

CS/IT Honours Project

Final Paper 2022

Title: Using Mobile Audio Transcription to Generate High-Quality Text

Corpora for Low-Resource Languages

Author: Fardoza Tohab (THBFAR002)

Project Abbreviation: SABC2TXT

Supervisor(s): Hussein Suleman (hussein.suleman@uct.ac.za)

Category Min Max Chosen

Requirement Analysis and Design 0 20 0

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 20

System Development and Implementation 0 20 10

Results, Findings and Conclusions 10 20 20

Aim Formulation and Background Work 10 15 10

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

mailto:hussein.suleman@uct.ac.za

September 2023, Cape Town, South Africa F. Tohab et al.

Using Mobile Audio Transcription to Generate High-Quality Text

Corpora for Low-Resource Languages

Final paper

Fardoza Tohab
 Department of Computer Science

 University of Cape Town

 thbfar002@myuct.ac.za

ABSTRACT

The scarcity of electronic resources for many South African

languages, such as isiXhosa, poses a barrier to text-based research

and experimentation. To overcome this barrier, this paper

investigates the feasibility of using mobile devices to automatically

transcribe unstructured audio to generate a high-quality textual

corpus using the PocketSphinx speech recognition toolkit across

various dimensions such as background noise and conversational

difficulties. The results reveal notable limitations, including high

Word Error Rates (WER) and difficulties in capturing casual

speech. Hardware differences and the rate of speech also influence

performance. The results show that with the current data utilized,

PocketSphinx is not viable for generating high-quality isiXhosa

textual corpora on mobile devices, highlighting an urgent need for

specialized model improvements.

CCS CONCEPTS

• Computing methodologies → Natural language processing;

• Computing methodologies → Speech recognition;

• Applied computing → Document management and text

processing

KEYWORDS

Speech/language, automatic speech recognition, mobile devices,

natural language processing, low-resourced languages,

PocketSphinx

1 INTRODUCTION

In South Africa, nine out of the eleven official African languages

lack electronic linguistic resources such as books or documents

[1][2], which is detrimental to computational and statistical systems

such as language models that rely on these documents. Access to

high-quality linguistic resources, such as annotated corpora and

core technologies, is one of the fundamental prerequisites for

research, development, and assessment in Natural Language

Processing (NLP) [2]. The development of speech technology is

closely related to resource gathering since the statistical models that

dominate Text-To-Speech (TTS) and Automatic Speech

Recognition (ASR) systems depend on the availability of suitable

resources for the determination of their parameters [3].

Automatic Speech Recognition (ASR) is the process of turning a

speech signal into a series of words using an algorithm that is

implemented as a computer program [39]. ASR is a technique that

enables computing devices to translate human spoken words into

computer-readable text via microphone or telephone input [40].

Speech recognition is distinct from voice recognition in that the

former entails a machine's capacity to identify the words that are

said (i.e., what is said), whereas the latter requires a machine's

capacity to identify speaking style (i.e., who said something) [5].

The speech research community has demonstrated considerable

interest in ASR for low-resource languages over the past decade.

[6][7]. According to Berment [2004], a language is considered to

be low-resourced if it lacks some (but not all) of the following

characteristics: a distinctive writing system, linguistic knowledge,

web resources, and electronic resources for speech and language

technology [48]. It is crucial to emphasize that it differs from a

minority language, which is a language spoken by a minority of a

territory's people [8]. Only a small portion of the world's

approximately 7,000 languages provide the materials needed for

the application of human language technologies [9].

This project aims to explore and evaluate the feasibility of

automatically transcribing structured and unstructured audio to

create a high-quality textual corpus using standard speech tools and

models. The project is divided into three components: transcription

of structured audio, such as SABC broadcast news, transcription of

unstructured audio using mobile devices in noisy or uncontrolled

environments, and the creation of a gold standard corpus for

transcription accuracy validation. This paper delves into the second

component, examining the capability of mobile devices to capture

and transcribe audio within casual or acoustically challenging

environments. Given the rapid increase in mobile phone usage in

Sub-Saharan Africa, which currently accounts for 60% of the

population [10], even speakers of low-resource languages may

collect and transcribe audio with their devices, highlighting the

potential of mobile devices in linguistic resource development.

September 2023, Cape Town, South Africa F. Tohab et al.

2 BACKGROUND

2.1 IsiXhosa as a low-resource language

More than 8 million people, or 16% of South Africa's population,

speak isiXhosa (Xhosa) as their first language [15]. However,

isiXhosa is classified as a low-resource language [2][16]. This

means that digital information, linguistic models, and tools, as well

as Information Retrieval (IR) services like search and translation,

are scarce. The majority of South Africa's eleven official languages

face this challenge. For this project, we will be using isiXhosa as

the language of focus.

2.2 The structure of speech

Phonemes are the smallest structural component of speech and

abstract speech signals [17]. Most languages have a particular

collection of phonemes, with very similar sets. For example,

IsiXhosa has 66 consonant phonemes, 18 of which are click

consonants found in fewer than 2% of the world's languages [18].

Phonemes group together similar sounds, ignoring details such as

speech pace or accent. Current approaches for converting speech to

text frequently interpret the audio signal into phonemes and then

build sentences using algorithms [17]. In contrast to the abstract

nature of phonemes, phones are the physical basic sound units that

include vowels or consonants with distinct characteristics[17][20].

For example, the phrase "hello there" might be phonetically broken

down into HH, EH, L, OW, DH, EH, R. The context is frequently

considered when attempting to identify which phoneme a spoken

sound belongs to. Triphones are phones that are derived from

context, taking into account the phones said before and after.

Triphones create words, which create sentences [19].

2.3 Speech recognition models

Three models are employed in speech recognition systems for

translations: the acoustic model, phonetic dictionary, and language

model [19][26][24].

2.3.1 Acoustic model

The acoustic model is used to convert data from an audio signal to

the most probable phones uttered. It provides statistical mappings

for each phone (or phoneme) and defines how words sound. Some

speech recognition algorithms may use abstract statistical

representations in their acoustic models [20].

2.3.2 Phonetic dictionary

The link between words and their phones is mapped out in the

phonetic dictionary. Due to varying pronunciations, certain terms

in the dictionary may have many variations. The decoding time for

speech recognition can be considerably impacted by the size of this

model [20].

2.3.3 Language model

To distinguish between words with similar sounding

pronunciations, such as "two" and "too," speech recognition

systems utilize language models to estimate the likelihood of word

sequences. Context is crucial because words can change their

meaning depending on the words they are used with. N-gram

models, where the context is given by the (N-1) preceding words,

are frequently used to estimate a word's likelihood by taking into

account a certain number of prior words [19][20][24].

2.4 The speech recognition process

In a speech recognition system, a recording of spoken words is used

as the input, and the anticipated output is a string that accurately

captures the spoken sentence. Pre-processing, feature extraction,

decoding, and post-processing are the four main steps that may be

used to summarize this translation process, as shown in Figure 1.

[17][27].

Figure 1: The speech recognition process

2.4.1 Pre-processing

The audio signal must have a predetermined number of channels

and, depending on the system, a frequency rate of typically 8000

KHz or 16000 KHz to convert speech to text. During the pre-

processing stage, some speech recognition systems have the ability

to re-sample the audio signal to the appropriate format. This phase

involves making an effort to remove any speech-free portions of

the audio signal. This includes silences, such as at the start or end

of an audio clip, as well as noisy sections [20].

