

CS/IT Honours Project
Final Paper 2022

Title: An Investigation into the Scalability of Rational
Closure V2

Author: Evashna Pillay

Project Abbreviation: SCADR2

Supervisor(s): Professor Thomas Meyer

Category Min Max Chosen
Requirement Analysis and Design 0 20 0
Theoretical Analysis 0 25 15
Experiment Design and Execution 0 20 8
System Development and Implementation 0 20 12
Results, Findings and Conclusions 10 20 15
Aim Formulation and Background Work 10 15 10
Quality of Paper Writing and Presentation 10 10
Quality of Deliverables 10 10
Overall General Project Evaluation (this section
allowed only with motivation letter from supervisor)

0 10

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

An Investigation into the Scalability of Rational Closure V2

Evashna Pillay
University of Cape Town

Cape Town, South Africa

PLLEVA005@myuct.ac.za

ABSTRACT
Knowledge representation and reasoning formally represents and
enables reasoning of information about the world. This is an ap-
proach used in arti�cial intelligence (AI). Although many reasoning
tasks can be e�ciently completed by reasoning systems based on
classical propositional logic, it is likely that a contradiction will
occur when additional knowledge is obtained [16]. Non-monotonic
reasoning, speci�cally defeasible reasoning allows previously held
beliefs to be retracted when presented with additional information
[2]. Defeasible reasoning addresses atypical reasoning scenarios in
which humans think di�erently from one another due to beliefs,
context or other factors. Thus, AI systems may emulate human
thinking more accurately with defeasible reasoning rather than
with classical reasoning. Lehmann and Magidor proposed a ratio-
nal method of defeasible entailment, namely the Rational Closure.
Defeasible entailment determines whether a defeasible implication
is entailed (i.e. can be inferred) by a knowledge base. While there
has been some work on developing e�cient systems which support
defeasible reasoning, little has been done to improve the scalability
of these systems. The goal of this project is to build on previous
work to design and implement algorithms for the Rational Closure
approach and to evaluate the extent to which these algorithms are
scalable.

CCS CONCEPTS
• Theory of computation! Automated reasoning; • Comput-
ing methodologies ! Nonmonotonic, default reasoning and
belief revision.

KEYWORDS
arti�cial intelligence, knowledge representation and reasoning, de-
feasible reasoning

1 INTRODUCTION
Knowledge representation (KR) utilizes symbols to represent knowl-
edge about the world, in which inferences are established and new
elements of knowledge are formed. We will di�erentiate between
propositional reasoning and defeasible reasoning in terms of rep-
resenting information. Propositional reasoning is monotonic as
previously drawn conclusions cannot be contradicted by new infor-
mation. To illustrate this logic, we will use the following example,
“Birds can �y.” We know birds have wings. Penguins are birds as
they have wings, therefore penguins can �y. However, we also
know that penguins cannot �y. Thus, propositional reasoning does
not have the ability to model human reasoning and limits any possi-
bility of exceptions in the knowledge base. Our research focuses on

non-monotonic reasoning, this allows for a more "common-sense”
approach to reasoning in which elements of knowledge are typically
true and not always de�nite. This paper presents a scalable defea-
sible console-application that that we refer to as reasoners. The
reasoners can dismiss commonly held beliefs when presented with
new contradictory information. Our focus will be on optimizing
the execution time and scalability of our application in comparison
to last year’s honours project, with focus on ternary search and
concurrency.

In conjunction with this research, T. Vallabh will be building on
previous work to design and implement algorithms for the Lexico-
graphic Closure and will be evaluating the extent to which these
algorithms are scalable [19]. Lexicographic Closure follows pre-
sumptive reasoning, while Rational Closure follows prototypical
reasoning [12]. Presumptive reasoning allows atypical formulae to
inherit the properties of more typical formulae. Lexicographic Clo-
sure utilizes the Base Rank algorithm. In addition to this, formulae
within the ranks are ranked where the most typical formulae are
ranked higher. This approach allows us to remove one statement
within a rank instead of the entire rank. However, if all statements
are removed from a rank, only then will the entire rank be removed.

This paper will provide an overview of the principles and concepts
that set the foundation for our reasoners. This includes a brief
summary of propositional logic, defeasible reasoning, entailment,
the KLM and Rational Closure approaches. We will then present
a summary of related work. Following this, we will discuss the
project aims, design and implementation of our reasoners, as well
as experiment design. Lastly, a detailed summary of our results will
be presented along with conclusions we have deduced from our
�ndings.

2 THEORETICAL FRAMEWORK
2.1 Propositional Logic
Propositional logic is a framework that uses logical statements to
represent information about the world, these statements are re-
ferred to as formulas [16]. Each formula consists of propositional
atoms which can be assigned truth values (i.e., true or false). Con-
nectives (i.e., ¬, ^, _,!,$) are used to join propositional atoms
[16] [10].

2.1.1 Entailment. A knowledge base, K entails a formula, U (i.e.,
K |= U) when every model ofK is satis�ed by U . Propositional logic
and therefore propositional entailment is monotonic. This means
that any new information that creates a contradiction can never be
de�ned as an exception [18]. However, the knowledge base must
still reconcile with this new information and can form incorrect

Evashna Pillay

Operator Symbol Operator Name
¬ Negation
^ Conjunction
_ Disjunction
! Implication
$ Equivalence

Table 1: Connectives used to join propositional atoms
conclusions. Thus, knowledge base generation becomes redundant
which is why we require a non-monotonic approach [11] [13].

2.2 Defeasible Reasoning
Defeasible reasoning allows the reasoner to dismiss commonly
held beliefs when presented with new contradictory information
[15]. Defeasible reasoning addresses atypical reasoning scenarios
in which humans think di�erently from one another due to beliefs,
context, or other factors. Thus, AI systems may emulate human
thinking more accurately with defeasible reasoning rather than
with classical reasoning.

To illustrate defeasible reasoning, an example is provided below:

E.g., “Tweety is a bird” and the reasoner contains the following
statements in the knowledge base:

(1) Most birds can typically �y.

(2) Birds have wings.

(3) Penguins are birds.

(4) Tweety is a penguin.

The reasoner can deduce that Tweety is a bird from (3). The rea-
soner can then deduce that Tweety can �y because (1) follows (3).
However, we know that penguins cannot �y due to their biolog-
ical makeup. As a result, penguins are distinct from other birds.
With the additional information made available to the reasoner, the
reasoner’s understanding that birds normally �y is weakened.

The KLM framework speci�cally for defeasible reasoning provides a
preferential approach to construct defeasible systems. A?A4 5 4A4=C80;
2>=B4@D4=24 A4;0C8>= is indicated by |⇠. It is a set of conditional as-
sertions, written as U |⇠ V where U , V 2 L. This is interpreted as
follows, from U we are prepared to conclude V unless we receive
contradictory information. As such, any defeasible assertion can
be retracted after discovering contradictory information.

2.3 Entailment
The addition of new formulas to the knowledge base should not
contradict current statements in K . However, the knowledge base
must still reconcile with this new information and this can form
incorrect conclusions. Speci�cally, when contradictory statements
are added toK , no models ofK are satis�ed, which results in every
statement being true [18]. This makes knowledge bases redundant
which is why we require a non-monotonic approach [11] [13], such
as the KLM style framework.

Satis�ability (SAT) solvers can be used to check if K |= U . The
Boolean Satis�ability Problem is a NP-complete problem that de-
termines if there exists some interpretation which satis�es a given

Boolean formula [5]. The SAT solver checks the satis�ability of K
by checking if the models of K satisfy K [{¬U}.

