
SCADRV2 Literature Review
Dhiresh Thakor Vallabh
University of Cape Town
Cape Town, South Africa
THKDHI001@myuct.ac.za

ABSTRACT
Knowledge representation and reasoning is a concept in artificial
intelligence (AI). This concept involves storing some information
about the world or a topic into a machine and it creates conclu-
sions based on the knowledge given. Defeasible reasoning is a
non-classical form of reasoning that expands upon the classical
form by being able to reason about new and/or conflicting infor-
mation. This is done by giving information that is non-monotonic
and accepting information that is typically true. This project aims
to improve upon the implementation of defeasible entailment al-
gorithms and improve the scalability to handle larger knowledge
frameworks.

CCS CONCEPTS
• Theory of computation→ Automated reasoning; • Comput-
ing methodologies → Nonmonotonic, default reasoning and
belief revision.

KEYWORDS
artificial intelligence, knowledge representation and reasoning, de-
feasible reasoning, Boolean satisfiability solving

1 INTRODUCTION
Knowledge representation has been an important subject in ar-
tificial intelligence (AI) as it has many practical capabilities [8].
Knowledge representation uses symbols and variables to represent
information about the world and attempts to reason about this in-
formation to create conclusions based on the information it has [11].
By using different algorithms and techniques to make reasoning
about information faster, we can create more reliable and efficient
machines.

This literature review will begin by explaining the syntax and
semantics of propositional logic. We will then discuss the motiva-
tion behind defeasible reasoning, the preferential approach, and the
KLM approach. Following this, we will discuss rational closure and
its algorithm. We will also describe the Boolean satisfiability prob-
lem. We then conclude by discussing satisfiability (SAT) solvers,
their definitions, notation, algorithms for computation, and how it
can be used for defeasible entailment.

2 PROPOSITIONAL LOGIC
Propositional logic is a formal reasoning framework that converts
information represented in a spoken language into logical state-
ments [7]. These statements are created by simplifying complicated
pieces of information into propositional atoms. These atoms can
then be assigned truth values (true or false value) which create
a logical statement about the world. These statements can then
be combined, using binary connectives, with their truth values to

form new conclusions. This framework, defined by [1], uses specific
syntax and semantics which will now be introduced.

2.1 Syntax
The language L of propositional logic is made up of propositional
atoms P. Each propositional atom is assigned a truth value which
is denoted as either True (𝑇) or False (𝐹). Atoms are denoted using
Greek symbols (e.g., 𝛼 , 𝛽 , etc.) or abbreviated versions of a noun
(e.g., 𝑎𝑛𝑖𝑚𝑎𝑙 , 𝑎, 𝑐𝑎𝑟𝑛𝑖𝑣𝑜𝑟𝑒𝑠 , 𝑐 , etc.). Propositional formulas are then
created by combining propositional atoms with Boolean operators
known as connectives. The classical form has many connectives but
this project will focus on the connectives listed below:

Symbol Name
¬ Negation
∧ Conjunction
∨ Disjunction
→ Implication
↔ Equivalence

Table 1: Connectives and their Symbol Representations

The negation connective requires a single operand (unary) whilst
the remaining connectives require two operands (binary). Proposi-
tional formulas can now be defined as the set of 𝑝 ∈ P and 𝛼, 𝛽 ∈ L,
{𝑝, ¬𝛼, 𝛼 ∧ 𝛽, 𝛼 ∨ 𝛽, 𝛼 → 𝛽, 𝛼 ↔ 𝛽} that are defined in L. There
are also two constants included in L known as Top (⊤) and bot-
tom (⊥). These constants represent always true and always false,
respectively.

2.2 Semantics
2.2.1 Formulas. Each atom can be associated with a truth value
and different combinations can derive different truth values based
on the connectives. These variations can be mapped out by creating
a truth table.

A truth table can be formally defined as the set of all evaluations
V where a single evaluation 𝐸 is denoted as 𝐸 : 𝑃 ↦→ {𝑇, 𝐹 }. If 𝐸 = 𝑝

then 𝑝 is true and 𝑝 is false. If 𝐸 = 𝑝 then 𝐸 satisfies 𝑝 . Satisfaction
can be applied to more complex formulas since connectives return
a singular truth value.

