
1 0 

 
 

CS/IT Honours Project 
Final Paper 2023 

 
Title: Transcribing isiXhosa SABC broadcast news using CMUSphinx 
 
Author: Kristen Jodie Basson 
 
Project Abbreviation: SABC2TXT 
 
Supervisor(s): Prof. Hussein Suleman 
 
 
 
 

Category Min  Max Chosen 
Requirement Analysis and Design 0 20 0 
Theoretical Analysis 0 25 0 
Experiment Design and Execution 0 20 20 
System Development and Implementation 0 20 10 
Results, Findings and Conclusions  10 20 20 
Aim Formulation and Background Work 10 15 10 
Quality of Paper Writing and Presentation 10 10 
Quality of Deliverables 10 10 
Overall General Project Evaluation (this section 
allowed only with motivation letter from supervisor) 

0 10 0 

Total marks 80  
 

 

  

DEPARTMENT OF COMPUTER SCIENCE 



 1 

Transcribing isiXhosa SABC broadcast news using CMUSphinx 

Kristen Jodie Basson 
 Department of Computer Science 

 University of Cape Town 
 Cape Town, South Africa 
 bsskri003@myuct.ac.za

ABSTRACT 
The lack of electronic linguistic resources in the southern Nguni 
languages, such as isiXhosa, negatively impacts computational and 
statistical systems that rely on these resources. Transcribing these 
languages would facilitate text-based research experiments and 
support multiple areas of natural language processing (NLP). This 
paper describes the methods used to create an isiXhosa automatic 
speech recognition (ASR) transcription system using the 
CMUSphinx speech recognition toolkit for South African 
Broadcasting Corporation (SABC) news. The accuracy of this 
system is evaluated by using metrics such as word error rate 
(WER), and the Levenshtein distance at the character and word 
level. Multiple experiments were conducted using a gold standard 
test corpus of approximately 40 minutes of SABC news and 3 hours 
of test audio provided by the South African Centre for Digital 
Language Resources (SADiLaR) website. The experiments done 
on the SABC news audio showed that the Levenshtein distances for 
the news anchor in the field were more accurate than the main news 
anchor and the distances for male speakers were more accurate than 
for females. Although Pocketsphinx performed better than Sphinx4 
overall, both systems performed poorly on the SABC news audio, 
each with a WER of 100%. In comparison, the SADiLaR test audio 
had a WER of 39% for Pocketsphinx and 65% for Sphinx4.  

KEYWORDS 
isiXhosa Speech Recognition System, CMUSphinx, Acoustic 
model, Language model, Phonetic dictionary 

1 INTRODUCTION 
Nine out of the eleven official South African languages are 
drastically under-resourced, especially in terms of electronic 
resources or books [7]. This lack of electronic resources makes it 
difficult for these languages to be supported in search engines and 
other machine-learning tasks. It was not until recently that many of 
the South African languages had no data available to even develop 
an ASR system [6][9]. The first corpus developed to solve this 
problem was the AST corpus followed by the Lwazi I corpus [9]. 
Since then, the Lwazi II and Lwazi III corpora were developed as 
well as the National Centre for Human Language Technology 
(NCHLT) corpus [6]. The NCHLT corpus contains more than 50 
hours of speech in each of the South African languages, available 
to support NLP.  
   Natural language processing (NLP) is a field in which 
computational techniques are used to automatically analyze text, to 
achieve human-like language processing for a variety of tasks [18]. 
A vital requirement for the continuation of research and 
development in the field is access to high-quality linguistic 

resources [8]. Therefore, the lack of high-quality text 
documentation in low-resource languages negatively impacts NLP 
[7]. Since ASR is a component of NLP where spoken words are 
transformed into text, also known as speech-to-text, it can be 
utilized to transcribe spoken speech [11]. This could potentially 
create valuable textual resources for low-resource languages to be 
further used in NLP and other research.  

This project was divided into three sections where an1.) SABC 
news transcription system was developed for structured speech, 2.) 
live mobile speech transcription system was developed for 
unstructured speech and 3.) the gold standard corpus was developed 
to be used to test these transcription systems. This paper 
specifically investigates 1.) the accuracy of using CMUSphinx 
(Pocketsphinx and Sphinx4) in transcribing structured isiXhosa 
SABC news, where the metrics of WER and the Levenshtein word 
and character distances are used to measure the accuracy of 
transcription results. This paper comprises a brief background and 
relevant work section related to similar research, followed by 
details of the datasets, experimental methods and system design, 
the experimental results and discussion, and the conclusion drawn 
from the results. 

2 BACKGROUND AND RELATED WORK 
Multiple studies have been conducted on broadcast news 
transcription which initially focused on North American English 
but has since been expanded into several other languages [10]. The 
type of speech present in broadcast news ranges from noisy 
interviews to a structured, read from a manuscript, speech style. An 
example where a speech recognition transcription system was 
applied is the Turkish transcription system for broadcast news [5]. 
The data used to train the models used in that system was a large 
database of broadcast news collected from various radio and 
television channels. Those audio recordings were then transcribed 
and used as training data for the models required in the ASR 
system. Similarly, a Japanese transcription system was developed 
to provide real-time captions to their broadcasted news [12]. The 
models were trained in the same way as the Turkish transcription 
system by using the manuscripts accumulated over the years. This 
ensures that the system is trained on the same type of data that it 
will be transcribing, allowing fewer transcription errors to occur. 
   ASR transcription systems require a pronunciation dictionary, a 
language model and an acoustic model trained in the specific 
language. This is accomplished by using standard available speech 
recognition tools to train these models [1]. Some examples of 
toolkits available are the Hidden Markov Model toolkit (HTK), 
Kaldi toolkit, and the CMUSphinx toolkit [1]. Naidoo and Tsoeu 
[23] tested English and isiXhosa with HTK, CMUSphinx and 
Kaldi. The Kaldi toolkit had performed the best overall, yet the 
CMUSphinx toolkit performed the best for isiXhosa. Additionally, 