2.4 KLM Approach to Defeasible Entailment
The KLM approach models statements written in the form of U |⇠ V ,
which is interpreted as "U typically implies V". This means that we
are prepared to conclude V from U unless we receive contradic-
tory information. Defeasible reasoning, unlike propositional logic,
does not de�ne a �xed method to determine defeasible entailment.
Thus to determine whether a defeasible implication is entailed by
a knowledge base, the method must only adhere to the rationality
properties de�ned by Lehmann and Magnidor [10].

The rationality properties for knowledge base K and propositional
formulas U, V,W [10]:

(Ref) K |⇡ U |⇠ U And K|⇡U |⇠V,K|⇡U |⇠W
K|⇡U |⇠V^W

(LLE) K|⇡U$V,K|⇡U |⇠W
K|⇡V |⇠W Or K|⇡U |⇠W,K|⇡V |⇠W

K|⇡U_V |⇠W
(RW) K|⇡U!V,K|⇡W |⇠U

K|⇡W |⇠V (CM) K|⇡U |⇠W ,K|⇡U |⇠V
K|⇡U^V |⇠W

Two methods which fall within the KLM approach are Rational
Closure and Lexicographic Closure. This paper will focus on the
Rational Closure approach.

2.5 Rational Closure
Rational Closure is an LM-rational method of defeasible entailment
[7]. We will de�ne minimal ranked entailment, materialisation,
Base Rank algorithm before providing an overview of the Rational
Closure Algorithm.

De�nition 2.5.1Minimal Ranked Entailment. The lower the ranked
model, the more likely there exists a minimum ranked model in
the ordering. This principle involves a partial order for all ranked
models of knowledge base K referred to as �K . The Rational Clo-
sure of a knowledge base K is based on �nding this minimum
ranked model [7] as the minimum ranked model must satisfy some
defeasible implication for the knowledge base K to entail it [3].

De�nition 2.5.2 Materialisation. The material counterpart of a
defeasible implication U |⇠ V is the propositional formula U ! V
[4]. The material counterpart of a defeasible knowledge base K
is denoted as

�!K and represents the set of material counterparts,
U ! V , for every defeasible implication U |⇠ V 2 K .

E.g., 18A3 |⇠ 5 ;84B is replaced with 18A3 ! 5 ;84B .

De�nition 2.5.3 The Base Rank Algorithm. The Base Rank algo-
rithm is the initial step performed when implementing Rational
Closure to K to determine the minimum ranked model [17]. Each
formula in

�!K is mapped to a rank in N [{1}, this denotes the
exceptional subset of K , EK

= .

The BaseRank Algorithm separates K into classical (i.e., K⇠) and
defeasible (i.e., K⇡) components. The materialisation of K⇡ takes
place and forms

��!K⇡ , this is then referred to as EK
0 . The algorithm

will rank all statements in the current materialisation according to
how general they are, with the most general being in rank 0 and

An Investigation into the Scalability of Rational Closure V2

Algorithm 1: BaseRank
Data: A knowledge base K
Result: An ordered tuple ('0,'1, . . . ,'=�1,'1,=)

1 8 := 0;

2 ⇢0 :=
�!K ;

3 while ⇢8�1 < ⇢8 do
4 ⇢8+1 := {U ! V 2 ⇢8 |⇢8 |= ¬U};
5 '8 := ⇢8\⇢8+1;
6 8 := 8 + 1;
7 end
8 '1 := ⇢8�1;
9 if ⇢8�1 = ; then
10 = := 8 � 1;
11 else
12 = := 8;
13 end
14 return ('0,'1, . . . ,'=�1,'1,=);

the least general at the bottom rank. For each U ! V 2 EK
0 , the

algorithm determines if EK
0 [⇠ |= ¬U . If true, U is exceptional

and all formulas within EK
0 with U are moved to EK

1 . Rank RK
0 is

assigned to the formulas E 0 \EK
1 . This process is repeated for each

subset, i.e., EK
8 until no more formulas need to be copied/assigned.

The �nal rank contains R 1 and ⇠ , which are always true.

De�nition 2.5.4 The Rational Closure Algorithm. Rational Closure
will make use of R from the Base Rank algorithm, given a knowl-
edge base K and some defeasible implication, U |⇠ V .

Algorithm 2: RationalClosure
Data: A knowledge base K and a defeasible implication

U |⇠ V
Result: true if K |⇡ U |⇠ V , and false, otherwise

1 ('0,'1, . . . ,'=�1,'1,=) := BaseRank(K);
2 8 := 0;
3 ' :=

–9<=
i=0 'j;

4 while '1 |= ¬U and ' < ; do
5 ' := ' \ 'i;
6 8 := 8 + 1;
7 end
8 return '1

–
' |= U ! V ;

The Rational Closure Algorithm determines if (1)
�!K entails ¬U . If

this is not the case, U is compatible with K . Then the algorithm
checks if

�!K entails U ! V (i.e. the defeasible query). If this is the
case, U is incompatible with K . The most preferred rank is then
withdrawn from RK . The resulting knowledge base will be denoted
as K0. If RK0

is an empty set, then K 6|⇡ U |⇠ V . If RK 0 contains at
least one rank, we return to (1) with K0.

The following example illustrates the Rational Closure algorithm:
Consider the knowledge base K = {1 |⇠ 5 , ? ! 1, ? |⇠ ¬5 , A !

1,1 |⇠ F}. This is a continuation of the penguins and birds example
mentioned in Section 2.2. '>18=B 0A4 18A3B (i.e., A ! 1) and 18A3B
C~?820;;~ ⌘0E4 F8=6B (i.e., 1 |⇠ F) are added to the knowledge base
K .

Using the Base Rank algorithm: ⇠ = {? ! 1,' ! 1} and ⇡ =
{1 ! 5 , ? ! ¬5 ,1 ! F}. ? is exceptional and found in EK

0 .

The algorithm produces the following ranking RK :

0 1 ! 5 ,1 ! F
1 ? ! ¬5
1 ? ! 1,' ! 1

Using the Rational Closure Algorithm, we determine if K entails
the query ? ! ¬5 , that is penguins don’t �y. We deduce there is
no model D of

�!K such that D � ? . Therefore, we retract the most
preferred rank from RK , that is RK

0 .

1 ? ! ¬5
1 ? ! 1,' ! 1

The algorithm will repeat the �rst step and determine if
�!K |= ¬? ,

which is not the case. There exists a model D of
�!K such that D � ? ,

e.g, {?1A 5̄ }. �!K does not entail ? ! ¬5 as ? ! ¬5 is a formula
within

�!K and as such, any model of
�!K is also a model of ? ! ¬5 .

Thus, we can conclude that K |⇡ ? ! ¬5 .

3 RELATEDWORK
3.1 SAT Solvers
The Rational Closure algorithm reduces to a number of classical
entailment checks. Therefore, Boolean satis�ability is applicable
to our research. Boolean satis�ability (SAT) establishes whether
an assignment exists that satis�es a speci�c Boolean formula [5]
[21]. We have identi�ed which SAT solvers are appropriate for
our defeasible reasoning model by evaluating the SAT solvers for
classical reasoning.

3.1.1 Semantic Tableaux. The tableau is constructed by decompos-
ing a formula into sets of atomic literals, resulting in a tree-like
tableau [16]. Formulae can contain a single clause or conjunction of
clauses. Clauses are connected by the logical operator ^. A clause is
a disjunction of literals where each literal is an atom or its negation.
E.g., (U _ 1) ^ (¬U _ 2) [9].