A truth table can also include the complimentary atoms of 𝑝 and
¬𝑝 in the same statement but 𝑝 can never exist due to the contradic-
tion. The table below shows how variables and connectives interact
to generate new truth values based on existing Boolean atoms:

An evaluation 𝐸 that can satisfy some formula 𝛼 ∈ L is known
as a model of that formula, with the set of all models of 𝛼 denoted
as 𝛾 . 𝛼 is considered satisfiable when 𝛾 has at least one model.
𝛼 is considered unsatisfiable when 𝛾 is empty. This represents a

Dhiresh Thakor Vallabh

𝑝 𝑞 ⊤ ⊥ ¬𝑝 𝑝 ∧ 𝑞 𝑝 ∨ 𝑞 𝑝 → 𝑞 𝑝 ↔ 𝑞

F F T F T F F T T
F T T F T F T T F
T F T F F F T F F
T T T F F T T T T

Table 2: Truth Table of Variables 𝑝 and 𝑞

contradiction (e.g., 𝑝 ∧ ¬𝑝 as mentioned before). If 𝛾 = 𝑉 , then the
⊤ constant applies for every evaluation (e.g., 𝑝 ∨ ¬𝑝).

2.2.2 Knowledge Bases. A knowledge base is a finite set of proposi-
tional formulas. A knowledge base K is satisfied by an evaluation
𝐸 iff for every 𝛽 ∈ K , 𝐸 satisfies 𝛽 . The set of models of K is the
set of all models of 𝐸 ∈ 𝑉 that satisfy K .

2.2.3 Entailment. Entailment is when some formula 𝛼 is the logical
consequence of a knowledge base K . 𝛼 is considered a logical
consequence when the set of models in K is satisfied by 𝛼 . The
notation for entailment is K |= 𝛼 (K entails 𝛼). Later sections will
further explain entailment in defeasible reasoning and satisfiability.

3 DEFEASIBLE REASONING
3.1 Motivation
In reality, the human mind is more complicated and the classical
forms of reasoning, such as propositional logic, can only depict
a portion of human reasoning. Moodley [13] explains that classi-
cal reasoning cannot accept exceptions. This is because all logical
statements and previous conclusions in the knowledge base K are
infallible. This is done so that K is able to work with incomplete
information. This concept is known as monotonicity. This means
that any new information must be reconciled with existing infor-
mation. This reconciliation may work for some statements but can
easily lead to contradictions and therefore incorrect conclusions.

For example, the statements "students do not pay taxes", "em-
ployed people pay taxes", "person is a student", "person is employed"
all represent infallible logical statements that can be added to K .
However, the only way for K to reason about this information is
to conclude that there are no employed students even if there may
be employed students. K will represent this by having no models.
This is because K entails that the person pays taxes and does not
pay taxes which leads to a contradiction [13]. This problem makes
knowledge bases unreliable and unlike a human’s mind which can
reconcile these contradictions.

The solution is to use systems that are nonmonotonic. There
many nonmonotonic systems in existence that have been explained
by Kaliski [7]. These systems include Default Logic, Circumscrip-
tion, Belief Revision, and more. We will focus on the Preferential
Approach which is defined by the KLM framework. This is because
the Preferential Approach has more generality and has a more
clearly defined structure than the other approaches.

3.2 The Preferential Approach
As mentioned in section 3.1, preferential approach, and by extension
the KLM framework, is better than other non-classical systems. This
is because the framework defines certain properties of defeasible

entailment that both solve the problem of classical reasoning and
creates an ordered structure that is easier to follow.

3.2.1 Consequence Relations. The KLM framework begins by defin-
ing new type of relation between formulas known as Consequence
relations [7]. Consequence relations create the ability to handle ex-
ceptions by describing a relation as "typically true". This is denoted
by |∼. For example, people |∼ pay taxes means "people typically pay
taxes". Since this is between logical formulas and not atoms, the |∼
does not represent a new connective. The |∼ only represents the
relationship between the formulas.

3.2.2 Preferential Interpretations. The next property that is defined
is that of preferential interpretations. This property states that if
there are two evaluations 𝐸 and 𝑉 and 𝐸 is more typical than 𝑉 ,
then 𝐸 will be preferred more than 𝑉 .

There are preferential semantics when it comes to creating these
preferential interpretations. Each evaluation is mapped onto a
state/s. These states can be infinite depending on the interpretations.
These states are then partially ordered based on preferences. A state
𝑠 ∈ 𝑆 , where 𝑆 is the set of states, is said to be minimal there is no
𝑠 ′ ∈ 𝑆 where 𝑠 ′ ≺ 𝑠 (≺ is used to denote preceding).

