025 with a standard deviation of 526. These 

are considerably high results and a WER of 1 indicates that the 

transcription was completely wrong. This is due to the presence of 

background noise and other factors. To improve accuracy, the 

original audio samples were preprocessed to remove background 

noise. The results in Figure 10 for the audio samples with 

background noise removed show no improvement with an average 

WER still at 1 with a standard deviation of 0. There is also a slight 

increase in the Levenshtein distances at both word and character 

levels. This might be because the noise removal technique might be 

too aggressive and is inadvertently removing or altering parts of the 

actual speech signal making some words or phonemes 

indistinguishable. The denoised audio was then normalized to see 

if this would improve the transcription accuracy. As can be seen in 

Figure 10, normalization improved the accuracy to an average 

WER of 0.86 with a standard deviation of 0.12. The Levenshtein 

word and character distances also improved to 123 and 912, 
respectively. 

Conversations on the audio that was utilized for the transcription 

test frequently switched between English and isiXhosa. Although 

code-switching is a common linguistic occurrence, it presents 

special difficulties for speech recognition technology. When 

English was introduced, the acoustic model and language model, 

which were trained in isiXhosa, misinterpreted or altogether missed 

words because they were not intended to recognize multilingual 

input. Figure 11 shows how the system performs when it is 

presented with audio that contains English words. The system 

completely missed these words and did not transcribe them which 

is noted by the decrease in transcription length when compared to 

the original audio transcription. The isiXhosa words were also 
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incorrectly transcribed due to other factors such as background 

noise or the words used not being present in the phonetic dictionary 
used to train the speech models.  

Slang, acronyms, and colloquialisms were also used in the audio 

conversations. These often deviate from the standard language 

models as PocketSphinx's acoustic model for isiXhosa is mainly 

trained on more formal or standardized datasets and can be absent 
from the system's training data.  

  

 

 

 

 

Figure 10: The results obtained after transcribing 

conversational audio with background noise, with no 

background noise, and normalization for WER (top) and 

Levenshtein distances (bottom). 

 

 

Figure 11: An example of how the system performs when it is 

presented with audio that is conversational with code-

switching.  

 

6.3 Hardware implications on transcription accuracy 

Three mobile phones were tested for transcription accuracy using a 

standardized 25-second audio sample of a male speaker in a silent 

setting. The original transcription of this audio contains 33 words 

and 290 characters excluding spaces. With a Word Error Rate 

(WER) of 0.36 and the smallest Levenshtein distances at both word 

and character levels (12 and 39) as shown in Table 2, the Xiaomi 

Redmi 6A performed the best. The Samsung Galaxy Pocket, on the 

other hand, substantially underperformed, having the highest 

Levenshtein distances at both word and character levels (25 and 

136) and a WER of 0.77. With a WER of 0.49, the Samsung Galaxy 

A72 fell somewhere in the middle. These discrepancies could be 

caused by variations in microphones, hardware for processing 

audio, and other embedded technologies. These findings highlight 

the necessity of taking hardware characteristics like microphone 

quality and onboard audio processing technology into account 

when assessing or implementing speech recognition solutions on 

mobile devices. 

Table 2: The results from performing transcription on different 

phones. The Xiaomi Redmi 6A performs the best. 

Mobile phone 

type 
Average 

WER 
Average 

Levenshtein 

distance 

(word level) 

Average 

Levenstein 

distance 

(character level) 

Samsung 

Galaxy A72 

0.49 16 91 

Samsung 

Galaxy Pocket 

0.77 25 136 

Xiaomi Redmi 

6A 

0.36 12 39 

 

6.4 Implications of gender on transcription accuracy 

The effectiveness of the speech recognition system was assessed 

for speakers who were male or female. For reference, five audio 

samples that had male speakers and five audio samples that had 

female speakers were used. The results in Table 3 reveal subtle 

variations in speech recognition performance between male and 

female speakers. Female speakers had a WER of 0.98 compared to 

male speakers' WER of 0.99, implying a marginally better 

recognition of female voices. Table 3 also shows that female voices 

showed marginally better results in Levenshtein word and character 

distances, with scores of 45 and 274, respectively. Male voices 

produced more consistent WER values, with a standard deviation 

of 0.0063 compared to 0.0207 for females. However, when it comes 

to Levenshtein Distances, male voices showed significantly larger 

variability, with significantly higher standard deviations for both 

Levenshtein word and character distance compared to females. 
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Table 3: The transcription results for both male and female 

speakers  

Gender  Average 

WER  

Average 

Levenshtein 

distance (word 

level) 

Average Levenstein 

distance (character 

level) 

Female  0.98 45 274 

Male  0.99 41 281 

6.5 Rate of speech 

The acoustic model for the isiXhosa speech recognition system was 

trained using audio samples that had a maximum speech rate of 

approximately 70 words per minute (WPM) which is considered to 

be relatively slow. According to Rodero [32], a speech rate of less 

than 130 WPM is considered to be slower than normal. A speech 

rate of between 170 WPM and 190 WPM is considered to be fast 

and a speech rate of greater than 190 WPM is considered to be 

faster than normal. Figure 12 represents the results for 15 audio 

samples of different durations. According to Figure 12, the system 

consistently produces a high WER, ranging between 0.95 and 1. 