Each branch either contains a group of non-contradictory literals
(i.e., referred to as an open branch) or ends with a complementary
pair of formulae (i.e., referred to as a closed branch). Each open
branch represents a model for the given formula. The construction
of the tableau is complete when decomposition is no longer possi-
ble. If there is a con�ict, the initial formula is unsatis�able. When
literals for an atom are located within the same subset there is a
con�ict, which leads to a contradiction. To determine a formula’s
satis�ability a completed tableau is required [8].

Evashna Pillay

3.1.2 DPLL. DPLL is a backtracking algorithm [6] that accepts in-
put in the form of a propositional formula in CNF format, returning
true if the formula is satis�able, or false if it is not. A branching pro-
cedure is executed where some atom in U is set to a random truth
value. Until an assignment returns true and satis�es U branching
continues; if U is false, the algorithm backtracks. Backtracking in-
volves retrieving the recent branching assignment and re-branching
with a di�erent assignment. Backtracking occurs when there are
no new assignments to branch to. If there exists no new branches
to be taken and we are unable to backtrack, false is returned and U
is unsatis�able.

3.1.3 Conflict-Driven Clause Learning (CDCL). The DPLL SAT
solver led to the development of the CDCL [14]. Backtracking in
the CDCL SAT solver is non-chronological, unlike the DPLL SAT
solver [6]. Con�icts caused by variable assignments are cached.
This results in improved e�ciency and performance.

3.2 SCADR 2021
There are currently only two implementations of defeasible entail-
ment for propositional logic that aligns with the KLM approach of
defeasible entailment. Each one focuses on the LM-rational defeasi-
ble entailment algorithms [7], namely Lexicographic and Rational
Closure. This paper focuses on the latter. An investigation into
the scalability of the Rational Closure was explored by Hamilton
[8]. He proposed optimizing the RationalClosure algorithm using
binary search, as well as with a binary indexing approach. He found
that his approach outperformed the naive implementation when 0
became consistent with the knowledge base at ranks with larger
numbers. These developments have created e�cient systems but
more can be done to improve the scalability of these systems going
forward.

4 PROJECT AIMS
The key aims of this project were:

• To develop an optimised reasoner console-application that
integrates an existing propositional reasoner and is based
on some defeasible knowledge base that implements the
Rational Closure algorithm.

• To re�ne the optimisation approaches used to increase the
scalability of the Rational Closure [13] implementation com-
pared to the previous year’s SCADR project [9].

• To acquire empirical results that show the e�ective perfor-
mance of our optimization techniques considering size of
knowledge bases and number of queries.

5 SYSTEM DEVELOPMENT AND
IMPLEMENTATION

Two defeasible reasoners were developed that given a defeasible
implication statement in the form, U |⇠ V and knowledge base , re-
turns whether or not the query is entailed by . The reasoners were
developed using a wrapper around the previous year’s reasoners [1]
[8] [18] in Java, along with the TweetyProject library (i.e., version
1.20) [20]. Sat-solvers were used to determine the satis�ability of
the queries, speci�cally the built-in Sat4j tool in the TweetyProject

library. Our reasoners adhere to the KLM Properties set out by
Kraus, Lehmann and Magidor. More so, our reasoners passed the
test cases provided. Therefore, we strongly believe in the validity
and correctness of our reasoners. The �rst reasoner optimizes the
previous year’s binary search implementation using ternary search
to reduce the size of intervals searched. The second reasoner opti-
mizes the indexing implementation using ternary search, as well as
concurrency. This allows for multiple queries in one instance. To
ensure for completeness, the application outputs the ranking from
the BaseRank algorithm. Additionally, the application will provide
a synopsis of each material step taken by the reasoner, such as the
removal of ranks. To download, view and run the code refer to the
following link.

5.1 Optimisation 1: Ternary Search Entailment
Approach

The �rst reasoner developed uses ternary search in its implementa-
tion, this will be referred to as RCTerChecker, which is an amended
version of the Rational Closure. Ternary search is an inductive ap-
proach using the decrease and conquer technique to locate the
element in the data structure. This approach is similar to binary
search however, instead of dividing the search range into two parts
we divide it into three parts resulting in two midpoint values. The
main distinction between binary and ternary search is the time
complexity, as ternary outperforms binary with a time complex-
ity of O(log n base 3) in comparison to O(log n base 2) of binary
search. RCTerChecker determines the rank from which all ranks
need to be removed from rank 0, in contrast to iterating from the
top towards the lower ranks in the naive implementation of the
RationalClosure. The implementation is described below:

(1) The �rst computation of the algorithm sets a min value of
0 and a max value equal to the number of ranks =. This
signi�es the initial search range.

(2) The two midpoints are then determined given the min and
max values, we will refer to these midpoints as<831 and
<832.

(3) Check if removing rank<831 and all those above it results
in U being consistent with the knowledge base.

• If true, go to (4).

• If false, go to (5)

(4) Determine if adding rank<831 back to results in U being
consistent with the knowledge base.

• If true,<831 is the rank fromwhichwe need to remove
all ranks, including rank<831. Go to (9).

• If false, return to (1), set min to ;4 5 C and set max to
<831. We have to search in the upper half of the ranks
as U is consistent with from ranks<831 and down.
Therefore, we need to remove more ranks further up
(i.e., ranks with lower numbers).

(5) Check if mid2 < rankedKB.length.

• If true, go to (6).

https://drive.google.com/drive/folders/1_rPb5-_CqDVvTKCwOQphgGhvz4hjFhNY?usp=sharing

An Investigation into the Scalability of Rational Closure V2

• If false, go to (7)

(6) Check if removing rank<832 and all those above it results
in U being consistent with the knowledge base.

• If true, go to (8).

• If false, return to (1), set min to <832 + 1 and max
to A86⌘C . We have to search in the lower half of the
ranks as U is still not consistent with from ranks 0
down to and including rank<832. Therefore, we need
to remove more ranks further down (i.e., ranks with
higher numbers).

(7) Check if mid2 == rankedKB.length.

• If true, return to (1), set min to<831 + 1 and set max
to <832 � 1. We have to search in the upper half of
the ranks as U is consistent with from ranks<832
and down. Therefore, we need to remove more ranks
further upper (i.e., ranks with lower numbers).

(8) Determine if adding rank<832 back to results in U being
consistent with the knowledge base.

• If true,<832 is the rank fromwhichwe need to remove
all ranks, including rank<832. Go to (9).

• If false, return to (1), set min to<831 + 1 and set max
to <832 � 1. We have to search in the lower half of
the ranks as U is consistent with from ranks<832
and down. Therefore, we need to remove more ranks
further up (i.e., ranks with lower numbers).

(9) Determine if U |⇠ V is entailed by the ranked knowledge
base with all ranks up to and including<831 removed, re-
turn true or false otherwise.

We hypothesised that this optimisation technique would perform
better than the naive implementation of the RationalClosure

when checking for entailment at the lower ranks (i.e., ranks with
higher numbers) and not necessarily when the number of ranks
increase. This is due to the optimisation iterating over smaller
ranges of the ranks and not requiring a linear iteration over all
ranks to perform the entailment check. It is also hypothesized that
this approach will perform better than the binary implementation
from the previous year’s project, speci�cally for defeasible queries
U |⇠ V where 0 becomes consistent at ranks considerably larger
than ;>6(=) where = is the number of ranks.