A preferential interpretation, P, is well-founded iff the states
and partial order is well-founded. The states and order are only
well-founded iff there is a minimal state in some subset of 𝑆 . P is
also considered a well-founded and finite interpretation or "smooth"
iff for any formula 𝛼 ∈ L, [[𝛼]]P has a minimal state s. [[𝛼]]P is the
set of all states in a given preferential interpretation such that each
evaluation in a state/s satisfies 𝛼 . Smoothness and well-foundedness
ensures that there is no infinite sets of states.

Finally, P is sound when there is a preferential consequence
relation (or defeasible implication) (|∼P). This relation is satisfied
iff for any 𝑠 ∈ [[𝛼]]P and 𝛼, 𝛽 ∈ L, 𝑠 ⊩ 𝛽 . Soundness essentially
removes scenarios that are very unlikely to happen which gives
more preference to more typical scenarios [7].

3.2.3 Ranked Interpretations. Ranked interpretations [7] are for-
mally defined as a function R : V ↦→ N ∪ {∞} such that if there is
some 𝐼 , 𝐽 ∈ V then for some R(𝐼) = 𝑖 there will always be some
R(𝐽) = 𝑗 where 0 < 𝑗 < 𝑖 .

Ranked interpretations are based upon preferential interpre-
tations but make certain changes. The biggest difference is that
evaluations can no longer belong to many states. This is to reduce
the number of duplicated states. The second difference is that any
states are ordered into a ranked system based on how typical a state
is. If any states have the same rank, they are either as preferred as
one another or are incomparable from one another. When there are
duplicate states in the rankings, the most minimal state is kept and
the other states are removed. If the duplicate states are the same
rank, then all but any one state is removed from the rank.

By using the soundness rule of preferential interpretations, if
R satisfies some preferential consequence relation then we can
describe R as a ranked model of the relation.

3.2.4 Ranked Entailment. Ranked entailment [7] is similar to propo-
sitional entailment in that with a knowledge base K , and a defea-
sible implication K |≈R 𝛼 |∼ 𝛽 iff for every ranked interpretation,
R, such that R ⊩ K , then R ⊩ 𝛼 |∼ 𝛽 . This form of entailment is

SCADRV2 Literature Review

still considered monotonic and therefore defeasible entailment is
needed.

3.3 KLM Properties for Defeasible Entailment
Lehmann and Magidor [10] devised a set of properties that needed
to be followed to achieve any form of defeasible entailment. When
all of the properties are met, the defeasible entailment method is
described as LM-rational. These properties were created to isolate as
many sensible entailment relations as possible. These properties for
a knowledge base K and propositional formulas 𝛼, 𝛽,𝛾 are defined
as follows:

(Ref) K |≈ 𝛼 |∼ 𝛼 And K |≈𝛼 |∼𝛽,K |≈𝛼 |∼𝛾
K |≈𝛼 |∼𝛽∧𝛾

(LLE) K |≈𝛼↔𝛽,K |≈𝛼 |∼𝛾
K |≈𝛽 |∼𝛾 Or K |≈𝛼 |∼𝛾,K |≈𝛽 |∼𝛾

K |≈𝛼∨𝛽 |∼𝛾
(RW) K |≈𝛼→𝛽,K |≈𝛾 |∼𝛼

K |≈𝛾 |∼𝛽 (CM) K |≈𝛼 |∼𝛾,K |≈𝛼 |∼𝛽
K |≈𝛼∧𝛽 |∼𝛾

3.4 Rational Closure
Lexicographic closure was proposed by Lehmann [9] and Rational
closure was proposed by Lehmann and Magidor [5] as methods for
defeasible entailment. Both methods are considered LM-rational.
To fully explain rational closure, there are certain principles and
methods to understand.

3.4.1 Minimal Ranked Entailment. Minimal ranked entailment be-
gins creating a partial order of ranked interpretations for a knowl-
edge base K and ranks the interpretations by how likely the inter-
pretation is. The higher the rank (lower the number) means that
the interpretation is more likely and vice versa. Giordano et al. [5]
noted that eventually there is a minimal element. This minimal ele-
ment that satisfiesK will be used to create a an entailment relation
between the knowledge base and any defeasible implication that is
satisfied by the minimal element.

3.4.2 Materialisation. Materialisation [2] converts a defeasible im-
plication 𝛼 |∼ 𝛽 into a material implication 𝛼 → 𝛽 . This material
implication is also known as the material counterpart of the defea-
sible implication [7]. The materialisation of a knowledge base

−→
K is

the set of all material counterparts of defeasible implications within
a knowledge base K .