 

 2 

there are other frameworks available that make use of deep neural 
networks (DNNs) to build an ASR system [1]. When a DNN was 
used in an ASR system where the language had limited resources, 
several studies noticed a significant increase in the performance of 
the system [14]. This is further motivated by Zhao and Zhang [22] 
who reviewed a hybrid DNN/HMM ASR system where the results 
confirmed that a DNN/HMM-based system had a better 
performance than an end-to-end model for under-resourced 
languages. Arisoy et al. [5] found that the phoneme error rates 
(PER) were also significantly less when using a DNN acoustic 
model. Although using DNNs for ASR systems for under-
resourced languages could likely be beneficial, there are many 
complexities involved.  
   CMUSphinx is one of the standard toolkits available for building 
a speech recognition system and was developed in java by Carnegie 
Mellon University (CMU), Sun Microsystems Laboratories and 
Mitsubishi Research Laboratories. The CMUSphinx website also 
provides tutorials on using both Pocketsphinx and Sphinx4 in the 
transcription of speech [17]. It is worth noting that on the 
downloads page of the website, it states that the only tools currently 
being maintained are Pocketsphinx and Sphinxtrain [17]. To use 
either Pocketsphinx or Sphinx4 from CMUSphinx, a language and 
acoustic model as well as a phonetic dictionary are required. 
Although there are models provided by CMUSphinx, it is more 
commonly used with custom models that are built with the provided 
CMUSphinx tools. A study by Pantazoglou et al. [3] focused on the 
development of voice recognition tools for the CMUSphinx 
platform for the Greek language. The Greek speech recognition 
system was created using custom models. The language model was 
trained using the CMU language model toolkit (CMULMTK) while 
the acoustic model was trained using Sphinxtrain. Another study 
also made use of CMUSphinx toolkit for the speech-to-text 
conversion of the language of Kannada [16]. The metrics used were 
WER and sentence error rate (SER). These metrics were used to 
evaluate a context-dependent model, which refers to training and 
testing using one speaker, and a context-independent model, which 
is the training and testing of multiple speakers. A context-
independent model required significantly more training data 
compared to the context-dependent model. The WER and SER of 
the context-independent model were also substantially higher. 
Segmentation could be used in this context before transcribing the 
audio where acoustic signals are further divided into homogenous 
segments [13][24]. The advantages of using segmentation include 
valuable information being extracted such as speaker turns and 
identities; speech discontinuity at speaker turns can be avoided and 
identified non-speech segments can be removed [2]. Segmentation 
can also significantly reduce computation time and simplify 
decoding.  
   CMUSphinx seems to be a widely used toolkit with a helpful 
website and tools to generate custom models. This is favourable 
since building a working transcription system can be challenging 
without the right available tools and documentation for guidance.  
 
3 RESEARCH QUESTION AND PROBLEM 

DEFINITION 
3.1 Problem definition 

The lack of linguistic resources for the low-resource language of 
isiXhosa significantly impacts future research for NLP and the 
continued growth of the field. The importance of increasing the 

amount of text documentation available in the language is vital in 
facilitating text-based research experiments and other 
computational and statistical systems that require these linguistic 
resources. The possibility of automatically transcribing structured 
SABC broadcast speech for isiXhosa could potentially increase the 
number of textual resources available in the language.  
 
3.2 Research question 

How accurate is the use of CMUSphinx for transcribing the low-
resource language of isiXhosa SABC news? 
 
Accuracy in this context is determined by using the metrics of the 
WER and the Levenshtein word and character distances. This 
would give an accurate representation of how many words and 
characters were correctly transcribed by CMUSphinx.  
 

4 DATASETS 
SADiLaR hosts an array of freely available resources related to the 
eleven official languages of South Africa [19]. The datasets that 
were used were downloaded from the Language Resource 
Catalogue section on the site. The specific datasets that were 
obtained were the NCHLT isiXhosa speech corpus, the Lwazi 
isiXhosa TTS (text-to-speech) corpus, and the Lwazi II isiXhosa 
TTS corpus. These datasets contain multiple short audio recordings 
of a few seconds as well as a file containing each audio’s 
transcription. This data is used to train the language and acoustic 
models for the ASR system. An additional dataset called the 
NCHLT-inlang pronunciation dictionaries was obtained and used 
in the creation of a phonetic dictionary. The ASR system’s 
transcription accuracy is then tested using the 3 hours of test audio 
provided by the NCHLT corpus as well as the transcribed SABC 
news obtained from the developed gold standard corpus. This data 
consists of four, 10-minute audio files of SABC news with their 
transcriptions.  
 
5 EXPERIMENTAL METHODS 
For the ASR isiXhosa transcription system to work, an accurate 
language model and acoustic model of the language need to be 
built. The creation of these custom models is vital in facilitating the 
correct transcription results. Three iterations were completed 
before the final tests and experiments were done. The first iteration 
utilised only the NCHLT text-to-speech corpus for the training of 
the language and acoustic model. Therefore, to increase the amount 
of data used in the model training the second iteration combined the 
Lwazi I, Lwazi II and the NCHLT corpora. Finally, the third 
iteration was implemented to segment the audio into smaller 
sections to potentially increase the transcription results by passing 
in smaller audio segments before being transcribed by CMUSphinx 
(Pocketsphinx and Sphinx4). 
 