2.4.2 Feature extraction

Before the actual decoding process can begin, certain filtering steps

must be completed due to the enormous quantities of data that may

be extracted from an audio file. Depending on the system, the data,

which is now presumed to be speech, is broken up into overlapping

frames that last around 25 milliseconds. In the next phases,

parameters are taken from each of these frames to represent the

audio signal. Feature vectors are a common term used to describe

the resultant frames that were extracted from the data [20].

2.4.3 Decoding

During the decoding phase in the speech recognition process, the

most representative sentence for the feature vectors is chosen using

Bayes Rule, represented as [20]:

 𝑤∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤{𝑝(𝑌|𝑠)𝑝(𝑠)} (1)

where Y signifies feature vectors and S denotes the probable word

sequence. For modeling stochastic signals, dynamic Bayesian

networks called Hidden Markov Models (HMMs) are crucial. They

connect audio signals to phones, each of which is identified by its

HMM state. Using algorithms like the Viterbi or Forward, the most

likely spoken sequence is determined [20][24]. Figure 2 shows how

the speech waveform from the audio source was transformed into a

series of fixed-size acoustic vectors via feature extraction. The

decoder then makes use of the speech models to construct the word

sequences that produce the feature vector.

September 2023, Cape Town, South Africa F. Tohab et al.

Figure 2: An HMM-based recognizer architecture

2.4.4 Post-processing

In the post-processing phase, the list of likely spoken sequences

determined by the Viterbi search is examined once again utilizing

other sources of data to enhance the correctness of the transcription.

Higher level language models are typically employed to better

consider grammar while choosing the most appropriate statement

[28].

2.5 CMU Sphinx: PocketSphinx

The speech recognition toolkit that was used for this project is

CMU Sphinx’s PocketSphinx.

PocketSphinx is a user-dependent speech recognition system. It

was developed at Carnegie Mellon University (CMU), along with

other speech recognition systems [29]. It is the quickest speech

recognizer CMU has ever produced and was built to operate in real-

time on low-performance devices. To convert speech into text, the

system employs a probabilistic method and Hidden Markov

Models.

Because a translation using PocketSphinx is user-dependent, the

outcomes can considerably differ from speaker to speaker. The

system is capable of being trained to adapt to any language or

dialect. The trigram model, which PocketSphinx employs, is an N-

gram model with N = 3. When generating a word, N-gram models

take into account the (N-1) preceding words. This suggests that

word choice depends in part on context [30]. Numerous

comprehensive acoustic models that have been tuned for various

languages are available. For the purpose of this project, a new

isiXhosa language model and an acoustic model were trained.

2.6 Sequitur G2P: Grapheme-to-phoneme conversion

Finding a word's pronunciation based on its written form is known

as grapheme-to-phoneme conversion (G2P) [46]. A G2P model

transforms a word from a collection of symbols or graphemes to a

pronunciation from a collection of phones [47]. Sequitur G2P, a

data-driven tool developed by Maximilian Bisani at RWTH Aachen

University [46], is used to generate phonetic representations of

isiXhosa words not present in the static dictionary. This tool is

commonly used in speech recognition models.

3 RELATED WORK

Numerous studies have been conducted on how mobile devices can

aid in the creation of electronic resources and documents, which

can then be used to support studies in search engines, machine

learning, and other language processing tasks.

The rise of mobile devices as multifunctional recording tools has

revolutionized ASR data collection, especially for languages with

limited resources. The decreasing cost and growing availability of

mobile devices, even in developing regions, have made dynamic,

high-quality speech data collection more feasible [13]. Hughes et

al. [2010] pioneered this trend with an Android application

designed to easily gather varied and transcribed speech corpora

[14]. Although powerful, this approach had limitations such as

inaccuracies due to speaker errors. Lane et al. [2010] further

streamlined the speech data collection process, enabling speakers

to record prompted speech directly on their phones, but faced

challenges with the quality of recordings [42]. These collection

methods largely focus on "read speech," but their data have proven

invaluable for developing ASR systems [13].

Reitmaier et al. [2022] introduced the Voice Notes Android app,

capable of processing audio from apps like WhatsApp. Despite its

capabilities, the ASR application has its shortcomings, including

difficulties with uncommon phrases and the loss of certain

metadata during transfers [43]. Meanwhile, the open-source

program Woefzela, introduced by de Vries et al. [44], specifically

targeted low-resource languages in developing regions. Despite

quality control features, the collected data can sometimes be

suboptimal, impacting the ASR systems' accuracy. Badenhorst et

al. [45] later suggested more intricate quality checks, targeting

transcription mismatches.

Lakdawala et al. [11] presented an offline speech-to-text

transcription system for healthcare organizations. It can be used by

counsellors and non-governmental groups to capture talks during

surveys, convert them to text, and then save the messages. This

system includes an open-source application. The CMUSphinx

toolkit is utilized for speech recognition. The system can recognize

multiple languages. The language model, phonetic dictionary, and

acoustic model are all utilized by the CMUSphinx toolkit. The user

captures their voice using the mobile application, and the

CMUSphinx toolkit analyses and transcribes it. The transcription

file is saved as a text file in the device's memory; the user can use

the application to upload and download data to and from the

database server. Although the CMUSphinx speech recognition

toolkit is dependable and accurate, mistakes happened

nevertheless. Background noise, speaker accents, and rate of

speech, among other things, also affected how accurately a

transcript was made [11].

Liu and Zhou [12] introduced a Chinese small-vocabulary offline

speech recognition system based on the PocketSphinx toolkit. The

language model is built through the online tool LMTool, and the

acoustic models are renewed by enhancing the Sphinx models that

Mobile Audio Transcription for Low-Resource South African

Languages
September 2023, Cape Town, South Africa

already exist. Then an offline speech recognition system that

functions on an Android smartphone was created. The outcomes of

the experiment demonstrated that the system used to recognize

speech commands for mobile phones performs well in terms of

recognition [12].

This paper contributes to the existing body of knowledge on

mobile-based Automatic Speech Recognition (ASR) systems with

an emphasis on isiXhosa, a South African language that is notably

underrepresented in digital resources. While Hughes et al. and Lane

et al. have previously conducted research to develop ASR

technology, addressing issues like read speech and simplicity of

data collection, the challenges of creating a high-quality textual

corpus from unstructured audio in a low-resource language have

not been investigated yet. Additionally, new variables such as

hardware differences, gender of the speaker, and rate of speech are

introduced in this paper.

4 PROBLEM DEFINITION AND RESEARCH

QUESTION

4.1 Problem definition

The scarcity of electronic linguistic resources for several South

African languages hinders computational and statistical systems

that rely on them. The lack of documents in these languages is an

important issue, making it difficult to build high-quality text

corpora required for text-based research. Collecting and producing

these materials is often time-consuming, costly, and not feasible for

low-resource languages [2]. As a result, it is critical to examine the

usage of standard speech tools such as PocketSphinx to

automatically transcribe unstructured audio, offering a critical data

source for natural language processing.

4.2 Research question

How accurate is speech-to-text transcription of unstructured audio

using the PocketSphinx speech recognition toolkit on mobile

devices?