3.4.3 Base Rank Algorithm. The rational closure method uses the
base rank algorithm [2] to determine if a formula is in the rational
closure of a knowledge base K . The layout of the algorithm is
shown by the following:

(1) Separate the classical statements KC from the defeasible
statements KD .

(2) Materialise KD into
−→
KD .

(3) Create a rank RK
∞ that holds all of KC .

(4) Create a set of exceptional subsets E𝐾0 , E𝐾1 , E𝐾2 , . . . , E𝐾
𝑛−1

where E𝐾0 =
−→
KD .

(5) Let EK
𝑖

= {𝛼 → 𝛽 | (𝛼 → 𝛽) ∈ K𝐶 ∪ EK
𝑖−1 |= ¬𝛼} where

𝑖 > 0. This will separate the statements such that EK
𝑖

only
holds statements in EK

𝑖−1 such that 𝛼 is false.

(6) Let the ranks RK
𝑖

= EK
𝑖−1 \ E

K
𝑖
.

(7) Stop when EK
𝑖

= EK
𝑖−1 or when EK

𝑖−1 = ∅.
This will create ranks where the more likely statements will be
in higher ranks. This will also make all ranks hold only classical
statements.

3.4.4 Defeasible Entailment Using Rational Closure. By using ra-
tional closure for some K , it is possible to determine if K entails
some defeasible implication 𝛼 |∼ 𝛽 .

(1) Determine if RK
∞ entails ¬𝛼 .

(2) Determine if each rank in RK
𝑛 entails ¬𝛼 starting from

𝑖 = 0 where 𝑖 ∈ 𝑛. If RK
𝑖

does entail ¬𝛼 then the rank set
is removed and move on to RK

𝑖+1 (i.e. a lower rank). This
is done until there is a statement in a rank that does not
entail ¬𝛼 . The current statement, rank, statements in the
current rank, and the remaining statements and ranks are
kept.

(3) If there are no remaining ranks then K does not entail
𝛼 |∼ 𝛽 .

(4) If there is at least one rank then determine if the remaining
statements and ranks entail 𝛼 → 𝛽 .

The output for this will be true ifK |≈ 𝛼 |∼ 𝛽 and false otherwise
[7]. To demonstrate these algorithms and KLM defeasible entail-
ment, the classic birds and penguins example will be given. Consider
the knowledge base where K = {𝑏 |∼ 𝑓 , 𝑝 → 𝑏, 𝑝 |∼ ¬𝑓 , 𝑏 |∼ 𝑤}
where b = bird, p = penguin, f = flies, and w = wings [2]. Also
consider the defeasible query 𝑝 |∼ ¬𝑓 .

(1) The base rank algorithm will make KC = {𝑝 → 𝑏} and
−→
KD = {𝑏 → 𝑓 , 𝑝 → ¬𝑓 , 𝑏 → 𝑤}.

(2) In
−→
KD , 𝑝 is the only variable that is less typical. Therefore

it will have its own rank.

(3) KC will form RK
0 .

The algorithm will create the following result:

∞ 𝑝 → 𝑏

1 𝑝 → ¬𝑓
0 𝑏 → 𝑓 , 𝑏 → 𝑤

Table 3: Ranks Using Base Rank Algorithm

The rational closure algorithm will then check if the query is
entailed by the knowledge base. The algorithm will check if RK

∞ |≈
¬𝑝 . This is not true and the algorithm will check the other ranks.
We then check if RK

0 |≈ ¬𝑝 . This is true and RK
0 is removed from

the ranks. The new ranks will look like the following:

Dhiresh Thakor Vallabh

∞ 𝑝 → 𝑏

1 𝑝 → ¬𝑓
Table 4: Ranks After Removing RK

0

We then check if RK
1 |≈ ¬𝑝 . This is not true and so we check if

RK
1 |≈ 𝑝 → ¬𝑓 . This will return true and so K |≈ 𝑝 → ¬𝑓 .

4 SAT SOLVERS
4.1 The Boolean Satisfiability Problem
The Boolean Satisfiability Problem (SAT) involves determining
whether there exists some formula has a satisfying truth value
assignment [12].