5.1 Building a language model 

A language model calculates the probability that a word will come 
next in a hypothetical sequence of words [3][16]. The creation of 
the isiXhosa language model was the first step in building an ASR 
transcription system. Datasets of audio files with their 
transcriptions were obtained from SADiLaR. The CMU language 
model toolkit (CMULMTK) was used to build the isiXhosa 
language model [15]. CMULMTK is available as a python library 



 

 3 

therefore the commands can either be run in a script or separately 
in the terminal to generate a language model. By adhering to the 
instructions provided by the CMUSphinx website [17], and the 
CMU-Cambridge statistical language modelling toolkit website 
[15], the creation of a language model can be divided into data 
preparation and model training. 
 
5.1.1 Data preparation 

Transcriptions obtained from the datasets (Lwazi I, II and NCHLT) 
have training sets of data as well as one test set provided by the 
NCHLT dataset. The training sets are first combined into a single 
text file as one sentence per line. CMULMTK expects the text file 
to be normalized and each utterance to be delimited by <s> and 
</s> tags. Therefore, the text file is then run through a python script 
that automatically removes all punctuation marks, makes sure all 
the characters are lowercase and delimits utterances by the tags <s> 
and </s>. An example of the final correct text file format is shown 
in Figure 1. 

 
<s> wokugqibela wengcambu yesenziwa </s> 
<s> kuhlamba ngantelezi nasidlo </s> 
<s> uneendawo ezifuna ukushiywa </s> 
 

Figure 1: CMUCLMTK text file format 
 
5.1.2 Language model training 

Once this text file is in the correct format, either a python script can 
be used to run all the commands to train the language model or the 
commands can be run separately in the terminal. This process is 
shown in Figure 2, in a python script. The commands first generate 
a vocabulary file by using the text file shown in Figure 1. This 
vocabulary file is then used to generate an ‘idngram’ file, which is 
a list of every id n-gram, the information about the structure of 
words and phrases in a text dataset. This ‘idngram’ and vocabulary 
file are then used to generate the language model in an ‘arpa’ file 
format, a human-readable format that describes the statistical 
probabilities of the texts. However, this file needs to be in a “DMP” 
format, to be compatible with Sphinxtrain, to train an acoustic 
model, as well as in a binary format for CMUSphinx (Pocketsphinx 
and Sphinx4), to be used in transcription. Therefore, using a Linux 
computer or the Windows Subsystem for Linux (WSL) and having 
CMULMTK installed, a command, “sphinx_lm_convert -i 
isixhosa.lm -o isixhosa.lm.bin”, can be run to convert the ‘arpa’ file 
format into the binary file format. Furthermore, 
“sphinx_lm_convert -i isixhosa.lm -o isixhosa.lm.DMP”, can be 
used to convert the language model into the DMP file format. Thus, 
the language model has been built using CMULMTK and can be 
used in the training of the acoustic model. 
 
 

 
Figure 2: Python script with CMULMTK commands to generate a 

language model. 
 

5.2 Building an acoustic model 

In ASR acoustic models are used to represent the relationship 
between an audio signal and the phonemes that constitute speech. 
The acoustic model for isiXhosa was built using Sphinxtrain 
developed by CMU [17]. Sphinxtrain acquires knowledge of the 
sound unit model parameters by analyzing a collection of example 
speech signals, within a specific file system structure. Sphinxtrain 
uses this structure to access all its key components needed during 
training. Additionally, for the training, WSL was used since the 
CMUSphinx website recommends that Sphinxtrain should be used 
on a Linux system for access to all its features. Some packages are 
further required to be installed including git, cmake (version 3.14 
or higher), perl, python3, python3-numpy and python3-scipy. The 
process of training the acoustic model for isiXhosa can be broken 
down into steps. 
 
5.2.1 Data preparation 

5.2.1.1 File system structure 

A specific file system structure is expected by Sphinxtrain. This 
structure represented in Figure 3, is used by Sphinxtrain to train the 
acoustic model. The Sphinxtrain and Pocketsphinx repositories are 
further required to be cloned from their GitHub site and then built 
into the file structure. The terminal commands to accomplish this 
are shown in the list below.  
 
1.) git clone https://github.com/cmusphinx/sphinxtrain.git  
2.) git clone https://github.com/cmusphinx/pocketsphinx.git 
3.) cmake -S sphinxtrain -B sphinxtrain/build 
4.) cmake --build sphinxtrain/build 
5.) cmake” -S pocketsphinx -B pocketsphinx/build 
6.) cmake --build pocketsphinx/build 
7.) cp pocketsphinx/build/pocketsphinx_batch sphinxtrain/build 
 
All the audio wav files for the datasets should be present under the 
‘wav’ directory, partitioned by speaker. Furthermore, the language 
model in the DMP format should also be present in the ‘etc’ 
directory. The other files present are the training and testing audio 
files with a corresponding transcription file for each. Additionally, 
these testing and training audio files each need a ‘fileid’ file, 
containing the path to the audio recordings. Access to two 
dictionary files should be available: the phonetic and the filler 
dictionaries. The phonetic dictionary contains a list of the 
language’s words linked to a sequence of sound units while the 



 

 4 

filler dictionary associates non-speech sounds to non-speech or 
speech-like sound units. Lastly, there needs to be a phone file that 
contains the list of phones, the sound units of a language, used in 
the dictionaries. 