Accuracy in this context, can be defined using the metrics of Word

Error Rate (WER) and Levenshtein distance at both word and

character level. The research question investigates if the

PocketSphinx speech recognition toolkit, when used on mobile

devices, can accurately convert unstructured audio into text. It

specifically intends to evaluate the toolkit's ability to transform

spontaneous and unscripted audio recordings into written text when

used on mobile devices, which may include casual conversations or

audio recorded in unpredictable environments. The emphasis on

mobile devices is important because, given their varying hardware

capabilities, potential for ambient noise, and other related factors,

they offer unique challenges and benefits from desktop systems.

5 EXPERIMENTAL METHODOLOGY

5.1 Evaluation Metrics

5.1.1 Word Error Rate

The word error rate (WER) is a metric for assessing how accurate

a speech recognition system is [20]. The number of errors that

occurred during the translation of an audio stream may be

determined by calculating WER. According to Anusuya and Katti

[32], WER is determined by adding up all of the errors in the

hypothesis and dividing them by the total number of words in the

correct sentence. An error occurs when the sentence's hypothesis

differs from the actual sentence due to an improper word

substitution, word deletion, or word insertion. The word error rate

is calculated using Equation 2. The key success factor for a speech

recognition system is a low WER.

𝑊𝐸𝑅 =
𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠 + 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠 + 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠
 (2)

5.1.2 Levenshtein distance

The Levenshtein distance (LD) is a measurement of how many

modifications must be made to a word sequence to make it

equivalent to another. For example, if the two phrases S1 ="how

are you doing" and S2 ="what are you doing", the word "how" in

S1 can be replaced with the word "what" to consist of the same

words as S2. As a result, the Levenshtein distance between the two

statements is 1 [37]. For this project, the Levenshtein distance at

both word-level and character-level was used.

 𝐿𝐷 = 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠 + 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠 + 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑠 (3)

5.2 Training database preparation

Since there are no previously trained language models or acoustic

models in isiXhosa, a new language model and an acoustic model

need to be trained. Training a new acoustic model requires using

the command line prompts provided by CMU SphinxTrain [36].

SphinxTrain is a set of tools designed to create speech recognition

systems for any language with adequate acoustic data, compatible

with the CMUSphinx speech recognizer.

5.2.1 Building a language model

To build a language model for isiXhosa, the language modeling

toolkit for CMUSphinx (CMUCLMTK) was used. The CMU-

Cambridge Language Modeling Toolkit (CMUCLMTK) is a

collection of UNIX software tools created to make language

modeling work in the academic community easier [33]. To develop

the language model, a reference text was constructed using the

NCHLT isiXhosa Speech Corpus, a 56-hour speech collection

comprised of orthographically transcribed utterances that capture a

wide range of frequencies. Each entry in this corpus is presented in

normalized text, enclosed by <s> and </s> tags. For a richer

reference text, the initial text was combined with both the Lwazi

September 2023, Cape Town, South Africa F. Tohab et al.

isiXhosa TTS corpus and Lwazi II isiXhosa TTS Corpus, which

offer orthographic and phonemically aligned transcriptions. All

these resources were obtained from the South African Centre for

Digital Language Resources (SADiLaR) 1 and feature audio

recordings of isiXhosa speech paired with their transcriptions. The

combination of these corpora resulted in a comprehensive reference

text, as exemplified by a snippet in Figure 3. After this, a

vocabulary file encompassing every unique word from the

reference text was formulated. Lastly, with this data, a language

model was generated in the ARPA format [34].

Figure 3: A snippet of the isiXhosa reference text used to

generate the language model.

5.2.2 Phonetic dictionary and G2P model training

The isiXhosa phonetic dictionary file was obtained from the

NCHLT-inlang pronunciation dictionaries from SADiLaR, which

are broad phonemic transcriptions for 15,000 common words in 11

different languages [35]. The phonetic dictionary contains the

phonetic representation of all the words contained in the

transcription files as exemplified by a snippet in Figure 4, allowing

the decoder to understand how to pronounce each word.

Figure 4: A snippet of the phonetic dictionary that consists of

the word and its corresponding phonetic representation.

The NCHLT-inlang isiXhosa dictionary was limited and some

words that were present in the transcription file were not present in

the dictionary. SphinxTrain expects all words in the transcription

file to be present in the phonetic dictionary. To solve this issue, a

grapheme-to-phoneme model was trained using Sequitur G2P to

generate the phonetic representation of new words based on words

present in the NCHLT-inlang dictionary. The Sequitur G2P model

was trained in three iterations and the final model was used to

generate the phonetic representation of any new words that were

not present in the current dictionary.

5.2.3 Training database structure

In the process of training an acoustic model, a training database is

required. The database provides the data needed to create an

acoustic model that extracts statistics from speech. The database

1 https://sadilar.org/index.php/en/resources

was divided into two sections: a training section and a testing

section. The testing section was about 1/10th of the total data size

and did not exceed more than 4 hours of audio. The database

prompts with post-processing contained the following database

structure:

├─ etc

│ ├─ your_db.dic (Phonetic dictionary)

│ ├─ your_db.phone (Phoneset file)

│ ├─ your_db.lm.DMP (Language model)

│ ├─ your_db.filler (List of fillers)

│ ├─ your_db_train.fileids (List of files for training)

│ ├─ your_db_train.transcription (Transcription for training)

│ ├─ your_db_test.fileids (List of files for testing)

│ └─ your_db_test.transcription (Transcription for testing)

└─ wav

 ├─ speaker_1

 │ └─ file_1.wav (Recording of speech utterance)

 └─ speaker_2

 └─ file_2.wav

Figure 5: The file structure for the database used for the

acoustic model training

In the structure of the speech recognition training database in

Figure 5, several file types play distinctive roles. The *.fileids files

are text documents that enumerate the names of individual

recordings, or utterance IDs, by providing file-system paths relative

to the wav directory. Complementing this, the *.transcription files

provide transcriptions corresponding to each audio recording. The

actual audio data is stored in the *.wav folder. It is crucial to ensure

consistency between these recordings and their transcripts; any

discrepancies can drastically reduce recognition accuracy. The

your_db.dict file serves as the phonetic dictionary, presenting each

word followed by its phonetic representation on a new line. The

your_db.phone file houses the list of phones, detailing a list of

phone sets that correspond to the phonetics in the dictionary as

shown in Figure 6. For the language model, it is stored as a DMP

in the your_db.lm.DMP file. Lastly, the your_db.filler file functions

as the filler dictionary, accounting for non-linguistic sounds like

breaths, "hmm", or laughter, which the primary language model

does not cover.

Figure 6: A snippet of some of the phone sets that can be found

in the phonetic dictionary.

5.3 Acoustic model training

The training of the acoustic model was done in two iterations. The

first iteration involved using data from the NCHLT isiXhosa

Speech Corpus. The trained acoustic model in the first iteration had

Mobile Audio Transcription for Low-Resource South African

Languages
September 2023, Cape Town, South Africa

a limitation where it did not recognize words that were not included

in the NCHLT isiXhosa Speech Corpus or the NCHLT-inlang

isiXhosa dictionary. To overcome this limitation, the second

iteration of the acoustic model training involved extending the

dictionary and transcription file to include more words by

combining the NCHLT isiXhosa Speech Corpus with the data from

the Lwazi isiXhosa TTS corpus and Lwazi II isiXhosa TTS Corpus.

The Word Error Rate (WER) and Sentence Error Rate (SER) of the

model were computed by the decoder using the test portion of the

training database and the reference transcripts throughout the
training phase. The training results are shown in Table 1.