This problem is considered a canonically NP-complete problem
and there have been many algorithms created to improve efficiency
[12]. SAT has been researched as it has many use cases for subjects
such as AI planning, software verification, and, of course, knowl-
edge representation and reasoning. The algorithms that have been
created are known as SAT solvers. These SAT solvers have seen
actual success and often produce satisfying assignments, if they
exist, depending on the algorithm.

4.2 SAT Solver Definitions and Notation
Conjunctive normal form (CNF) describes the format that propo-
sitional formulas are converted to for SAT solvers. This format is
used because it eases the work that SAT solvers must perform and
in no way limits the SAT solver at all. This format is formed by
combining clauses by using the ∧ (and) connective. Clauses are
formed by combining literals by using the ∨ (or) connective. These
literals can either be the variable itself or the negation (¬) of a
variable. These literals are then assigned truth values to determine
satisfiability [6]. An example of a formula in CNF format is (a ∨ b)
∧ (c ∨ d) ∧ (¬ b ∨ c).

Gomes et al. [6] outlines two methods for SAT solver algorithms.
The first method is a complete algorithm. Complete algorithms
determine if there is a satisfying truth value assignment or if there is
no assignment at all. This method has been researched for decades
but the solution is still relatively slow. The other method is an
incomplete algorithm. Incomplete algorithms can neither always
return a satisfying truth value assignment nor can it prove that
a formula has no solution at all. Many incomplete algorithms are
based on stochastic local search and are generally much faster than
complete algorithms.

4.3 Semantic Tableaux Algorithm for
Propositional Logic

SAT solvers can be used in propositional logic however there can
be very complex formulas that have hundreds of literals. Therefore
there needs to be an algorithm that can efficiently search through
these formulas for satisfiability.

This is where the semantic tableaux algorithm becomes useful.
Ben-Ari [1] explains that this algorithm decomposes formulas into
sets of literals. It then checks if any of the sets include both an atom
and its negation. If the set does include this pair, then the set is

unsatisfiable. The formula itself only requires that at least one set
is satisfiable for the formula to be satisfiable.

The decomposition of the formula is done by creating a tree
structure where the formula is the parent and the possible outcomes
are the children. The tree ends when it cannot be decomposed
anymore. Other methods outside of the tableaux method may uses
matrices to depict a similar representation [14].

4.4 The DPLL Algorithm
The (DPLL) algorithm, sometimes referred to as the Davis-Putnam
method [15], is a complete, backtracking algorithm that was created
by Davis, Logemann, and Loveland [3] and is based off previous
work by Davis and Putnam [4]. DPLL was one of the first algorithms
created for SAT solving and has sparked new improvements on
different SAT solving procedures such as conflict-drive learning,
backjumping, etc [12]. However, the work on DPLL is still the basis
of most modern complete SAT solvers due to its own improvements
and its foundational research.

The original algorithm created by Davis and Putnam often re-
sulted in high memory usage for larger formulae [16]. This was
because they were using a type of elimination process [12]. This
was later refined into a backtracking search process. This process in-
volves taking a CNF formula as an input and breaking it down into
the sets of clauses and literals. An unassigned literal will then be
selected and assigned a temporary truth value. This creates a branch
and the algorithm will then use this branch to see if there is any
combination of values that will make the clause satisfiable. If the
branch is not satisfiable, then the algorithm will remove the branch
(i.e. backtrack) and create a new one based on a different literal. If
the algorithm is not satisfied by any of the branches, then it will
continue backtracking branching until it cannot anymore. In which
case, the algorithm will return that the formula is a unsatisfiable.

4.5 SAT Solvers and Entailment
By using SAT solvers on defeasible reasoning algorithms, we can
check if a statement 𝛼 in propositional logic is entailed by a knowl-
edge base K through satisfiability. This is done to reduce the com-
plexity of solving entailment to solving satisfiability.

Given a formula 𝛽 , the SAT solver will do this by checking if the
models of K satisfy K ∪ {¬𝛽}. If the SAT solver is satisfied, then
there is an evaluation which is a model of K that evaluates ¬𝛽 = 𝑇 .
Therefore K ̸|= 𝛽 . If the SAT solver is unsatisfied, then there are no
models that evaluates ¬𝛽 = 𝑇 . This means that K |= 𝛽 .