 
├─ pocketsphinx 
├─ sphinxtrain 
├─ etc 
│  ├─ isiXhosa.dic                         (Phonetic dictionary) 
│  ├─ isiXhosa.phone                    (Phone file) 
│  ├─ isiXhosa.lm.DMP                (Language model) 
│  ├─ isiXhosa.filler                      (List of fillers) 
│  ├─ isiXhosa_train.fileids           (List of files for training) 
│  ├─ isiXhosa_train.transcription (Transcription for training) 
│  ├─ isiXhosa_test.fileids             (List of files for testing) 
│  └─ isiXhosa_test.transcription   (Transcription for testing) 
└─ wav 
     ├─ 001                              (Speaker) 
     │  └─ file_1.wav              (Recording of speech utterance) 
     └─ 002 
          └─ file_2.wav 

Figure 3: isiXhosa file system structure for Sphinxtrain 
 

5.2.1.2 Data pre-processing 

Before adding all the files to the file system, the raw text-to-speech 
datasets were automatically pre-processed using python scripts. 
The training datasets, transcriptions are combined into a text file 
and then rewritten in the correct format expected by Sphinxtrain. 
Each utterance of the transcription file is delimited by <s> and </s> 
tags and the name of the audio file where the utterance is present is 
indicated after the </s> tag in parentheses. This format can be seen 
in Figure 4, with the utterance on the left between the tags and the 
transcription’s audio file on the right in parentheses after the </s> 
tag. The testing datasets, transcriptions are similarly processed to 
reach the same format.  

 
<s> ukuba sisiphi na </s> (nchlt_xho_001f_0009) 
<s> yinto entle mpelele </s> (nchlt_xho_001f_0010) 
<s> asekwe phezu kwaloo </s> (nchlt_xho_001f_0014) 

   <s> nalo ke eli </s> (nchlt_xho_001f_0016)  
Figure 4: isiXhosa transcription file format for Sphinxtrain 

 
Once the transcription files have been created the file ids are then 
determined. There are two ‘fileid’ files, one for the training data 
and another for the testing data. These files contain the path to each 
audio file relative to the ‘wav’ directory. The ‘fileid’ file format is 
represented in Figure 5. 

 
001/nchlt_xho_001f_0001 
001/nchlt_xho_001f_0002 
001/nchlt_xho_001f_0003 

   001/nchlt_xho_001f_0004 

Figure 5: isiXhosa fileid file format for Sphinxtrain 
 

The two dictionaries present in the ‘etc’ directory are ‘isiXhosa.dic’ 
which is the phonetic dictionary and ‘isiXhosa.filler’ which is the 
filler dictionary. Following the CMUSphinx website, the isiXhosa 

filler dictionary was set to contain only silences as represented in 
Figure 6. 

 
<s>             SIL 
</s>            SIL 

   <sil>           SIL 

Figure 6: isiXhosa filler dictionary file 
 

A phonetic dictionary was available and utilized from the NCHLT 
dataset. However, this dictionary was incomplete and had to be 
checked to ensure that all the words in the transcription file were 
present in the dictionary accompanied by their phonetic 
transcription. Therefore, a grapheme-to-phoneme (G2P) model 
would need to be trained to ensure a complete dictionary. To 
accomplish this the following steps were taken: 1.) The training 
transcription file was compared to the current phonetic dictionary 
and any word present in the transcriptions but not in the dictionary 
was written to a text file. It was made sure that there were only 
unique words being written to the text file and no duplicates. 2.) 
The Sequitur G2P python library was installed and the command to 
train a G2P model was run four times to ensure an accurate model 
was created [20]. These commands made use of the current 
phonetic dictionary to train the model and were run on a Linux 
system. The commands to train the G2P model were run in the order 
below. 
 
• g2p.py --train current.dic --devel 5% --write-model model-1 
• g2p.py --model model-1 --ramp-up --train current.dic --devel 

5% --write-model model-2 
• g2p.py --model model-2 --ramp-up --train current.dic --devel 

5% --write-model model-3 
• g2p.py --model model-3 --ramp-up --train current.dic --devel 

5% --write-model model-4 
 

3.) The last command, “g2p.py --model model-4 --apply 
absent_words.txt”, was run that uses the text file of absent words 
and the G2P model that was created to associate the words with 
their phonetic transcriptions. 4.) These newly associated words 
were then added to the current dictionary to create the completed 
phonetic dictionary for isiXhosa. The format of the dictionary is 
represented in Figure 7, indicating the word on the left and the 
phonetic transcription on the right. 
 

ababini                 a b_< a b_< i n i 
ababodwa a b_< a b_< O d w a 
ababona a b_< a b_< O n a 

   ababonakala a b_< a b_< O n a k_> a l a 

Figure 7: isiXhosa phonetic dictionary file format for Sphinxtrain 
 

Finally, the ‘isiXhosa.phone’ file present in the ‘etc’ directory is 
the list of phones used in the phonetic dictionary. Every phone 
present in the phonetic dictionary must be present in the phone file 
as well as the silence phone present in the filler dictionary. This 
dictionary format is shown in Figure 8, with each phone 
transcription listed on a new line. 
 