While both binary and ternary have O(log n) time complexity for
the average and best cases, ternary search will perform better (i.e.,
faster) when 0 becomes consistent with the knowledge base at
lower ranks due to the interval being split into three parts and
the algorithm’s ability to "throw-away" two-thirds of the search-
ing range. However, if the rank at which 0 becomes consistent is
less than or equal to log n, then the naive and binary approach
would outperform this optimisation. Similar to the previous year’s
implementation, we have to consider the Boolean satis�ability prob-
lem. Whilst we have optimised the number of entailment checks,
checking for entailment still reduces to the Boolean satis�ability

Algorithm 3: RCTerChecker
Data: A knowledge base K and a defeasible implication

U |⇠ V
Result: true if K |⇡ U |⇠ V , and false, otherwise

1 A0=:43 ⌫ := ⌫0B4'0=:(K);
2 5 := U |⇠ V ;
3 ;>F := 0;
4 ⌘86⌘ := n;
5 if ⌘86⌘ > ;>F then
6 <831 = ;>F + (⌘86⌘ � ;>F)/3;
7 <832 = ⌘86⌘ � (⌘86⌘ � ;>F)/3;
8 if

–9<=
i=mid1+1 'j

–
'1 |= ¬U then

9 if <832 < A0=:43 ⌫.;4=6C⌘ then
10 if

–9<=
i=mid2+1 'j

–
'1 |= ¬U then

11 return
'⇠)�⇠ (A0=:43 ⌫, 5 ,<832 + 1,⌘86⌘,=46);

12 else
13 if

–9<=
i=mid2 'j

–
'1 |= ¬U then

14 A0=:'4<>E4 =<832;
15 else
16 return '⇠)�⇠ (A0=:43 ⌫, 5 ,<831 +

1,<832 � 1,=46);
17 end
18 end
19 else if <832 == A0=:43 ⌫.;4=6C⌘ then
20 return

'⇠)�⇠ (A0=:43 ⌫, 5 ,<831 + 1,<832 � 1,=46);
21 end
22 if

–9<=
i=mid1 'j

–
'1 |= ¬U then

23 A0=:'4<>E4 =<831;
24 else
25 return '⇠)�⇠ (A0=:43 ⌫, 5 , ;4 5 C,<83,=46);
26 end
27 end
28 if A0=:'4<>E4 + 1 < A;4=6C⌘ then
29 if

–9<=
i=rankRemove+1 'j

–
'1 |= 5 then

30 return true;
31 else
32 return false;
33 end
34 else
35 return true;
36 end

problem, which is NP-complete. Still, in the best and average cases
our implementation can provide improvements in performance.

5.2 Optimisation 2: Ternary Indexing
Entailment Approach

The second reasoner developed uses ternary search in its implemen-
tation, as well as concurrency this will be referred to as
RCTerIndexChecker, which is an amended version of the

Evashna Pillay

RCTerChecker. This concurrency implementation is a divide and
conquer approach, using the fork/join framework it attempts to
use all available processor cores to speed up parallel processing.
More so, the framework uses ForkJoinPool, which manages a pool
of worker threads (i.e., of type ForkJoinWorkerThread). The frame-
work "forks" that is recursively splits the program into smaller
independent subtasks that run asynchronously. After which, the
"join" is called which recursively joins into a single result. This
approach is used to increase the throughput and computational
speed of the system by using multiple processors. In this imple-
mentation, the negations of the antecedents along with the rank at
which the antecedents become consistent with the knowledge base
are stored in a hashtable. Similar to last year’s implementation, the
console-application allows the user to enter multiple queries in one
instance. Even though multiple defeasible queries with the same
antecedent requires only one computation, we must note that this
optimisation can be memory-intensive for large sets of queries.

We hypothesised that this optimisation technique would perform
better than the naive implementation of the RationalClosure

and the RCTerChecker, when checking for entailment of query
sets that contain a large set of the same antecedent. Addition-
ally, we believe that this optimization will perform better than
the RationalClosure as the number of ranks increase as ternary
search is notably faster than the linear search, as well as computing
multiple entailment checks in parallel will increase the computa-
tional speedup of the system. We have formalised the implementa-
tion as follows:

Algorithm 4: RCTerIndexChecker
Data: A knowledge base K and a defeasible implication

U |⇠ V
Result: true if K |⇡ U |⇠ V , and false, otherwise

1 A0=:43 ⌫ := ⌫0B4'0=:(K);
2 =46'0=:B := ⌘0B⌘)01;4;
3 5 := U |⇠ V ;
4 ;>F := 0;
5 ⌘86⌘ := n;
6 if =46'0=: .64C (=460C8>=)! = =D;; then
7 A0=:'4<>E4 = =46'0=: .64C (=46);
8 else
9 if ⌘86⌘ > ;>F then
10 <831 = ;>F + (⌘86⌘ � ;>F)/3;
11 <832 = ⌘86⌘ � (⌘86⌘ � ;>F)/3;
12 if

–9<=
i=mid1+1 'j

–
'1 |= ¬U then

13 if <832 < A0=:43 ⌫.;4=6C⌘ then
14 if

–9<=
i=mid2+1 'j

–
'1 |= ¬U then

15 return '⇠)�⇠ (A0=:43 ⌫, 5 ,<832 +
1,⌘86⌘,=46);

16 else
17 if

–9<=
i=mid2 'j

–
'1 |= ¬U then

18 A0=:'4<>E4 =<832;
19 =46'0=: .?DC (=460C8>=,<832);
20 else
21 return

'⇠)�⇠ (A0=:43 ⌫, 5 ,<831 +
1,<832 � 1,=46);

22 end
23 end
24 else if <832 == A0=:43 ⌫.;4=6C⌘ then
25 return '⇠)�⇠ (A0=:43 ⌫, 5 ,<831 +

1,<832 � 1,=46);
26 end
27 if

–9<=
i=mid1 'j

–
'1 |= ¬U then

28 A0=:'4<>E4 =<831;
29 =46'0=: .?DC (=460C8>=,<831);
30 else
31 return '⇠)�⇠ (A0=:43 ⌫, 5 , ;4 5 C,<83,=46);
32 end
33 end
34 end
35 if A0=:'4<>E4 + 1 < A;4=6C⌘ then
36 if

–9<=
i=rankRemove+1 'j

–
'1 |= 5 then

37 return true;
38 else
39 return false;
40 end
41 else
42 return true;
43 end

An Investigation into the Scalability of Rational Closure V2

6 EXPERIMENT DESIGN AND EXECUTION
6.1 Test Cases
We evaluated our reasoners using existing knowledge bases and
query sets from the previous year’s project to ensure our testing for
comparison is as accurate as possible. Query sets containing only
defeasible implication statements were executed by our reasoners.

6.1.1 Knowledge Bases. Knowledge bases generated by the knowl-
edge base generator developed by Aidan Bailey were used [1]. These
knowledge bases contain only defeasible statements (i.e., in the for-
mat of U |⇠ V). Two elements of the knowledge bases that vary are
the number of ranks and statement distribution. The number of
ranks and distribution of statements in each rank vary as a result
of the ranking of the BaseRank algorithm.

• The number of ranks used to compare our optimised ap-
proaches were ranks of 10, 50 and 100. To ensure our testing
is consistent with the previous year’s implementation, we
used the same number of varying ranks.

• Uniform, normal and exponential distributions of state-
ments with the same number of ranks were generated dur-
ing the previous year’s testing process, we will be adopting
these test cases.