During the training of the acoustic model, an error emerged from

backward.c indicating: "Failed to align audio to transcript: final

state of the search is not reached." This was due to a mismatch

between the audio in the database and its corresponding

transcription. To address this, prompts that did not align properly

were filtered out as they can compromise the acoustic model's

quality. The solution was to activate the forced alignment stage
during the training process.

The word error rate for the first iteration of the acoustic model

training is 30.1% which indicates that, on average, 2442 out of 8107

words transcribed by the model were incorrect when compared to

the reference transcription. An SER of 33.2% indicates that 920 out

of 2770 sentences transcribed by the model were incorrect in some

way when compared to the reference transcription. From Table 1,

it can be seen that extending the dictionary and transcription file in

the second iteration did not improve the WER but slightly

decreased it by 0.1%, however, the SER remained the same. This

was because the training data was extended so that the system could
recognize more words and the test data remained the same.

Table 1: Results for the first and second iterations of the

acoustic model training

Iteration Error rate

evaluation

Error Transcription

errors

Iteration 1 Sentence Error

Rate (SER)

33.2% 920/2770

Word Error Rate

(WER)

30.1% 2442/8107

Iteration 2 Sentence Error

Rate (SER)

33.2% 920/2770

Word Error Rate

(WER)

30.2% 2442/8107

5.4 Android app integration and implementation

To enable speech recognition on a mobile device, the acoustic

model previously trained, the phonetic dictionary and the language

model need to be integrated into an Android app. The CMUSphinx

official website contains a demo Android app that uses

PocketSphinx to do speech recognition in English [38].

5.4.1 Integration of speech models

The default demo app contains a directory called “models”, where

it stores all the models required for speech recognition. By default,

the app uses grammar files to create grammar-based searches and

recognize digits. It also uses language models in the DMP format

to recognize phones and weather forecasts in English. To recognize

English words, the app makes use of the Carnegie Mellon

University Pronouncing Dictionary, which is an open-source

machine-readable pronunciation dictionary for North American

English that contains over 134,000 words and their pronunciations

[50].

To modify the app to recognize isiXhosa words instead, the trained

isiXhosa models and phonetic dictionary were added to the

“models” directory. These models were then referenced directly in

the main activity program called PocketSphinxActivity.java.

5.4.2 Customizations and Configurations

The default app is designed to present three different recognition

demos. When the app detects the key phrase "oh mighty computer,"

it prompts users to select one of three demo options: "digits,"

"weather," or "phones." The "digits" demo detects digits from 0 to

9, the "weather" demo recognizes weather forecasts and the

"phones" demo demonstrates phonetic recognition capabilities. The

main functionality of the app is found in the

PocketSphinxActivity.java file.

Several important changes were made while switching from the

default PocketSphinx application to the new isiXhosa app. Firstly,

the named searches for "digits," "phones," and "menu" were

removed, reducing the application's functionality to primarily focus

on keyword activation and recognition of isiXhosa words. The

activation keyword was changed from "oh mighty computer" to

"ubuntu," reflecting a term more culturally appropriate to the

isiXhosa language and that is present in the isiXhosa phonetic

dictionary. The acoustic model and dictionary paths in the

setupRecognizer function were also adjusted to refer to the

isiXhosa acoustic model and phonetic dictionary. A transcription

logging system was also added, ensuring that recognized speech is

reported to Android's Logcat for debugging and analysis. Details of

the inner workings of the app and design can be found at [38].

5.4.3 App functionality

Upon launching the app, there's a brief initialization period for the

recognizer. Following this, the app uses the device's microphone to

await audio input. The app listens for the “ubuntu” key phrase that

triggers the recognition process. Once this key phrase is detected,

the app shifts into a continuous recognition mode until the end of

the audio input. Subsequently, it displays the transcription of the

audio on the screen as seen in Figure 7.

September 2023, Cape Town, South Africa F. Tohab et al.

Figure 7: A demonstration of how the Android app works

5.5 Experimental Design

The experimental design is set up to rigorously assess the

performance of the isiXhosa speech recognition system across

diverse scenarios. The evaluation process consists of performing

transcriptions using a variety of audio types such as audio with

ambient background noise, spontaneous casual conversations, and

audio clips of varying speech rates. Other factors such as the

hardware of the device and the gender of the speaker are also taken
into consideration.

5.5.1 Baseline audio

The baseline audio recordings that were used for the evaluation

process are unstructured and structured audio recordings obtained

from the gold standard corpus (the third component of the project),

which consists of audio samples and their corresponding

transcription. For the structured audio, SABC broadcast news that

has been transcribed as part of the gold standard corpus was used.

The unstructured audio used consisted of audio samples that had

two or more people engaging in casual conversations in a noisy

environment. The baseline audio also had a mixture of male and

female speakers as well as speakers who spoke at different speeds.

For this project, approximately 53 minutes of both structured and
unstructured audio samples were used.

5.5.2 Data preprocessing

To experiment with diverse scenarios, the baseline audio needs to

be segmented into smaller chunks and manipulated to either

remove or add background noise and normalization if needed.

Segmentation: The duration of the audio samples used for the

experiments was originally 10 minutes each. To better align with

PocketSphinx’s design for processing shorter utterances, these

audio samples were segmented to produce shorter, more

manageable chunks using the AudioSegment module from the

pydub Python library. The structured audio samples (SABC

broadcast news) were segmented by speaker and the unstructured

audio samples were segmented in one, two, and three-minute
segments.

Artificial background noise: Another key part of the experiment is

to see how well the speech recognition system performs with audio

that has background noise. For consistency, the structured audio

samples segmented in the previous step were used as the baseline

audio for this step. A Python script using the pydub Python library

for audio file manipulation was used to introduce controlled levels

of city-traffic background noise to the previously segmented audio

samples. The script combined the clean audio with background

noise at varying decibel levels, ranging from -20dB to 0dB in 4dB

increments, and new audio samples with varying volumes of noise
were produced.

Casual Conversations: This is audio data of two or more people

engaging in casual conversations in isiXhosa with overlaps,

interruptions, code-switching, and other casual speech

characteristics. A Python script was used to preprocess the casual

audio samples to remove background noise and add normalization

using the pydub, numpy, and scipy.signal libraries. Each audio file

was initially converted to a mono format in the processing pipeline,

ensuring a coherent single-channel representation across all files.

This conversion simplifies the audio by representing it with a single

set of samples instead of numerous channels, which might add

variability. The discrete signal amplitudes from the audio were

retrieved as samples for further mathematical calculations after

conversion. A Butterworth low-pass filter with a cutoff frequency

of 4000 Hz is used to handle high-frequency noise and interference.

This filter is recognized for its smooth frequency response with no

ripples [49]. A normalization process is used to ensure that the

audio maintains a constant amplitude level over the entire dataset.

This process adjusts the amplitude of the audio samples so that they

fit inside the dynamic range of the int16 data type, thus increasing
the volume without causing distortion.

5.5.3 Different hardware

The transcriptions of the audio were done on the Android studio

emulator by default. However, to test how the hardware of the

recognition device such as the quality of the microphone affects the

transcription accuracy, different mobile phones were employed.

The mobile phones used are the Samsung Galaxy A72, the

Samsung Galaxy Pocket, and the Xiaomi Redmi 6A. These mobile

devices were tested for transcription accuracy using a standardized
25-second audio sample of a male speaker in a silent setting.