To demonstrate the usefulness of this, we will use the previous
tax example. Lets consider a knowledge baseK that states "students
do not pay taxes, "employed people pay taxes", "person is a student",
"person is employed" which is shortened to K = {𝑠 → ¬𝑡, 𝑒 →
𝑡, 𝑝 → 𝑠, 𝑝 → 𝑒} and we queried the statement People do not pay
taxes (𝑝 → ¬𝑡). The SAT solver will check if K ∪ {¬(𝑝 → ¬𝑡)} is
satisfiable. Therefore the SAT solver will be satisfied andK ̸|= 𝑝 →
¬𝑡 .

5 CONCLUSIONS
In this review, we have seen that classical propositional logic sets a
foundation for the syntax and semantics. However, it has also shown

SCADRV2 Literature Review

that it is limited due to to its inability to handle contradictions or
create exceptional cases due to its monotonicity.

Defeasible reasoning has been shown to solve this problem by
using preferential logic principles. The KLM framework also forms
a foundation for different methods of solving the monotonicity
problem. We can also conclude that defeasible reasoning can offer a
structured format for defeasible reasoning by outlining the rational
closure algorithm.

Finally, we have seen the importance of the SAT problem, the
inner workings of SAT solvers, and how SAT solvers are vital to
reducing the complexity of entailment through satisfiability.

REFERENCES
[1] Mordechai Ben-Ari. 2012. Propositional Logic: Formulas, Models, Tableaux.

Springer London, London, 1, 7–47.
[2] Giovanni Casini, Thomas Meyer, and Ivan Varzinczak. 2019. Taking defeasible

entailment beyond rational closure. In European Conference on Logics in Artificial
Intelligence. Springer, 182–197.

[3] Martin Davis, George Logemann, and Donald Loveland. 1962. A machine pro-
gram for theorem-proving. Commun. ACM 5, 7 (1962), 394–397.

[4] Martin Davis and Hilary Putnam. 1960. A computing procedure for quantification
theory. Journal of the ACM (JACM) 7, 3 (1960), 201–215.

[5] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato. 2015.
Semantic characterization of rational closure: From propositional logic to de-
scription logics. Artificial Intelligence 226 (2015), 1–33.

[6] Carla P Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. 2008. Satisfia-
bility solvers. Foundations of Artificial Intelligence 3 (2008), 89–134.

[7] Adam Kaliski. 2020. An Overview of KLM-Style Defeasible Entailment. Master’s
thesis. Faculty of Science, University of Cape Town, Rondebosch, Cape Town,
7700.

[8] Gerhard Lakemeyer and Bernhard Nebel. 1994. Foundations of Knowledge
representation and Reasoning. Foundations of knowledge representation and
reasoning (1994), 1–12.

[9] Daniel Lehmann. 1995. Another perspective on default reasoning. Annals of
mathematics and artificial intelligence 15, 1 (1995), 61–82.

[10] Daniel Lehmann and Menachem Magidor. 1992. What does a conditional knowl-
edge base entail? Artificial intelligence 55, 1 (1992), 1–60.

[11] Hector J Levesque. 1986. Knowledge representation and reasoning. Annual
review of computer science 1, 1 (1986), 255–287.

[12] Filip Marić and Predrag Janičić. 2010. Formal correctness proof for DPLL proce-
dure. Informatica 21, 1 (2010), 57–78.

[13] Kody Moodley. 2016. Practical Reasoning for Defeasible Description Logics. Ph.D.
Dissertation. School of Mathematics, Statistics and Computer Science, University
of KwaZulu-Natal, Durban, South Africa.

[14] Andrei Voronkov. 1998. Herbrand’s theorem, automated reasoning and semantic
tableaux. In Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer
Science (Cat. No. 98CB36226). IEEE, 252–263.

[15] Hantao Zhang and Mark Stickel. 2000. Implementing the davis–putnam method.
Journal of Automated Reasoning 24, 1 (2000), 277–296.

[16] Lintao Zhang and SharadMalik. 2002. The quest for efficient boolean satisfiability
solvers. In International conference on computer aided verification. Springer, 17–
36.

	Abstract
	1 Introduction
	2 Propositional Logic
	2.1 Syntax
	2.2 Semantics

	3 Defeasible Reasoning
	3.1 Motivation
	3.2 The Preferential Approach
	3.3 KLM Properties for Defeasible Entailment
	3.4 Rational Closure

	4 Sat Solvers
	4.1 The Boolean Satisfiability Problem
	4.2 SAT Solver Definitions and Notation
	4.3 Semantic Tableaux Algorithm for Propositional Logic
	4.4 The DPLL Algorithm
	4.5 SAT Solvers and Entailment

	5 Conclusions
	References