This indicates that the system does not perform well for the audio 

samples used despite some samples having a speech rate of lower 

than 70 WPM.  Other factors, such as the lack of certain words from 

the audio samples in the acoustic model's training vocabulary, are 

likely impacting this accuracy. 

 

 

Figure 12: Results for the performance of the speech 

recognition system for various rates of speech.  

6.6 Discussion of results, limitations, and future work 

The evaluation of the PocketSphinx Android app for isiXhosa 

speech recognition revealed critical limitations. Regardless of 

preprocessing strategies, the system's restriction to words included 

in its training corpora had a direct influence on transcription 

accuracy. The absence of words from audio samples in the model's 

training dictionary or transcription files emphasizes the importance 

of comprehensive training. For optimal performance, the 

PocketSphinx speech recognition system should be trained on all 

possible linguistic sentences and words that are available in 

isiXhosa. 

The system's sensitivity to background noise, a result of its training 

mostly on clean audio, restricts its applicability across a wide range 

of real-world scenarios, underlining the need for further 

improvement to accommodate a variety of settings. Given the 

widespread use of Android smartphones, guaranteeing reliable 

performance in a variety of settings, from calm inside locations to 

busy outdoor environments, becomes critical. 

The transcription of informal isiXhosa conversations, particularly 

those involving code-switching, varied dialects, slang, and 

colloquialisms, also presented challenges. These constraints, when 

combined with the phonetic intricacies of isiXhosa and potential 

recording quality issues, highlight the need for models that are 

capable of handling informal speech dynamics and multilingual 

situations. Given the wide range of real-world speech rates, the 

present acoustic model's preference for slower speech rates reveals 

adaptation restrictions. Furthermore, the subtle but important 

recognition differences between male and female speakers 

necessitate investigation, which may be anchored in different 
speech frequencies or tonalities. 

 

The evaluation of the PocketSphinx Android app for isiXhosa 

speech recognition leaves scope for future work. Training on 

conversational datasets might improve the acoustic model's 

recognition of informal constructs and typical conversation fillers. 

A dedicated focus on training with different speech rates and a 

variety of auditory circumstances, such as a mix of noisy and clean 

audio, might improve its overall performance. Its robustness can be 

increased by features like active noise cancellation and 

environment detection. The system can be made more user-friendly 

and robust in various auditory conditions by including real-time 

noise adaptation algorithms and giving users instructions on how to 

utilize it best. Extensive multilingual training might help with code-

switching issues, and a deeper dive into informal lexicons could 

help with understanding slang and colloquial terminology. Finally, 

extending the phonetic vocabulary and transcription file will 

provide the system with a more extensive and inclusive repository 

of isiXhosa words, guaranteeing a more comprehensive and 

inclusive speech recognition capacity. 

7 CONCLUSIONS 

The evaluation of the PocketSphinx Android app for isiXhosa 

speech recognition revealed considerable flaws in the system's 

capacity to automatically transcribe unstructured audio on mobile 

devices. As the use of mobile phones surges in sub-Saharan Africa, 

the potential of mobile transcription to facilitate electronic resource 

creation for low-resource South African languages is evident. 

According to the results and data used, it is presently not possible 

to produce a high-quality textual corpus on a mobile device using 

the PocketSphinx speech recognition toolkit without making 

substantial improvements. Noise sensitivity and transcription of 

informal conversations are only a few of the difficulties that must 

be overcome to improve the accuracy of transcription. These 

problems underscore the urgent need for model improvement, 

flexible training, adaptable algorithms, and device-centric 

optimization. While promising in its current condition, there is still 

a long way to go before mobile devices can be effectively used for 
the gathering and creation of high-quality linguistic data. 
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SUPPLEMENTARY INFORMATION 
 

1. Structured audio results 
 

Audio  Duration  Type  Speed rate 

(WPM)  

Gender  WER  LDW  LDC  

Audio 1  38s  News 

report  

93.16  Female  1  59  359  

Audio 2  39s  News 

report  

83.08  Female  0.99  53  323  

Audio 3  17s  Studio  109.41  Male  1  31  203  

Audio 4  64s  New 

report  

99.38  Male  0.98  104  719  

Audio 5 4s  Studio  90.00  Male  1  6  50  

Audio 6  27s  News 

report  

64.44  Male  1  29  173  

Audio 7 33s  News 

Report  

63.64  Male  1  35  260  

Audio 8 25s  News 

report  

57.60  Male  1  24  184  

Audio 9 34s  News 

report  

70.59  Male  1  40  299  

Audio 10  18s  News 

report  

70.00  Male  1  21  119  

Audio 11 15s  Studio  104.00  Male  1  26  158  

Audio 12 28s  Studio  130.71  Male  1  61  408  

Audio 13  23s  Studio  109.57  Female  0.98  41  264  

Audio 14  22s  News 

report  

98.18  Female  0.95  34  170  

Audio 15  22s   Studio  109.09  Female  1  40  255  

 