5.5.4 Transcription procedure

Since the PocketSphinx Android app uses a microphone to listen

for input, the preprocessed audio was played on the Android app

using a mobile phone with a good speaker (an iPhone). Once the

app transcribed the audio, the transcription was recorded and saved

to a text file. The transcription test was done on the Android studio

emulator except for the hardware experiment section. For the

hardware test, similar to the Android emulator, the audio was
played from the iPhone onto the device’s microphone.

Because the transcription varied each time the same audio was

played, the transcription of each audio sample was done three times

and the average WER and Levenshtein distance at both character
and word level was taken to improve accuracy.

Mobile Audio Transcription for Low-Resource South African

Languages
September 2023, Cape Town, South Africa

6 RESULTS AND DISCUSSIONS

The table of results for the various experiments can be found in the

Supplementary Information section.

6.1 Background noise

The presence of background noise in audio recordings greatly

affects the transcription accuracy. To test how well the isiXhosa

speech recognition system works with different volumes of

background noise, 36 audio samples with durations that ranged

between 4 and 28s and volumes of background noise that ranged

between 0 and -20 dB were used. The results are presented in the
graphs in Figures 8 and 9.

A high background noise level of 0 dB resulted in an average WER

of 1, which is considerably high given that the key success

factor for speech recognition systems is a low WER. The standard

deviation at this noise level was zero, meaning that the system

consistently produced a WER of 1 for all samples. In comparison,

at a quieter -20 dB, the system's mean WER improved to 0.94 with

a standard deviation of 0.13, demonstrating improved transcription

accuracy with lower levels of noise. The Levenshtein distance for

0 dB is 34 at the word level and 285 at the character level. Their

standard deviations, 18.35 and 127.42, indicate the dispersion or

variability in these distances from their averages. Figure 9

demonstrates a considerable drop in these distances when

background noise levels decrease. The distances were 33 (word-

level) and 243 (character-level) at -20 dB. Their standard

deviations, 18.90 and 120.89, show the distribution of outcomes
around these averages.

From the result, it is evident that the quality of the audio input is

crucial for accurate transcription when using the PocketSphinx

Android app for speech recognition, particularly for languages with

complex phonetic structures like isiXhosa. As the volume of the

background noise in the audio is decreased, the experimental

findings in Figures 8 and 9 show a considerable reduction in both

WER and Levenshtein distance. Phonemes, the smallest units of

sound, are recognized individually by speech recognition

algorithms to identify spoken information. These phonemes are

obscured or distorted by ambient noise, leading to incorrect

identification. More phonemes were correctly identified thanks to

the reduction in the volume of the background noise, increasing the
accuracy of transcription.

Figure 8: The average WERs for decreasing volumes of

background noise.

Figure 9: The average Levenshtein distance at word and

character levels for decreasing volumes of background noise.

6.2 Casual conversations

The effectiveness of the speech recognition system when it is

presented with audio that is conversational with overlaps,

interruptions, background noise, and other casual speech

characteristics was examined using 30 audio samples that ranged
between 1 and 3 minutes. The results are shown in Figure 10.

The original audio samples produced an average WER of 1 with a

standard deviation of 0.001, an average Levenshtein word distance

of 141 with a standard deviation of 63, and an average Levenshtein

character distance of 1025 with a standard deviation of 526. These

are considerably high results and a WER of 1 indicates that the

transcription was completely wrong. This is due to the presence of

background noise and other factors. To improve accuracy, the

original audio samples were preprocessed to remove background

noise. The results in Figure 10 for the audio samples with

background noise removed show no improvement with an average

WER still at 1 with a standard deviation of 0. There is also a slight

increase in the Levenshtein distances at both word and character

levels. This might be because the noise removal technique might be

too aggressive and is inadvertently removing or altering parts of the

actual speech signal making some words or phonemes

indistinguishable. The denoised audio was then normalized to see

if this would improve the transcription accuracy. As can be seen in

Figure 10, normalization improved the accuracy to an average

WER of 0.86 with a standard deviation of 0.12. The Levenshtein

word and character distances also improved to 123 and 912,
respectively.

Conversations on the audio that was utilized for the transcription

test frequently switched between English and isiXhosa. Although

code-switching is a common linguistic occurrence, it presents

special difficulties for speech recognition technology. When

English was introduced, the acoustic model and language model,

which were trained in isiXhosa, misinterpreted or altogether missed

words because they were not intended to recognize multilingual

input. Figure 11 shows how the system performs when it is

presented with audio that contains English words. The system

completely missed these words and did not transcribe them which

is noted by the decrease in transcription length when compared to

the original audio transcription. The isiXhosa words were also

September 2023, Cape Town, South Africa F. Tohab et al.

incorrectly transcribed due to other factors such as background

noise or the words used not being present in the phonetic dictionary
used to train the speech models.

Slang, acronyms, and colloquialisms were also used in the audio

conversations. These often deviate from the standard language

models as PocketSphinx's acoustic model for isiXhosa is mainly

trained on more formal or standardized datasets and can be absent
from the system's training data.

Figure 10: The results obtained after transcribing

conversational audio with background noise, with no

background noise, and normalization for WER (top) and

Levenshtein distances (bottom).

Figure 11: An example of how the system performs when it is

presented with audio that is conversational with code-

switching.

6.3 Hardware implications on transcription accuracy

Three mobile phones were tested for transcription accuracy using a

standardized 25-second audio sample of a male speaker in a silent

setting. The original transcription of this audio contains 33 words

and 290 characters excluding spaces. With a Word Error Rate

(WER) of 0.36 and the smallest Levenshtein distances at both word

and character levels (12 and 39) as shown in Table 2, the Xiaomi

Redmi 6A performed the best. The Samsung Galaxy Pocket, on the

other hand, substantially underperformed, having the highest

Levenshtein distances at both word and character levels (25 and

136) and a WER of 0.77. With a WER of 0.49, the Samsung Galaxy

A72 fell somewhere in the middle. These discrepancies could be

caused by variations in microphones, hardware for processing

audio, and other embedded technologies. These findings highlight

the necessity of taking hardware characteristics like microphone

quality and onboard audio processing technology into account

when assessing or implementing speech recognition solutions on

mobile devices.

Table 2: The results from performing transcription on different

phones. The Xiaomi Redmi 6A performs the best.

Mobile phone

type
Average

WER
Average

Levenshtein

distance

(word level)

Average

Levenstein

distance

(character level)

Samsung

Galaxy A72

0.49 16 91

Samsung

Galaxy Pocket

0.77 25 136

Xiaomi Redmi

6A

0.36 12 39

6.4 Implications of gender on transcription accuracy

The effectiveness of the speech recognition system was assessed

for speakers who were male or female. For reference, five audio

samples that had male speakers and five audio samples that had

female speakers were used. The results in Table 3 reveal subtle

variations in speech recognition performance between male and

female speakers. Female speakers had a WER of 0.98 compared to

male speakers' WER of 0.99, implying a marginally better

recognition of female voices. Table 3 also shows that female voices

showed marginally better results in Levenshtein word and character

distances, with scores of 45 and 274, respectively. Male voices

produced more consistent WER values, with a standard deviation

of 0.0063 compared to 0.0207 for females. However, when it comes

to Levenshtein Distances, male voices showed significantly larger

variability, with significantly higher standard deviations for both

Levenshtein word and character distance compared to females.