6.1.2 �ery Sets [1]. Manually generated query sets were used,
each which tested a speci�c characteristic of our optimized imple-
mentations. The pool of query sets di�er in �ve distinct ways, we
list these characteristics below:

• Query sets containing defeasible implications consistent
with the �rst rank (i.e., rank 0 is removed). These sets will
be referred to as QSFRank.

• Query sets containing defeasible implications consistent
with the last rank (i.e., ranks 0 up to and including the
�nal rank are removed). These sets will be referred to as
QSLRank.

• Query sets containing defeasible implications with the same
antecedents. These sets will be referred to as QSSameAnt.

• Query sets containing defeasible implications with unique
antecedents (i.e., all antecedents di�er). These sets will be
referred to as QSDifAnt.

• Query sets containing defeasible implications with half
unique and half repeated antecedents. These sets will be
referred to as QSHHAnt.

QSFRank tests the execution time between the RCTerChecker and
the naive implementation of the RationalClosure. We hypoth-
esize that the naive approach may be more e�ective in perfor-
mance as it performs a linear iteration of the ranks from 0 whereas
RCTerChecker will check the mid values �rst and iterate through
those intervals until it reaches rank 0. QSLRank provides insight into
the execution time of the RCTerChecker and the
RCTerIndexChecker. This query set requires the ternary approach
to identify the last rank as being consistent with the antecedent as
well as remove all ranks and check for entailment. QSSameAnt pro-
vides insight into the execution time of the RCTerIndexChecker.

The naive and previous year’s binary implementations would com-
pute each query in the set whereas our approach will perform the
computation once. Both QSDifAnt and QSHHAnt provides insight
into the execution times of our optimized reasoners in comparison
to the naive and binary implementations, here focus is strictly on
the computational speedup of our approaches.

6.2 Generating Results
These experiments were run on a MacBook Air (13-inch, 2017
model), with a 1.8GHz dual-core, Intel Core i5 processor and 8GB of
RAM. We used an existing program called TimedReasonerCompari-
son.java that was modi�ed to measure the execution time of our two
optimized reasoners, using RCTerChecker and RCTerIndexChecker
to check for entailment. The execution time was limited to the en-
tailment checks. The ranking of the knowledge base according to
the BaseRank is not within scope as no alterations were made to
the algorithm.

This program requires a knowledge base and query sets in .txt
format. Multiple query sets can be input into the program if testing
requires more than one. The program uses built-in Java system time
calls to measure the execution time of each query in milliseconds,
by iterating through the query sets and checking whether or not
K |⇡ U |⇠ V . The program will output the number of ranks, the
total number of queries checked and each query along with the
execution time to a CSV �le.

7 RESULTS AND FINDINGS
The performance of each implementation was measured using the
average execution times for each knowledge base and query set
combination. This was compared to the performance of the naive
implementation, as well as binary and binary-indexing implemen-
tations of the RationalClosure from last year’s project. Appendix
A contains the complete set of execution times that were obtained
from all tests.

7.1 Ternary Search Entailment Results
7.1.1 Comparative analysis over varying numbers of ranks. The
complete set of execution times obtained from all tests are presented
in section 2 of Appendix A.

The performance of the RCTerChecker in comparison to the
RCBinCheck of the RationalClosure is faster for a 10-rank knowl-
edge base with query set where all antecedents become consistent
at rank 1. Whilst the RCTerChecker outperforms the RCBinCheck,
the di�erence in performance is only 52.95 milliseconds with the
average performance of the RCBinCheck at 321.31 milliseconds and
the RCTerChecker at 269.14 milliseconds. It was observed that the
performance of the RCTerChecker in comparison to the naive im-
plementation of the RationalClosurewas signi�cantly worse. The
naive implementation outperformed our optimization at an average
of 50.245 milliseconds. However, the RCTerChecker outperforms
both the naive implementation and RCBinCheck for the 10-rank
knowledge base with query sets where all antecedents become
consistent at rank 10.

Evashna Pillay

Figure 1: Graphs showing the comparison of all implementa-
tions’ performance for 10-rank knowledge bases

There is a signi�cant di�erence in the the performance of the
RCTerChecker in comparison to the RCBinCheck implementation
of the RationalClosure for a 10-rank knowledge base with query
sets where all antecedents are the same. The RCTerChecker out-
performs the RCBinCheck by reducing performance by more than
a half. The average runtime for the RCBinCheck is 349.50 millisec-
onds whereas the RCTerChecker is 97,02milliseconds. For a 10-rank
knowledge base with query sets where all antecedents are unique
there is a considerable di�erence in performance with the runtime
of the RCTerChecker at 267,05 milliseconds and the RCBinCheck
at 420.95 milliseconds. The same can be said for query sets where
the antecedents are half repeated and half unique.

The performance of the RCTerChecker in comparison to the
RCBinCheck implementation of the RationalClosure is faster for
a 50-rank knowledge base for the query set where all antecedents
become consistent at rank 1. The RCTerChecker outperforms the
RCBinCheck, the di�erence in performance is 248.42 milliseconds
with the average performance of the RCBinCheck at 588.24 mil-
liseconds and the RCTerChecker at 339.83 milliseconds. The perfor-
mance of the RCTerChecker in comparison to the naive implemen-
tation of the RationalClosure was signi�cantly worse similar to
the observation of the rank-10 knowledge base. The naive imple-
mentation outperformed our optimization at an average of 106.88
milliseconds. However, the RCTerChecker outperforms both the
naive and RCBinCheck implementation for the 50-rank knowledge
base with query sets where all antecedents become consistent at
rank 50.

The RCBinCheck outperforms the RCTerChecker for a 50-rank
knowledge base with query sets where all antecedents are the
same by 30 milliseconds. For a 50-rank knowledge base with query
sets where all antecedents are unique there is a 118.12 millisecond
di�erence in performance with the runtime of the RCTerChecker
at 330.06 milliseconds and the RCBinCheck at 448.18 milliseconds.
This is compelling evidence that suggests the optimization is most
e�ective when the rankings at which the antecedents of the queries
become consistent with the knowledge base are higher in rank
number. In addition to this, our �ndings strongly suggests that
the RCTerChecker always outperforms the RCBinCheck when the
number of antecedents that are repeated are signi�cantly higher

and the number of ranks is small however, when this is not the
case the RCTerChecker may be consistent with or outperform the
RCBinCheck, but the di�erence in performance is negligible.

Figure 2: Graphs showing the comparison of all implementa-
tions’ performance for 50-rank knowledge bases

Similar to the comparisons made for the 50-rank knowledge base,
the RCTerChecker outperforms the RCBinCheck for a 100-rank
knowledge base with all query sets. In the case of antecedents
that are consistent with the rank-1 the naive implementation out-
performs the RCTerChecker by 335.51 milliseconds. Taking into
account that the execution time measures the entailment checks,
one could deduce that the di�erence in time is accounted for by the
increase in number of checks in the ternary approach compared to
the linear approach of the naive implementation.

The extent towhich the RCTerChecker outperforms the RCBinCheck
for query sets with antecedents which become consistent at the
�nal rank tends to increase as the number of ranks in the knowl-
edge base decreases. Overall, the performance of the RCTerChecker
was fairly uniform, which disproves the theory that the number
of ranks in a knowledge base is a major factor in whether or not
the optimization will perform better. Instead, it suggests that the
variable of interest is the ranks at which the antecedents of our
queries become consistent.

7.1.2 Comparative analysis over varying distributions of statements.
The complete set of execution times obtained from all tests are
presented in section 3 of Appendix A.