 



 

 5 

k_> 
p_> 
j 
g 

   tK_> 
   SIL 

Figure 8: isiXhosa phone file format for Sphinxtrain 

Therefore, once pre-processing has been completed, all the files in 
the ‘etc’ directory should be present to be further used in training 
the acoustic model. 
 
5.2.2 Acoustic model training 

To start training the command “python3 
sphinxtrain/scripts/sphinxtrain -t isixhosa setup” first needs to be 
run in the isiXhosa directory. This command copies all the required 
configuration files into the ‘etc’ directory of the isiXhosa file 
system and automatically sets the paths needed in the 
‘sphinx_train.cfg’ configuration file. Inside this file, some 
configurations were edited to configure parallel jobs to speed up 
the training process. The following configurations were changed: 
 
• $CFG_QUEUE_TYPE = “Queue::POSIX”, specifies a 

multicore machine. 
• $CFG_NPART = 10 and $CFG_DONE = 10, specifies the 

number of parallel processes to run. The recommended 
number is 10 for an 8-core machine. 

 
Once this is done Sphinxtrain is run from the isiXhosa directory 
with “sphinxtrain/scripts/sphinxtrain run”. This starts the acoustic 
model training process which takes a few hours to complete 
depending on the computer’s specifications such as CPU power and 
RAM. On completion, a WER of 30.9% was reached as well as a 
sentence error rate (SER) of 34.9% by using the test data provided 
by the NCHLT corpus. 
 
5.3 Audio segmentation and file processing 

Audio segmentation was implemented through a python script 
before decoding to potentially increase the accuracy of 
transcriptions. The libraries used in the audio segmentation were 
the numpy, and soundfile python libraries which segmented the 
audio into smaller sections by the energy level of the speech. This 
ensures that segmentation occurs when the energy level of the 
speech is low, thus, segmenting on breaks between speech. 
Although this somewhat worked the audio still manually needed to 
be segmented. Further segmentation was done manually by either 
dividing longer segments, that did not segment at clear pauses, or 
joining shorter segments that incorrectly split on a word without a 
clear pause between the speech. This improved the flow of the 
audio so that each segment was approximately the same length, and 
that each word was clear for transcribing purposes. Once the audio 
segmentation was complete, the source transcription files from the 
gold standard SABC news corpus were cleaned, by ensuring that 
all characters were lowercase, and no punctuation occurred. Its text 
file contained each audio segment's speech on a new line. This 
provided an easy way to later compare the source text file to the 
hypothesis text file line by line to calculate the metrics of how 
correct the hypothesis transcriptions were.  
 
 

5.4 System development and implementation 

The audio was transcribed using both Pocketsphinx and Sphinx4 
speech recognition libraries. Therefore, the development and 
implementation of both systems will be discussed. 
 
5.4.1 Pocketsphinx 

Since Pocketsphinx has a python speech recognition library, python 
was chosen as the language to develop and implement the 
transcription system. Visual Studio Code was used as the integrated 
development environment (IDE) as it supports python and is easy 
to use. The Pocketsphinx python speech recognition library was 
therefore installed and the paths to the acoustic model, language 
model and phonetic dictionary were specified. As the four ten-
minute SABC news audio files were segmented, the code had to 
ensure that each audio file segment was being transcribed in the 
correct order. The code takes an input folder that contains the 
segments of the audio file and transcribes each segment separately 
in order of their file name. These segment transcriptions are then 
written to a text file line by line to later accommodate metric 
comparison between the source and hypothesis transcription files. 
The code is shown in Figure 9. 
 

Figure 9: Pocketsphinx python application in Visual Studio Code 
 
5.4.2 Sphinx4 

On the contrary to Pocketsphinx, Sphinx4 is a pure java speech 
recognition library [17]. CMUSphinx’s website has a basic tutorial 
showing how to code a basic transcription system for Sphinx4. 
Since Sphinx4 is a pure Java speech recognition library the website 
recommends using the Eclipse IDE as it supports Gradle. Sphinx4 
then requires its three core jar files to be added to the classpath. 
These were downloaded from the Nexus repository manager where 
they were easily found by typing ‘Sphinx4’ into the search bar [25]. 
These jars included: 
 
• sphinx4-core-5prealpha-20160628.232526-10.jar 
• sphinx4-core-5prealpha-20160628.232526-10-javadoc.jar 
• sphinx4-core-5prealpha-20160628.232526-10-sources.jar 



 

 6 

To add these jar files to the classpath in Eclipse, the package 
explorer was opened on the left-hand side in Eclipse, the package 
‘isiXhosaTranscriber’ was right-clicked and the properties option 
was selected, ‘Java build path’ was then selected and under 
‘Classpath’ the external jar files were uploaded. After this was set 
the basic code from the website was used as a starting point where 
the paths to the acoustic model, language model and phonetic 
dictionary were specified. The code was then edited similarly to 
Pocketsphinx where a folder containing the audio file segments was 
used as input. The code then specifies that the segments need to be 
transcribed in order of their file names. Each segment's 
transcription is then written line by line to a text file for later metric 
comparison to the source transcriptions. In Figure 10, the Sphinx4 
application is presented. 
 

 
Figure 10: Sphinx4 java application in Eclipse 

 
5.5 Evaluation metrics 

Specific metrics are used to determine the accuracy of the 
Pocketsphinx and Sphinx4 speech transcription systems. The WER 
is calculated using Equation 1 and measures the number of errors 
that occurred during the transcription of an audio signal divided by 
the total number of words in the source transcript [4]. These errors 
are either an incorrect, insertion, deletion, or substitution of a word 
in the transcription. The Levenshtein distance (LD) is calculated 
using Equation 2 and measures the number of alterations 
(substitutions, deletions, or insertions) that need to take place in a 
target sequence of words so that it is identical to the source 
sequence [21]. The LD was calculated at the word and character 
level, therefore, Equation 2. can either be the number of alterations 
per word or character in a sequence. 
 