Mobile Audio Transcription for Low-Resource South African

Languages
September 2023, Cape Town, South Africa

Table 3: The transcription results for both male and female

speakers

Gender Average

WER

Average

Levenshtein

distance (word

level)

Average Levenstein

distance (character

level)

Female 0.98 45 274

Male 0.99 41 281

6.5 Rate of speech

The acoustic model for the isiXhosa speech recognition system was

trained using audio samples that had a maximum speech rate of

approximately 70 words per minute (WPM) which is considered to

be relatively slow. According to Rodero [32], a speech rate of less

than 130 WPM is considered to be slower than normal. A speech

rate of between 170 WPM and 190 WPM is considered to be fast

and a speech rate of greater than 190 WPM is considered to be

faster than normal. Figure 12 represents the results for 15 audio

samples of different durations. According to Figure 12, the system

consistently produces a high WER, ranging between 0.95 and 1.

This indicates that the system does not perform well for the audio

samples used despite some samples having a speech rate of lower

than 70 WPM. Other factors, such as the lack of certain words from

the audio samples in the acoustic model's training vocabulary, are

likely impacting this accuracy.

Figure 12: Results for the performance of the speech

recognition system for various rates of speech.

6.6 Discussion of results, limitations, and future work

The evaluation of the PocketSphinx Android app for isiXhosa

speech recognition revealed critical limitations. Regardless of

preprocessing strategies, the system's restriction to words included

in its training corpora had a direct influence on transcription

accuracy. The absence of words from audio samples in the model's

training dictionary or transcription files emphasizes the importance

of comprehensive training. For optimal performance, the

PocketSphinx speech recognition system should be trained on all

possible linguistic sentences and words that are available in

isiXhosa.

The system's sensitivity to background noise, a result of its training

mostly on clean audio, restricts its applicability across a wide range

of real-world scenarios, underlining the need for further

improvement to accommodate a variety of settings. Given the

widespread use of Android smartphones, guaranteeing reliable

performance in a variety of settings, from calm inside locations to

busy outdoor environments, becomes critical.

The transcription of informal isiXhosa conversations, particularly

those involving code-switching, varied dialects, slang, and

colloquialisms, also presented challenges. These constraints, when

combined with the phonetic intricacies of isiXhosa and potential

recording quality issues, highlight the need for models that are

capable of handling informal speech dynamics and multilingual

situations. Given the wide range of real-world speech rates, the

present acoustic model's preference for slower speech rates reveals

adaptation restrictions. Furthermore, the subtle but important

recognition differences between male and female speakers

necessitate investigation, which may be anchored in different
speech frequencies or tonalities.

The evaluation of the PocketSphinx Android app for isiXhosa

speech recognition leaves scope for future work. Training on

conversational datasets might improve the acoustic model's

recognition of informal constructs and typical conversation fillers.

A dedicated focus on training with different speech rates and a

variety of auditory circumstances, such as a mix of noisy and clean

audio, might improve its overall performance. Its robustness can be

increased by features like active noise cancellation and

environment detection. The system can be made more user-friendly

and robust in various auditory conditions by including real-time

noise adaptation algorithms and giving users instructions on how to

utilize it best. Extensive multilingual training might help with code-

switching issues, and a deeper dive into informal lexicons could

help with understanding slang and colloquial terminology. Finally,

extending the phonetic vocabulary and transcription file will

provide the system with a more extensive and inclusive repository

of isiXhosa words, guaranteeing a more comprehensive and

inclusive speech recognition capacity.

7 CONCLUSIONS

The evaluation of the PocketSphinx Android app for isiXhosa

speech recognition revealed considerable flaws in the system's

capacity to automatically transcribe unstructured audio on mobile

devices. As the use of mobile phones surges in sub-Saharan Africa,

the potential of mobile transcription to facilitate electronic resource

creation for low-resource South African languages is evident.

According to the results and data used, it is presently not possible

to produce a high-quality textual corpus on a mobile device using

the PocketSphinx speech recognition toolkit without making

substantial improvements. Noise sensitivity and transcription of

informal conversations are only a few of the difficulties that must

be overcome to improve the accuracy of transcription. These

problems underscore the urgent need for model improvement,

flexible training, adaptable algorithms, and device-centric

optimization. While promising in its current condition, there is still

a long way to go before mobile devices can be effectively used for
the gathering and creation of high-quality linguistic data.

September 2023, Cape Town, South Africa F. Tohab et al.

REFERENCES
[1] L. Besacier, E. Barnard, A. Karpov, and T. Schultz. 2014. Automatic speech

recognition for under-resourced languages: A survey. In Speech Communication,

vol. 56, pp. 85-100.

[2] R. Eiselen and M. J. Puttkammer. 2014. Developing Text Resources for Ten

South African Languages. In Language Resource and Evaluation Conference, pp.

3698-3702.

[3] Etienne Barnard, Davel, Marelie H, van Heerden, De Wet, Febe, and Jaco

Badenhorst. 2014. The NCHLT Speech Corpus of the South African languages.

Nwu.ac.za (2014).

DOI:https://researchspace.csir.co.za/dspace/handle/10204/7549

[4] J. Lai, C.-M. Karat, and N. Yankelovich. 2008. Conversational speech interfaces

and technologies. In A. Sears & J. A. Jacko (Eds.), The human-computer

interaction handbook: Fundamentals, evolving technologies, and emerging

applications (2nd ed.), pp. 381–91. New York, NY: Erlbaum.

[5] John M. Levis and Ruslan Suvorov. 2012. Automatic Speech Recognition.

ResearchGate. Retrieved September 13, 2023 from

https://www.researchgate.net/publication/261287458_Automatic_Speech_Reco

gnition.

[6] Laurent Besacier, Etienne Barnard, Alexey Karpov, and Tanja Schultz. 2014.

Automatic speech recognition for underresourced languages: A survey. Speech

Communication 56, 1 (January 2014), 85–100.

[7] Mark J. F. Gales, Kate M. Knill, Anton Ragni, and Shakti P. Rath. 2014. Speech

recognition and keyword spotting for low-resource languages: Babel project

research at CUED. In 4th Workshop on Spoken Language Technologies for

Under- Resourced Languages (SLTU 2014), St. Petersburg, Russia, May 14-16,

pp. 16–23.

[8] Laurent Besacier, Etienne Barnard, Alexey Karpov, and Tanja Schultz. 2014.

Automatic speech recognition for under-resourced languages: A survey. Speech

Communication 56, (January 2014), 85–100.

DOI:https://doi.org/10.1016/j.specom.2013.07.008

[9] Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit

Choudhury. 2021. The State and Fate of Linguistic Diversity and Inclusion in the

NLP World. https://arxiv.org/pdf/2004.09095.pdf.

[10] J. C. Aker and I. M. Mbiti. 2010. Mobile Phones and Economic Development in

 Africa. Journal of Economic Perspectives, pp. 207–232, August 2010.

[11] B. Lakdawala, F. Khan, A. Khan, Y. Tomar, R. Gupta, and A. Shaikh. 2018.

Voice to Text transcription using CMUSphinx: A mobile application for

healthcare organizations. In Second International Conference on Inventive

Communication and Computational Technologies, April 2018.