2. Casual conversations results 
 

2.1 Original audio  

 
Audio  WER  LDW  LDC  

Audio 5  1  43  232  

Audio 6  1  184  1062  

Audio 7  1  137  719  

Audio 13  1  138  872  

Audio 16  1  173  883  

Audio 17  1  69  507  

Audio 18  1  112  749  

Audio 19  1  104  768  

Audio 20  1  96  675  

Audio 21  1  76  543  

Audio 25  1  89  629  

Audio 26  0.99  115  712  

Audio 27  1  80  541  

Audio 28  1  74  459  

Audio 29  1  81  545  

Audio 30  1  32  246  

Audio 31  1  152  1217  

Audio 32  1  201  1522  

Audio 33  1  186  1381  

Audio 34  1  197  1502  

Audio 35  1  196  1489  

Audio 36  1  143  1161  

Audio 37  1  137  1153  

Audio 38  1  179  1343  

Audio 39  1  165  1242  

Audio 40  1  156  1307  

Audio 41  1  241  2088  

Audio 42  1  277  2150  

Audio 43  1  280  2174  

Audio 44  1  121  886  

  

 

2.2 Denoised audio 
 

Audio  WER  LDW  LDC  

Audio 5  1  43  256  

Audio 6  1  184  1065  

Audio 7  1  137  761  

Audio 13  1  138  905  

Audio 16  1  173  918  

Audio 17  1  69  505  

Audio 18  1  112  829  

Audio 19  1  104  781  

Audio 20  1  96  669  

Audio 21  1  76  559  

Audio 25  1  89  637  

Audio 26  1  116  798  

Audio 27  1  80  578  

Audio 28  1  74  494  

Audio 29  1  81  557  

Audio 30  1  32  245  

Audio 31  1  152  1221  

Audio 32  1  201  1538  

Audio 33  1  186  1386  

Audio 34  1  197  1506  

Audio 35  1  196  1492  

Audio 36  1  143  1162  

Audio 37  1  137  1151  
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Audio 38  1  179  1345  

Audio 39  1  165  1247  

Audio 40  1  156  1310  

Audio 41  1  241  2087  

Audio 42  1  277  2155  

Audio 43  1  280  2182  

Audio 44  1  121  901 

  

 
2.3 Denoised + Normalized  

 

Audio  WER  LDW  LDC  

Audio 5  0.67  29  171  

Audio 6  0.67  123  709  

Audio 7  0.67  91  510  

Audio 13  0.67  92  586  

Audio 16  1  173  920  

Audio 17  0.67  46  341  

Audio 18  0.67  75  521  

Audio 19  0.67  69  511  

Audio 20  0.67  64  447  

Audio 21  0.67  51  371  

Audio 25  1  89  626  

Audio 26  0.67  77  522  

Audio 27  1  80  566  

Audio 28  1  74  484  

Audio 29  1  81  558  

Audio 30  1  32  241  

Audio 31  1  152  1219  

Audio 32  0.67  134  1025  

Audio 33  1  186  1397  

Audio 34  1  197  1505  

Audio 35  0.67  131  994  

Audio 36  1  143  1160  

Audio 37  0.67  91  770  

Audio 38  1  179  1345  

Audio 39  1  165  1248  

Audio 40  1  156  1310  

Audio 41  1  241  2089  

Audio 42  1  277  2156  

Audio 43  1  280  2180  

Audio 44  1  121  894  

 

3. Background noise results 

 
3.1 Audio sample 1 
 

Volume (dB)  WER  LDW  LDC  

0  1  31  279  

-4  1  31  271  

-8  1  31  252  

-12  1  31  241  

-16  1  31  259  

-20  1  31  260  

  

3.2 Audio sample 2 
 

Volume (dB)  WER  LDW  LDC  

0  1  6  63  

-4  1  6  63  

-8  1  6  56  

-12  1  6  57  

-16  1  6  54  

-20  0.67  4  37  

  

 

3.3 Audio sample 3 
 

Volume (dB)  WER  LDW  LDC  

0  1  26  234  

-4  1  26  228  

-8  1  26  194  

-12  1  26  197  

-16  1  26  210  

-20  1  26  189  

  

3.4 Audio sample 4 
 

Volume (dB)  WER  LDW  LDC  

0  1  61  421  

-4  1  61  417  

-8  1  61  406  

-12  1  61  421  

-16  1  61  409  

-20  1  61  393  
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 3.5 Audio sample 5 
 

Volume (dB)  WER  LDW  LDC  

0  1  42  377  

-4  1  42  355  

-8  0.99  42  334  

-12  0.99  42  310  

-16  0.99  42  289  

-20  0.98  41  307  

  

 

3.6 Audio sample 6 
 

Volume (dB)  WER  LDW  LDC  

0  1  40  333  

-4  1  40  330  

-8  0.98  39  283  

-12  0.99  40  272  

-16  0.98  39  273  

-20  0.99  40  272  

  

  

  

 