 
 

𝑊𝐸𝑅	 =
𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑠	 + 	𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠	 + 	𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠
𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑤𝑜𝑟𝑑𝑠	𝑖𝑛	𝑠𝑜𝑢𝑟𝑐𝑒	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 							(1) 

 
 
𝐿𝐷	 = 	𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑠 + 𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠 + 𝑆𝑢𝑏𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠																							(2) 
 
5.6 Experimental setup 

For the experimental setup, both Sphinx4 and Pocketsphinx speech 
recognition tools were utilised to transcribe all four audios 
separately. Audio from the training data was transcribed several 
times to make sure the transcription outcome was the same each 
time, therefore an average over the transcriptions would not need 
to be taken and the audio can be transcribed once. The data that was 
experimented with was the 3 hours of test data provided by the 
NCHLT dataset and the gold standard SABC news dataset of 40 
minutes that comprises four audios of ten minutes each. The four 
SABC news audios were experimented with in various ways. To 
accomplish these experiments categories of comparisons were 
created. These category comparisons included: 1.) Comparing 
Pocketsphinx and Sphinx4 over all the audios. 2.) Comparing male 
and female speakers. 3.) Comparing different types of speech. 
These comparisons were done separately for each audio file over 
their respective segments. The different types of speech can be 
further expanded into: news anchor, being the main anchor 
conveying the broadcast news; field news, the secondary anchor in 
the field, although this audio might contain background noise the 
speaker is always clearly heard; interview, a journalist interviewing 
another person where there may be background noise and the 
interviewee may use words such as “uh” or “uhm”; weather speech, 
the anchor conveying the weather forecast. The segments with their 
associated source transcriptions of each audio file were divided into 
the specific category files (gender or type) to make the process of 
transcription and evaluation easier. These categories were then 
transcribed, and the transcriptions were stored in text files. A 
python script was developed to automatically calculate the WER 
and Levenshtein distances at the word and character level between 
the source and hypothesis transcriptions. Additionally using these 
metrics and python scripts, making use of matplotlib and numpy 
libraries, in Jupyter Notebook, the average (mean) WER and 
Levenshtein character and word distances with the standard 
deviation as an error bar were plotted.  
 
6 RESULTS 
Throughout the experimental results, a comparison between 
Sphinx4 and Pocketsphinx is given to show how each speech 
recognition system performs on the same audio data. The metrics 
of the test data from the NCHLT dataset are graphed to show how 
the systems perform on the same type of words and speech that the 
system was trained on. The metrics for the SABC news corpus then 
shows how the systems perform on unseen data. The average WER 
for all the experiments conducted on the SABC news corpus was 1, 
indicating a 100% WER, meaning the number of errors equalled 
the number of words.  
 
6.1 NCHLT test data 

In Figure 11, Pocketsphinx and Sphinx4 were tested on the 3 hours 
of NCHLT test data where Pocketsphinx resulted in a WER of 39% 
which is much better in comparison to Sphinx4 which had a WER 
of 65%. An explanation for Sphinx4’s poor result could be due to 



 

 7 

it no longer being maintained where Pocketsphinx is actively being 
maintained [17]. Another reason is that when Sphinx4 transcribed 
the audio, some lines in the text file were left blank indicating it did 
not transcribe some audio segments resulting in a 100% WER for 
those lines. The standard deviation of both indicates that the data is 
clustered around the mean, therefore there is little variance within 
the data values.  

 
Figure 11: Mean Word Error Rate for Sphinx4 and Pocketphinx 

for the NCHLT test data 
 
6.2 Gold standard SABC news data 

Pocketsphinx and Sphinx4 were tested on all four ten-minute 
audios where the WER resulted in an average of 1 which is 100% 
across all the audios. The experiments done in this section are the 
comparisons between Sphinx4 and Pocketsphinx, male and female 
speakers and different types of speech. 
 
6.2.1 Pocketsphinx and Sphinx4 

Figure 14 and Figure 15 shows the results for the Levenshtein 
distance at the character and word level for both Pocketsphinx and 
Sphinx4. In Figure 14 and Figure 15, both systems performed, 
more or less, equally where the overall average Levenshtein 
character distance for Pocketsphinx was 103.75 and Sphinx4 was 
103.58 and the overall average Levenshtein word distance for 
Pocketsphinx was 16.85 where Sphinx4 is 18.05.  
 

 
Figure 14: Mean Levenshtein character distances for 

Pocketsphinx and Sphinx 4 
 

 
Figure 15: Mean Levenshtein word distances for Pocketsphinx 

and Sphinx4 
 
6.2.2 Speaker gender 

Each audio file contained both male and female speakers where the 
Levenshtein character distances for Pocketsphinx and Sphinx4 are 
represented in Figure 16 and Figure 17 respectively. In Figure 16 
the average character distance for the female speakers across all 
four audio’s was 108.23 whereas for the male speakers it was 86.75. 
Figure 17 had an average character distance for female speakers of 
109.27 where male speakers was 86.85. Once again it can be seen 
that the performance of both systems is approximately the same. 
There is however a clear indication that speech recognition 
performs better on audio where the speaker present is male. This is 
observed for both system's character distances. Figure 18 and 
Figure 19 further represent the Levenshtein word distances for 
Pocketsphinx and Sphinx4. Figure 18 had an average word distance 
of 17.62 for female speakers and 14.03 for male speakers. In Figure 
19, the average overall word distance for female speakers was 
19.12 and for male speakers was 15.11. Similarly, to the character 
distances results the word distances show that the speech 
recognition system performs much better on audio containing male 
speakers. The standard deviation between all these results shows a 
large variability between data indicating that the data is widely 
spread out and not clustered close to the mean. 
 