[12] X. Liu and H. Zhou. 2014. A Chinese Small Vocabulary Offline Speech

Recognition System Based on Pocketsphinx in Android Platform. Applied

Mechanics and Materials, pp. 267–273, August 2014.

[13] Nic J. de Vries, Marelie H. Davel, Jaco Badenhorst, Willem D. Basson, Febe de

Wet, Etienne Barnard, and Alta de Waal. 2014. A smartphone-based ASR data

collection tool for under-resourced languages. Speech Communication 56, 1

(January 2014), 119–131. DOI:https://doi.org/10.1016/j.specom.2013.07.001.

[14] Thad Hughes, Kaisuke Nakajima, Linne Ha, Atul Vasu, Pedro Moreno, and Mike

Lebeau. 2010. Building transcribed speech corpora quickly and cheaply for many

languages. Retrieved March 11, 2023, from

https://storage.googleapis.com/pubtools-public-publication-data/pdf/36801.pdf.

[15] Statistics South Africa. 2012. Census 2011 Census in Brief. Statistics South

Africa, Pretoria, South Africa.

http://www.statssa.gov.za/Census2011/Products/Census_2011_Census_in_brief

.pdf.

[16] Johnson, Kristine K. 2011. Xhosa-English Machine Translation: Working with a

Low-Resource Language.

http://www.cra.org/Activities/craw_archive/dmp/awards/2011/Johnson/kkjohns

on_report.pdf.

[17] R. E. Gruhn, W. Minker, and S. Nakamura. 2011. Statistical pronunciation

modeling for non-native speech processing. Springer Science & Business Media.

[18] Xhosaroots.com. 2018. Reading: Xhosa Phonology. Retrieved August 2, 2023

from https://xhosaroots.com/insights/xhosa-phonology/.

[19] Nickolay Shmyrev. 2023. Basic concepts of speech recognition. CMUSphinx

Open Source Speech Recognition. Retrieved August 2, 2023 from

https://cmusphinx.github.io/wiki/tutorialconcepts/.

[20] Pocketsphinx Hjulström and Rickard Hjulström. 2015. Evaluation of a speech

recognition system. Retrieved August 2, 2023 from https://www.diva-

portal.org/smash/get/diva2:852179/FULLTEXT01.pdf.

[21] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V.

Vanhoucke, P. Nguyen, T. N. Sainath, and others. 2012. Deep neural networks

for acoustic modeling in speech recognition: The shared views of four research

groups. IEEE Signal Processing Magazine 29, 6 (2012), 82–97.

[22] F. Ruggeri, R. Kenett, and F. W. Faltin. 2007. Encyclopedia of statistics in quality

and reliability. John Wiley.

[23] Phil Blunsom. 2004. Hidden Markov Models. Retrieved from

https://www.cs.wmich.edu/~alfuqaha/Fall11/cs6570/lectures/hmm-tutorial.pdf.

[24] M. Gales and S. Young, “The application of hidden markov models in speech

recognition,” Foundations and Trends in Signal Processing, vol. 1, no. 3, pp. 195–

304, 2008.

[25] R. E. Gruhn, W. Minker, and S. Nakamura. 2011. Statistical pronunciation

modeling for non-native speech processing. Springer Science & Business Media.

[26] S. Russel and P. Norvig. 2014. Artificial Intelligence: A Modern Approach.

Pearson Education Limited. vol. 7, pp. 928–935.

[27] Nickolay Shmyrev. 2023. Adapting the default acoustic model. CMUSphinx

Open Source Speech Recognition. Retrieved August 3, 2023 from

https://cmusphinx.github.io/wiki/tutorialadapt/.

[28] H.-L. Lou. 1995. Implementing the viterbi algorithm. IEEE Signal Processing

Magazine, vol. 12, no. 5 (1995), pp. 42–52.

[29] Carnegie Mellon University. 2023. Homepage - CMU - Carnegie Mellon

University. Retrieved August 3, 2023 from https://www.cmu.edu/.

[30] D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black, M. Ravishankar, and A.

I. Rudnicky. 2006. Pocketsphinx: A free, real-time continuous speech recognition

system for hand-held devices. In ICASSP 2006 Proceedings: 2006 IEEE

International Conference on Acoustics, Speech and Signal Processing. vol. 1, pp.

I–I. IEEE.

[31] M. Anusuya and S. K. Katti. 2010. Speech recognition by machine, a review.

arXiv preprint arXiv:1001.2267.

[32] Emma Rodero. 2012. A comparative analysis of speech rate and perception in

radio bulletins. Text & Talk 32, 3 (January 2012), 273-288.

DOI:https://doi.org/10.1515/text-2012-0019.

[33] MacPorts. 2023. cmuclmtk | MacPorts.

https://ports.macports.org/port/cmuclmtk/details/. Accessed August 5, 2023.

[34] Nickolay Shmyrev. 2023. Building a language model. CMUSphinx Open Source

Speech Recognition. Retrieved August 5, 2023 from

https://cmusphinx.github.io/wiki/tutoriallm/#training-an-arpa-model-with-

cmuclmtk.

[35] SADiLaR. 2017. Sadilar.org. https://repo.sadilar.org. Accessed August 5, 2023.

[36] Nickolay Shmyrev. 2023. Training an acoustic model for CMUSphinx.

CMUSphinx Open Source Speech Recognition. Retrieved August 6, 2023 from

https://cmusphinx.github.io/wiki/tutorialam/#training

[37] K. Beijering, C. Gooskens, and W. Heeringa. 2008. Predicting intelligibility and

perceived linguistic distances by means of the levenshtein algorithm. Linguistics

in the Netherlands, vol. 15 (2008), pp. 13–24.

[38] Nickolay Shmyrev. 2023. PocketSphinx on Android. CMUSphinx Open Source

Speech Recognition. Retrieved August 9, 2023 from

https://cmusphinx.github.io/wiki/tutorialandroid/

[39] S. M. A. Anusuya. 2009. Speech Recognition by Machine: A Review.

International Journal of Computer Science and Information Security, vol. 6, 3

(2009), pp. 154–162.

[40] R. Prakoso. 2016. Indonesian Automatic Speech Recognition System Using

CMUSphinx Toolkit and Limited Dataset. In Proceedings of the International

Symposium on Electronics and Smart Devices (ISESD), pp. 283–286.

[41] S. Gales. 2008. The Application of Hidden Markov Models in Speech

Recognition. Foundations and Trends in Signal Processing, vol. 1, no. 3, pp. 195-

304.

[42] Ian Lane, Alex Waibel, Matthias Eck, and Kay Rottmann. 2010. Tools for

Collecting Speech Corpora via Mechanical Turk. In Proceedings of the

Association for Computational Linguistics. Retrieved March 11, 2023 from

https://aclanthology.org/W10-0729.pdf.

[43] Thomas Reitmaier, Electra Wallington, Dani Kalarikalayil Raju, Ondrej Klejch,

Jennifer Pearson, Matt Jones, Peter Bell, and Simon Robinson. 2022.

Opportunities and Challenges of Automatic Speech Recognition Systems for

Low-Resource Language Speakers. In CHI Conference on Human Factors in

Computing Systems (CHI '22). DOI:https://doi.org/10.1145/3491102.3517639.

[44] De Vries, NJ, J Badenhorst, MH Davel, E Barnard, and De Waal, A. 2017.