The RCTerChecker performed considerably better than the
RCBinCheck for uniform distributions of all query sets except sets
that contained the same antecedents, as well as antecedents that
become consistent with the knowledge base at the �nal rank. The
RCBinCheck performed slightly better than the RCTerChecker for
normal distributions of the query set where the antecedents be-
come consistent with the knowledge base at the �nal rank. The
RCTerChecker performed signi�cantly faster than the RCBinCheck
for exponential distributions of all query sets except sets that con-
tained the same antecedents. In cases where the RCBinCheck per-
formed better than the RCTerChecker, there was only a di�erence
of 17 - 100 milliseconds.

An Investigation into the Scalability of Rational Closure V2

Figure 3: Graphs showing the comparison of all implementa-
tions’ performance for normal distributions

There is a recurring observation of the RCBinCheck outperforming
the RCTerChecker with query sets of the same antecedent, whilst
the RCTerChecker outperforms the RCBinCheck with query sets of
half repeated and half unique antecedents. This may be due to the
distribution of antecedents being consistent with lower ranks as
such this is a consequence of the ternary search having two mid
values, and thus searching in the higher ranks �rst before limiting
the search range to the lower ranks. We determine that the rank
at which the antecedents become consistent with the knowledge
base is more important than the distribution of statements over the
ranks.

7.2 Ternary Indexing Entailment Results
7.2.1 Comparative analysis over varying numbers of ranks. The
complete set of average execution times obtained from all tests are
presented in section 2 of Appendix A.

There is a signi�cant di�erence in the performance of the
RCTerIndexChecker in comparison to the IBinCheck implementa-
tion of the RationalClosure for a 10-rank knowledge base for all
query sets. The RCTerIndexChecker outperforms the IBinCheck
for query sets with antecedents that becomes consistent at rank
1 by 290.49 milliseconds, with the average performance of the
IBinCheck at 293.39 milliseconds and the RCTerIndexChecker

at 2.9 milliseconds. It was observed that the performance of the
RCTerIndexChecker in comparison to the naive implementation
of the Rational Closure was signi�cantly faster as well. The
RCTerIndexChecker outperformed the naive implementation for
query sets with antecedents that become consistent at rank 10 by
243.04 milliseconds.

There is a signi�cant di�erence in the the performance of the
RCTerIndexChecker in comparison to the IBinCheck implemen-
tation of the RationalClosure for a 10-rank knowledge base with
query sets where all antecedents are the same.
The RCTerIndexChecker outperforms the IBinCheck by reduc-
ing performance by more than a 90%. The average runtime for the
IBinCheck is 11.26 milliseconds whereas the RCTerIndexChecker
is 0,94 milliseconds. For a 10-rank knowledge base with query sets
where all antecedents are unique there is a 146.25 millisecond dif-
ference in the performance of the RCTerIndexChecker at 197.7
milliseconds and the IBinCheck at 343.95 milliseconds. The same

can be said for query sets where the antecedents are half repeated
and half unique.

There is a signi�cant di�erence in the performance of our
RCTerIndexChecker in comparison to the IBinCheck implemen-
tation of the RationalClosure for a 50-rank knowledge base with
query sets where all antecedents become consistent at rank 1. The
di�erence in performance is 533.64 milliseconds with the aver-
age performance of the IBinCheck at 540.8 milliseconds and the
RCTerIndexChecker at 7.16milliseconds. The RCTerIndexChecker
outperforms the IBinCheck for a 50-rank knowledge base with
query sets where all antecedents are the same, as well as where all
antecedents are unique, and half repeated and half unique. In the
case of antecedents that are the same RCTerIndexChecker outper-
forms the IBinCheck by more than 90%. This suggests that the use
of threads to check for entailment has a considerable computational
speedup.

The performance of the RCTerIndexChecker in comparison to the
naive implementation of the RationalClosure was signi�cantly
faster similar to the observation of the rank-10 knowledge base. The
RCTerIndexChecker outperforms both the naive and IBinCheck

implementation for the 50-rank knowledge base for all query sets.

Similar to the comparisons made for the 50-rank knowledge base,
the RCTerIndexChecker outperforms the IBinCheck for a 100-
rank knowledge base with query sets where all antecedents become
consistent at rank 1 and rank 100 as well as antecedents that are
all the same and unique sets. In the case of antecedents which are
half repeated and half unique the IBinCheck outperforms both the
RCTerIndexChecker and naive implementation. There is strong
evidence to support that the RCTerIndexChecker outperforms the
IBinCheck when the number of antecedents that are repeated is
signi�cantly high and the number of ranks is small however, when
this is not the case the RCTerIndexChecker is still very much con-
sistent in performance when compared to the IBinCheck as the
di�erence in performance is insigni�cant.

Figure 4: Graphs showing the comparison of all implementa-
tions’ performance for 100-rank knowledge bases
The extent to which the RCTerIndexChecker outperforms the
IBinCheck for all query sets tends to increase as the number of

Evashna Pillay

ranks in the knowledge base decreases. However, in some cases the
IBinCheck outperforms the RCTerIndexChecker for instances of
half repeated and half unique antecedents. Overall, the performance
of the RCTerIndexChecker was fairly uniform for each query set,
which disproves the theory that the number of ranks in a knowl-
edge base is a major factor in whether or not the optimization will
perform better. Instead, it suggests that the variable of interest is the
ranks at which the antecedents of our queries become consistent
with the knowledge base.

7.2.2 Comparative analysis over varying distributions of statements.
The complete set of average execution times obtained from all tests
are presented in section 3 of Appendix A.

Figure 5: Graphs showing the comparison of all implementa-
tions’ performance for uniform distributions

The RCTerIndexChecker performed faster than the IBinCheck for
all distributions of statements. The naive implementation performed
signi�cantly better than the RCTerIndexChecker for the exponen-
tial and uniform distributions for query sets that contained unique
antecedents, as well as antecedents that were half repeated and half
unique. The RCTerIndexChecker performed signi�cantly faster
than the IBinCheck for all distributions for query sets where the
antecedents become consistent with the knowledge base at rank-1
and the �nal rank, as well as for antecedents that were the same.
In cases where the RCTerIndexChecker performed better than the
IBinCheck, there was a di�erence of 120 - 180 milliseconds.

Figure 6: Graphs showing the comparison of all implementa-
tions’ performance for exponential distributions

8 CONCLUSIONS
Our reasoners are fully functional console-applications, each with
their own speci�cations to test scalability. Our �rst optimization
allows the user to enter one query at a time whereas our second
reasoner allows the user to enter multiple queries at a time. This
allowed us to investigate the impact of scalability on computational
speedup. The results of the tests indicate that the RCTerChecker
performs signi�cantly faster than the RCBinCheckwhen the rank at
which the antecedent becomes consistent with the knowledge base
is the �nal rank. We can deduce that because the ternary approach
has two midpoint values instead of the single midpoint value of
the binary search, it is able to �nd the rank more quickly due to
the search range being split into three parts instead of two. That
being said the ternary approach favours antecedents that become
consistent at ranks with a higher number as opposed to the binary
search.

It is evident that the RCTerIndexChecker is a more scalable ap-
proach as we observed that the implementation is able to query
multiple sets at a time, and an increase in rank size leads to a con-
sistent increase in performance above all other implementations.
While there is a case or two where the IBinCheck outperforms
the RCTerIndexChecker, the di�erence is negligible in comparison.
This is due to the use of threads computing asynchronously and
the ability of the implementation to store antecedents, as well as
the rank at which it becomes consistent with knowledge base in a
hash-table. This approach speeds up computation time by recover-
ing the rank, instead of performing the calculation several times
for the same antecedent.