 
Figure 16: Mean Levenshtein character distances for 

Pocketsphinx for male and female speakers 
 

 



 

 8 

 
Figure 17: Mean Levenshtein character distances for Sphinx4 for 

male and female speakers 

 
Figure 18: Mean Levenshtein word distances for Pocketsphinx for 

male and female speakers 
 

 
Figure 19: Mean Levenshtein word distances for Sphinx4 for male 

and female speakers 
 
6.2.3 Type of speech 

Comparisons between different types of speech include news 
anchor, which is the main news anchor conveying the broadcast 
news; field news, the secondary anchor in the field, although this 
audio may contain background noise the speaker is always clearly 
heard; interview, a journalist interviewing another person where 
there may be background noise and code-switching, using the 
words of another language; weather, the anchor conveying the 
weather forecast, only audio 1 contained a weather forecast and the 
speaker spoke much faster than in the other types of speech. Figure 
20 and Figure 21 represent the Levenshetin character distances for 
Pocketsphinx and Sphinx4 while Figure 22 and Figure 23 show the 
word distances for Pocketsphinx and Sphinx4.  
   For all four figures, it is seen that the speech of the news anchor 
conveying the weather forecast had the worst character and word 
distance across the various types of speech. The type of speech that 
performed the best overall was the field news. This can be observed 
from the figures.  

 
Figure 20: Mean Levenshtein character distances for 

Pocketsphinx for different types of speech 
 

 
Figure 21: Mean Levenshtein character distances for Sphinx4 for 

different types of speech 
 

 
Figure 22: Mean Levenshtein word distances for Pocketsphinx for 

different types of speech 

 
Figure 23: Mean Levenshtein word distances for Sphinx4 for 

different types of speech 
 
 
 
 
 



 

 9 

7 DISCUSSION 
From the results, it is observed that Pocketsphinx performs better 
than Sphinx4 on seen data otherwise both systems perform equally 
on unseen data. This could be due to Sphinx4 no longer being 
maintained by CMUSphinx. The only tools currently being 
maintained are Pocketsphinx and Sphinxtrain. Overall CMUSphinx 
performed poorly in transcribing isiXhosa SABC broadcast news 
using the SADiLaR datasets. Some of the reasons for this could be 
that: the datasets used for training the models were too small; the 
model was trained with too short segments of audio no longer than 
30 seconds; the audio used for training, the speakers spoke slowly 
and clearly where the test audio the speakers spoke fast. In general, 
both systems did not adapt well to unseen data. Another reason for 
this was that no handling of out-of-vocabulary (OOV) words, 
words that are not present in the phonetic dictionary, was 
implemented into the system. When this isiXhosa speech 
recognition system runs into an OOV word it will either transcribe 
it to the most probable word it thinks it is or skip the word entirely. 
The study on the Japanese and Turkish broadcast news 
transcription systems both stated that a large amount of broadcast 
news audio and manuscripts were collected over several years that 
were used in the training of the speech recognition system [5][12]. 
Using similar training data to the data you would need to transcribe 
would improve the ASR system accuracy since the new data to be 
transcribed would not be unseen and most of the words would not 
be OOV words. Furthermore, the ASR system performs better on 
male speech segments than on female speech segments. This could 
be due to the pitch difference in the various voices. Interestingly, 
the field news speech performed better than the main news anchor 
speech sections, this is perhaps due to these sections’ speakers 
speaking slower and more clearly. Creating an accurate speech 
recognition system for isiXhosa SABC news would need a large 
amount of audio and textual data related to SABC news for the 
training of the models for the ASR system. Other toolkits and deep 
neural network-based systems, although complex, should be 
explored and experimented with.  
 
8 CONCLUSIONS  
Although the experimental results showed that Pocketsphinx’s 
WER for the NCHLT test data was 39% in comparison to Sphinx4 
with 65%, both systems performed poorly on the SABC news, 
unseen data, with a WER of 100%. Furthermore, when comparing 
male and female speakers it was seen that both systems performed 
better on male speech than female. Moreover, the field news had 
the best results amongst the different types of speech, with a better 
result than the main news anchor sections. The standard deviation 
for all the results showed a large variability between the data 
indicating that the data was widely spread out and not clustered 
close to the mean. Overall, the results show that CMUSphinx 
(Pocketsphinx and Sphinx4) does not perform accurately for 
isiXhosa SABC news.  

REFERENCES 
[1] R. Jimerson, K. Simha, R. Ptucha, and E. Prud'hommeaux, “Improving ASR 

output for endangered language documentation,” The 6th intl. workshop on 
spoken language technologies for under-resourced languages, 2018. 

[2] J.-L Gauvain, L. Lamel, and G. Adda, “Transcribing broadcast news for audio 
and video indexing,” Communications of the ACM, vol. 43, no. 2, pp. 64-70, 
2000.   