Woefzela - An open-source platform for ASR data collection in the developing

world. In Proceedings of the CSIR Research Space.

DOI:http://hdl.handle.net/10204/5149.

[45] Jaco Badenhorst. 2012. Quality Measurements for Mobile Data Collection in the

Developing World. In Proceedings of the ISCA Speech and Language

Technology for Under-Resourced Languages. Retrieved March 9, 2023 from

https://www.iscaspeech.org/archive_v0/sltu_2012/papers/su12_139.pdf.

[46] Maximilian Bisani and Hermann Ney. 2008. Joint-sequence models for

grapheme-to-phoneme conversion. Speech Communication 50, 5 (May 2008),

434-451. DOI:https://doi.org/10.1016/j.specom.2008.01.002.

[47] Kanishka Rao, Fuchun Peng, Hasim Sak, and Françoise Beaufays. 2015.

Grapheme-to-phoneme conversion using Long Short-Term Memory recurrent

neural networks. In Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP '15).

DOI:https://doi.org/10.1109/icassp.2015.7178767.

Mobile Audio Transcription for Low-Resource South African

Languages
September 2023, Cape Town, South Africa

[48] Vincent Berment. 2004. Methods to computerize “little equipped” languages and

groups of languages. Theses, Universite Joseph-Fourier - Grenoble I. Retrieved

from https://tel.archives-ouvertes.fr/tel-00006313.

[49] Vadim Kim. 2010. How to Design 10 kHz filter (Using Butterworth filter design).

Application notes. Retrieved from

https://www.egr.msu.edu/classes/ece480/capstone/fall11/group02/web/Docume

nts/Ho

[50] Carnegie Mellon University. 2023. The CMU Pronouncing Dictionary. Retrieved

September 10, 2023 from http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

September 2023, Cape Town, South Africa F. Tohab et al.

SUPPLEMENTARY INFORMATION

1. Structured audio results

Audio Duration Type Speed rate

(WPM)

Gender WER LDW LDC

Audio 1 38s News

report

93.16 Female 1 59 359

Audio 2 39s News

report

83.08 Female 0.99 53 323

Audio 3 17s Studio 109.41 Male 1 31 203

Audio 4 64s New

report

99.38 Male 0.98 104 719

Audio 5 4s Studio 90.00 Male 1 6 50

Audio 6 27s News

report

64.44 Male 1 29 173

Audio 7 33s News

Report

63.64 Male 1 35 260

Audio 8 25s News

report

57.60 Male 1 24 184

Audio 9 34s News

report

70.59 Male 1 40 299

Audio 10 18s News

report

70.00 Male 1 21 119

Audio 11 15s Studio 104.00 Male 1 26 158

Audio 12 28s Studio 130.71 Male 1 61 408

Audio 13 23s Studio 109.57 Female 0.98 41 264

Audio 14 22s News

report

98.18 Female 0.95 34 170

Audio 15 22s Studio 109.09 Female 1 40 255

2. Casual conversations results

2.1 Original audio

Audio WER LDW LDC

Audio 5 1 43 232

Audio 6 1 184 1062

Audio 7 1 137 719

Audio 13 1 138 872

Audio 16 1 173 883

Audio 17 1 69 507

Audio 18 1 112 749

Audio 19 1 104 768

Audio 20 1 96 675

Audio 21 1 76 543

Audio 25 1 89 629

Audio 26 0.99 115 712

Audio 27 1 80 541

Audio 28 1 74 459

Audio 29 1 81 545

Audio 30 1 32 246

Audio 31 1 152 1217

Audio 32 1 201 1522

Audio 33 1 186 1381

Audio 34 1 197 1502

Audio 35 1 196 1489

Audio 36 1 143 1161

Audio 37 1 137 1153

Audio 38 1 179 1343

Audio 39 1 165 1242

Audio 40 1 156 1307

Audio 41 1 241 2088

Audio 42 1 277 2150

Audio 43 1 280 2174

Audio 44 1 121 886

2.2 Denoised audio

Audio WER LDW LDC

Audio 5 1 43 256

Audio 6 1 184 1065

Audio 7 1 137 761

Audio 13 1 138 905

Audio 16 1 173 918

Audio 17 1 69 505

Audio 18 1 112 829

Audio 19 1 104 781

Audio 20 1 96 669

Audio 21 1 76 559

Audio 25 1 89 637

Audio 26 1 116 798

Audio 27 1 80 578

Audio 28 1 74 494

Audio 29 1 81 557

Audio 30 1 32 245

Audio 31 1 152 1221

Audio 32 1 201 1538

Audio 33 1 186 1386

Audio 34 1 197 1506

Audio 35 1 196 1492

Audio 36 1 143 1162

Audio 37 1 137 1151

Mobile Audio Transcription for Low-Resource South African

Languages
September 2023, Cape Town, South Africa

Audio 38 1 179 1345

Audio 39 1 165 1247

Audio 40 1 156 1310

Audio 41 1 241 2087

Audio 42 1 277 2155

Audio 43 1 280 2182

Audio 44 1 121 901

2.3 Denoised + Normalized

Audio WER LDW LDC

Audio 5 0.67 29 171

Audio 6 0.67 123 709

Audio 7 0.67 91 510

Audio 13 0.67 92 586

Audio 16 1 173 920

Audio 17 0.67 46 341

Audio 18 0.67 75 521

Audio 19 0.67 69 511

Audio 20 0.67 64 447

Audio 21 0.67 51 371

Audio 25 1 89 626

Audio 26 0.67 77 522

Audio 27 1 80 566

Audio 28 1 74 484

Audio 29 1 81 558

Audio 30 1 32 241

Audio 31 1 152 1219

Audio 32 0.67 134 1025

Audio 33 1 186 1397

Audio 34 1 197 1505

Audio 35 0.67 131 994

Audio 36 1 143 1160

Audio 37 0.67 91 770

Audio 38 1 179 1345

Audio 39 1 165 1248

Audio 40 1 156 1310

Audio 41 1 241 2089

Audio 42 1 277 2156

Audio 43 1 280 2180

Audio 44 1 121 894

3. Background noise results

3.1 Audio sample 1

Volume (dB) WER LDW LDC

0 1 31 279

-4 1 31 271

-8 1 31 252

-12 1 31 241

-16 1 31 259

-20 1 31 260

3.2 Audio sample 2

Volume (dB) WER LDW LDC

0 1 6 63

-4 1 6 63

-8 1 6 56

-12 1 6 57

-16 1 6 54

-20 0.67 4 37

3.3 Audio sample 3

Volume (dB) WER LDW LDC

0 1 26 234

-4 1 26 228

-8 1 26 194

-12 1 26 197

-16 1 26 210

-20 1 26 189

3.4 Audio sample 4

Volume (dB) WER LDW LDC

0 1 61 421

-4 1 61 417

-8 1 61 406

-12 1 61 421

-16 1 61 409

-20 1 61 393

September 2023, Cape Town, South Africa F. Tohab et al.

 3.5 Audio sample 5

Volume (dB) WER LDW LDC

0 1 42 377

-4 1 42 355

-8 0.99 42 334

-12 0.99 42 310

-16 0.99 42 289

-20 0.98 41 307

3.6 Audio sample 6

Volume (dB) WER LDW LDC

0 1 40 333

-4 1 40 330

-8 0.98 39 283

-12 0.99 40 272

-16 0.98 39 273

-20 0.99 40 272