9 FUTUREWORK
Future researchers can extend the following research by testing
a range of sequential thresholds on computers with more than
two cores for the RCTerIndexChecker to determine the optimum
threshold. Our reasoners along with the previous years SCADR
project are written in Java, thus future researchers should extend
the system to other languages such as C or C++, which are platform
independent and much faster than Java. In addition to this, there
are currently very few e�cient propositional tools. TweetyProject
libraries were used in this investigation however, future researchers
should consider developing or utilizing other tools to increase per-
formance. Lastly, researchers should consider developing Bailey’s
knowledge base generator [1] to produce more complex statements
as no modi�cations were made to the generator during testing.

REFERENCES
[1] Aiden Bailey. 2021. Scalable Defeasible Reasoning. (2021), 1–16.

https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2021/bailey_hamilton_
park.zip/�les/BLYAID001_SCADR.pdf

[2] Giovanni Casini, Thomas Meyer, Kodylan Moodley, and Ivan Varzinczak. 2013.
Towards practical defeasible reasoning for description logics. (2013), 1–13. http:
//ceur-ws.org/Vol-1014/paper_17.pdf

[3] Giovanni Casini, Thomas Meyer, and Ivan Varzinczak. 2018. Defeasible Entail-
ment: from Rational Closure to Lexicographic Closure and Beyond. In 17th
International Workshop on Non-Monotonic Reasoning (NMR) (2018), 109–118.
http://pubs.cs.uct.ac.za/id/eprint/1304

[4] Giovanni Casini, Thomas Meyer, and Ivan Varzinczak. 2019. Taking defeasible
entailment beyond rational closure. European Conference on Logics in Arti�cial
Intelligence, 182–197. https://doi.org/10.1007/978-3-030-19570-0

https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2021/bailey_hamilton_park.zip/files/BLYAID001_SCADR.pdf
https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2021/bailey_hamilton_park.zip/files/BLYAID001_SCADR.pdf
http://ceur-ws.org/Vol-1014/paper_17.pdf
http://ceur-ws.org/Vol-1014/paper_17.pdf
http://pubs.cs.uct.ac.za/id/eprint/1304
https://doi.org/10.1007/978-3-030-19570-0

An Investigation into the Scalability of Rational Closure V2

[5] Stephen A. Cook. 1971. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of computing (1971),
151–158. https://doi.org/10.1145/800157.805047

[6] Martin Davis, George Logemann, and Donald Loveland. 1962. A Machine
Program for Theorem-Proving. Commun. ACM 5 (1962), 394–397. Issue 7.
https://doi.org/10.1145/368273.368557

[7] L. Giordano, V. Gliozzi, N. Olivetti, and G.L. Pozzato. 2015. Semantic characteriza-
tion of rational closure: From propositional logic to description logics, Arti�cial
Intelligence. 226 (2015), 1–33. https://doi.org/10.1016/j.artint.2015.05.001

[8] Joel Hamilton. 2021. An Investigation into the Scalability of Rational Closure.
(2021), 6–7. https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2021/bailey_
hamilton_park.zip/�les/SCADR_HMLJOE001.pdf

[9] Joel Hamilton, Daniel Park, andAiden Bailey. 2021. Scalable Defeasible Reasoning.
(2021), 1–10. https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2021/bailey_
hamilton_park.zip/�les/SCADR_Project_Proposal.pdf

[10] Adam Kaliski. 2020. An Overview of KLM-Style Defeasible Entailment. (2020),
52–83. http://hdl.handle.net/11427/32743

[11] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. 1990. Nonmonotonic
reasoning, preferential models and cumulative logics. Arti�cial intelligence 44
(1990), 167–207. https://doi.org/10.1016/0004-3702(90)90101-5

[12] Daniel Lehmann. 1995. Another perspective on default reasoning. Annals of
Mathematics and Arti�cial Intelligence 15, 1 (1995), 61–82. https://doi.org/10.
48550/arXiv.cs/0203002

[13] Daniel Lehmann and Menachem Magidor. 1992. What does a conditional
knowledge base entail? Journal of Arti�cial Intelligence 55, 1 (1992), 1–60.

https://doi.org/10.1016/0004-3702(92)90041-U
[14] Joaäo P. Marques-silva and Karem A. Sakallah. 1999. Grasp: A search algorithm

for propositional satis�ability. IEEE Trans. Comput. 48 (1999), 506–521. https:
//doi.org/10.1109/12.769433

[15] Drew McDermott and Jon Doyle. 1980. Non-monotonic logic I. Arti�cial Intelli-
gence 13, 1 (1980), 41–72. https://doi.org/10.1016/0004-3702(80)90012-0 Special
Issue on Non-Monotonic Logic.

[16] Ben-Ari Mordechai. 2012. Propositional Logic: Formulas, Models, Tableaux (3 ed.).
Springer London, 1, 7–47. https://doi.org/10.1007/978-1-4471-4129-7

[17] Matthew Morris, Tala Ross, and Thomas Meyer. 2020. Algorithmic de�nitions
for KLM-style defeasible disjunctive Datalog. South African Computer Journal
32, 2 (2020), 141–160. https://doi.org/10.18489/sacj.v32i2.846

[18] Joon Soo Park. 2021. Scalable Defeasible Reasoning. (2021), 1–
12. https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2021/bailey_hamilton_
park.zip/�les/PRKJOO001_SCADR_Final_Paper.pdf

[19] Dhiresh Thakor Vallabh and Evashna Pillay. 2022. Scalable Defeasible Reasoning
V2 with focus on Rational and Lexicographic Closure. (2022).

[20] Matthias Thimm. 2014. Tweety - A Comprehensive Collection of Java Libraries
for Logical Aspects of Arti�cial Intelligence and Knowledge Representation.
In Proceedings of the 14th International Conference on Principles of Knowledge
Representation and Reasoning (KR’14) (Vienna, Austria).

[21] Yakir Vizel, Georg Weissenbacher, and Sharad Malik. 2015. Boolean Satis�ability
Solvers and Their Applications in Model Checking. Proc. IEEE 103 (2015), 2021–
2035. https://doi.org/10.1109/JPROC.2015.2455034d

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/368273.368557
https://doi.org/10.1016/j.artint.2015.05.001
https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2021/bailey_hamilton_park.zip/files/SCADR_HMLJOE001.pdf
https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2021/bailey_hamilton_park.zip/files/SCADR_HMLJOE001.pdf
https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2021/bailey_hamilton_park.zip/files/SCADR_Project_Proposal.pdf
https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2021/bailey_hamilton_park.zip/files/SCADR_Project_Proposal.pdf
http://hdl.handle.net/11427/32743
https://doi.org/10.1016/0004-3702(90)90101-5
https://doi.org/10.48550/arXiv.cs/0203002
https://doi.org/10.48550/arXiv.cs/0203002
https://doi.org/10.1016/0004-3702(92)90041-U
https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
https://doi.org/10.1016/0004-3702(80)90012-0
https://doi.org/10.1007/978-1-4471-4129-7
https://doi.org/10.18489/sacj.v32i2.846
https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2021/bailey_hamilton_park.zip/files/PRKJOO001_SCADR_Final_Paper.pdf
https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2021/bailey_hamilton_park.zip/files/PRKJOO001_SCADR_Final_Paper.pdf
https://doi.org/10.1109/JPROC.2015.2455034d

Appendix A

1 Comparison of Optimizations of Rational Closure Runtime

The following tables contain values pertaining to the average execution time (i.e., in milliseconds) of
four optimization approaches, as well as the naive implementation of the Rational Closure. Each
approach determined whether or not each query in the set was entailed by the knowledge base given.
The optimization approaches used for comparison along with our new approaches are referred to as
follows:

• RC is the naive implementation of the Rational Closure.