[3] F.K. Pantazoglou, N.K. Papadakis, G.P. Kladis, “Implementation of the generic 
Greek Model for CMU Sphinx speech recognition toolkit,” Proceedings of eRA-
12, pp. 1-11, 2017. 

[4] C. Srun, V. Ny, C. Cheat, S. Ching, P. Ny, “Development of Speech Recognition 
System Based on CMUSphinx for Khmer Language,” International Journal of 
Innovative Science and Research Technology, vol. 6, no. 8, pp. 770-775, 2021.  

[5] E. Arisoy, D. Can, S. Parlak, H. Sak, and M. Saraçlar, “Turkish broadcast news 
transcription and retrieval,” IEEE Transactions on Audio, Speech, and 
Language Processing, vol. 17, no. 5, pp. 874-883, 2009. 

[6] E. Barnard, M. Davel, C. van Heerden, F. De Wet, and J. Badenhorst, "The 
NCHLT speech corpus of the South African languages," 4th International 
Workshop on Spoken Language Technologies for Under-Resourced Languages, 
pp. 194-200, 2014. 

[7] L. Besacier, E. Barnard, A. Karpov, and T. Schultz, “Automatic speech 
recognition for under-resourced languages: A survey,” Speech communication, 
vol. 56, pp. 85-100, 2014. 

[8] R. Eiselen, and M. J. Puttkammer, “Developing Text Resources for Ten South 
African Languages,” LREC, pp. 3698-3702, 2014. 

[9] D. Henselmans, T.  Niesler, and D. Van Leeuwen, “Baseline speech recognition 
of South African languages using Lwazi and AST,” in Proceedings of the 24th 
Annual Symposium of the Pattern Recognition Association of South Africa, 
2013. 

[10] H. Kamper, F. De Wet, T. Hain, and T. Niesler, “Resource development and 
experiments in automatic SA broadcast news transcription,” in Workshop on 
Spoken Technologies for Under-Resourced Languages, pp. 102-106, 2012.  

[11] F.S. Al-Ansi and D. Abuzeina, “Performance evaluation of Sphinx and HTK 
speech recognizers for spoken Arabic language,” International Journal of 
Innovative Computing, Information and Control, vol. 15, no. 3, pp. 1009-1021, 
2019. 

[12] A. Ando, T. Imai, A. Kobayashi, H. Isono, and K. Nakabayashi, “Real-time 
transcription system for simultaneous subtitling of Japanese broadcast news 
programs,” in IEEE Transactions on Broadcasting, vol. 46, no. 3, pp. 189-196, 
2000.  

[13] P. Deléglise, Y. Estève, S. Meignier, and T. Merlin, “The LIUM speech 
transcription system: a CMUSphinx III-based system for French broadcast 
news,” in Interspeech, 2005.  

[14] M.J.F. Gales, K.M. Knill, A. Ragni, and S.P. Rath, “Speech recognition and 
keyword spotting for low-resource languages: Babel project research at cued,” 
International Speech Communication Association (ISCA), 2014. 

[15] P. Clarkson, 2023. The CMU-cambridge statistical language modeling toolkit 
V2, Language Modeling Toolkit. Retrieved August 23, 2023 from 
https://people.csail.mit.edu/joe/sctk1.2/src/slm_v2/doc/toolkit_documentation.
html 

[16] K.M. Shivakumar, K.G. Aravind, T.V. Anoop, “Kannada Speech to Text 
Conversion Using CMU Sphinx,” International Conference on Inventive 
Computation Technologies (ICICT), 2016. 

[17] Shmyrev, N. 2023. CMUSPHINX documentation, CMUSphinx Open Source 
Speech Recognition. Retrieved August 27, 2023 from  
https://cmusphinx.github.io/wiki/ 

[18] Elizabeth D. Liddy. 2001. Natural language processing. (2001). 
[19] 2023. SADiLaR Resource catalogue. Retrieved August 27, 2023 from 

https://repo.sadilar.org/handle/20.500.12185/7 
[20] 2023. Sequitur-g2p PyPI. Retrieved August 27, 2023 from 

https://pypi.org/project/sequitur-g2p/  
[21] R. Hjulström, “Evaluation of a speech recognition system,”. 
[22] J. Zhao, and W.-Q. Zhang, “Improving Automatic Speech Recognition 

Performance for Low-Resource Language with Self-Supervised Models,” IEEE 
Journal of Selected Topics in Signal Processing, vol 16, no 6, pp. 1227-1241, 
2022. 

[23] Naidoo, A. and Tsoeu, M., “Evaluating Open-source Toolkits for Automatic 
Speech Recognition of South African Languages,” IEEE 
SAUPEC/RobMech/PRASA Conference, 2019. 

[24] L. Lamel, J.-L. Gauvain, G. Adda, M. Adda-Decker, L. Canseco, L. Chen, O. 
Galibert, A. Messaoudi, and H. Schwenk, “Speech transcription in multiple 
languages,” in IEEE International Conference on Acoustics, Speech, and Signal 
Processing, pp. 757-760, 2004.  

[25] Nexus Repository Manager. Retrieved September 12, 2023 from 
https://oss.sonatype.org/ 

https://people.csail.mit.edu/joe/sctk1.2/src/slm_v2/doc/toolkit_documentation.html
https://people.csail.mit.edu/joe/sctk1.2/src/slm_v2/doc/toolkit_documentation.html
https://cmusphinx.github.io/wiki/
https://repo.sadilar.org/handle/20.500.12185/7
https://pypi.org/project/sequitur-g2p/
https://oss.sonatype.org/