• RCBinCheck is the previous year’s implementation with focus on the binary search.

• IBinCheck referred to as StoredRankBinCheck in last year’s paper focuses on an indexing ap-
proach.

• RCTerChecker is our first implementation with focus on the ternary search.

• RCTerIndexChecker is our second implementation with focus on the ternary search and concur-
rency.

2 Comparison over varying ranks

In order to ensure that the results obtained for these tests were due to varying numbers of ranks
and not due to varying distributions of statements over the ranks, the distribution of statements over
the ranks in the knowledge bases used was uniform, with each rank containing the same number of
statements.

2.1 Knowledge Base with 10 Ranks

This knowledge base contains 38 defeasible implications. The RCTerIndexChecker uses a sequential
threshold set at 10. The following query sets were tested:

• QSFRank has 51 queries, all of which are the same (i.e., 1 |⇠ 0).

• QSLRank has 50 queries, all of which are the same (i.e., 10 |⇠ 8).

• QSSameAnt has 50 queries, all of which have the same antecedent.

• QSDifAnt has 20 queries, all of which are unique.

• QSHHAnt has 40 queries, half unique and half repeated.

QuerySets RC RCBinCheck IBinCheck RCTerChecker RCTerIndexChecker
QSFRank 50.45 321.31 293.39 269,14 2,90
QSLRank 245.3 366.70 51.40 112,4 2,26

QSSameAnt 187.58 349.50 11.26 97,02 0,94
QSDifAnt 260.70 420.95 343.95 267,05 197,7
QSHHAnt 251.65 252.58 167.95 206,2 144,98

Table 1: Average execution times of Knowledge base with ranking of 10

1

2.2 Knowledge Base with 50 Ranks

This knowledge base contains 198 defeasible implications. The RCTerIndexChecker uses a sequential
threshold set at 10. The following query sets were tested:

• QSFRank has 50 queries, all of which are the same (i.e., 1 |⇠ 0).

• QSLRank has 50 queries, all of which are the same (i.e., 50 |⇠ 0).

• QSSameAnt has 50 queries, all of which have the same antecedent.

• QSDifAnt has 50 queries, all of which are unique.

• QSHHAnt has 50 queries, half unique and half repeated.

QuerySets RC RCBinCheck IBinCheck RCTerChecker RCTerIndexChecker
QSFRank 106.88 588.24 540.80 339,82 7,16
QSLRank 1208.66 435.24 45.84 210,42 8,06

QSSameAnt 1144.78 296.64 30.34 319,64 3,04
QSDifAnt 615.34 448.18 440.12 330,06 288,76
QSHHAnt 387.84 437 263.42 365,22 247,14

Table 2: Average execution times of Knowledge base with ranking of 50

2.3 Knowledge Base with 100 Ranks

This knowledge base contains 398 defeasible implications. The RCTerIndexChecker uses a sequential
threshold set at 10. The following query sets were tested:

• QSFRank has 49 queries, all of which are the same (i.e., 1 |⇠ 0).

• QSLRank has 49 queries, all of which are the same (i.e., 200 |⇠ 198).

• QSSameAnt has 84 queries, all of which have the same antecedent.

• QSDifAnt has 50 queries, all of which are unique.

• QSHHAnt has 52 queries, half unique and half repeated antecedents.

QuerySets RC RCBinCheck IBinCheck RCTerChecker RCTerIndexChecker
QSFRank 78.35 732.80 740.55 413,86 10,24
QSLRank 4406.43 283.80 23.57 266,94 4,04

QSSameAnt 1013.64 547.31 48.12 403,61 7,36
QSDifAnt 545.48 533.30 544.24 391,04 376,84
QSHHAnt 368.90 555.46 263.21 398,56 322,75

Table 3: Average execution times of Knowledge base with ranking of 100

3 Comparison varying distributions of statements

To ensure that our findings were as a result of varying distributions of statements over ranks and not
the varying numbers of ranks, the number of ranks in the knowledge bases utilized for these tests was
fixed at 50. The following query sets were tested:

• QSFRank has 50 queries, all of which are the same (i.e., 1 |⇠ 0).

• QSLRank has 50 queries, all of which are the same (i.e., 50 |⇠ 0).

• QSSameAnt has 50 queries, all of which have the same antecedent.

• QSDifAnt has 50 queries, all of which are unique.

• QSHHAnt has 52 queries, half unique and half repeated antecedents.

2

3.1 Knowledge Base with Uniform Distribution

This knowledge base contains 990 defeasible implications. The RCTerIndexChecker uses a sequential
threshold set at 10.

QuerySets RC RCBinCheck IBinCheck RCTerChecker RCTerIndexChecker
QSFRank 198.58 597.02 598.34 368,12 6,84
QSLRank 518.04 447.46 54.76 443,6 13,82

QSSameAnt 502.70 506.60 69.78 532,36 12,48
QSDifAnt 354.30 584.64 560.52 406,88 361,5
QSHHAnt 277.38 595.17 411.13 412,42 339,66

Table 4: Average execution times of Knowledge base with Uniform Distribution

3.2 Knowledge Base with Normal Distribution

This knowledge base contains 990 defeasible implications. The RCTerIndexChecker uses a sequential
threshold set at 25.

QuerySets RC RCBinCheck IBinCheck RCTerChecker RCTerIndexChecker
QSFRank 203.38 614 595.36 381,52 9,68
QSLRank 1210 261.52 63.96 278,78 11,94

QSSameAnt 1119.96 289.72 75.16 274,04 9,62
QSDifAnt 910.46 480.74 455.80 390,18 328,2
QSHHAnt 776.42 488.94 257.90 415,5 300,02

Table 5: Average execution times of Knowledge base with Normal Distribution

3.3 Knowledge Base with Exponential Distribution

This knowledge base contains 990 defeasible implications. The RCTerIndexChecker uses a sequential
threshold set at 25.

QuerySets RC RCBinCheck IBinCheck RCTerChecker RCTerIndexChecker
QSFRank 174.58 562.28 558.48 375,08 7,48
QSLRank 286.72 633.16 70.88 370,36 9,2

QSSameAnt 186,08 289.70 75.16 389,16 9,2
QSDifAnt 204.36 566.18 548.80 372,74 356,74
QSHHAnt 206,9 525.42 534.12 381,96 349,66

Table 6: Average execution times of Knowledge base with Exponential Distribution

3

	Abstract
	1 Introduction
	2 Theoretical Framework
	2.1 Propositional Logic
	2.2 Defeasible Reasoning
	2.3 Entailment
	2.4 KLM Approach to Defeasible Entailment
	2.5 Rational Closure

	3 Related Work
	3.1 SAT Solvers
	3.2 SCADR 2021

	4 Project Aims
	5 System Development and Implementation
	5.1 Optimisation 1: Ternary Search Entailment Approach
	5.2 Optimisation 2: Ternary Indexing Entailment Approach

	6 Experiment Design and Execution
	6.1 Test Cases
	6.2 Generating Results

	7 Results and Findings
	7.1 Ternary Search Entailment Results
	7.2 Ternary Indexing Entailment Results

	8 Conclusions
	9 Future Work
	References

