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ABSTRACT
Knowledge representation and reasoning is a methodology in ar-
tificial intelligence (AI). This methodology involves storing some
information about the world into a machine (a knowledge base)
and it creates conclusions based on the knowledge given. Defea-
sible reasoning is a non-classical form of reasoning that expands
upon the classical form by being able to reason about new and/or
conflicting information. This is done by accepting information that
is typically true. Entailment checking then identifies if the new
information is deduced by the knowledge base. There is currently
few practical implementations of defeasible entailment for propo-
sitional logic. This project will investigate the improvements that
can be made to the scalability of defeasible entailment algorithms
and implement these new algorithms in such a way that it works
for a larger framework. We also aim to implement a system that
generates knowledge bases for testing purposes and investigate
how it affects the performance of defeasible entailment.

CCS CONCEPTS
• Theory of computation→ Automated reasoning; • Comput-
ing methodologies→ Non-monotonic, default reasoning and
belief revision.

KEYWORDS
artificial intelligence, knowledge representation and reasoning, de-
feasible reasoning, Boolean satisfiability solving

1 INTRODUCTION
Knowledge representation (KR) is a fundamental part of artificial
intelligence. KR utilizes symbols to represent knowledge in which
inferences are made and new elements of knowledge are formed
about the world. To represent information, wewill be differentiating
between propositional logic and defeasible reasoning. Propositional
logic is monotonic as previously drawn conclusions cannot be con-
tradicted by new information [15]. To illustrate this logic, we will
use the common example, “Birds can fly.”We know birds have wings.
Penguins are birds as they have wings, therefore penguins can fly.
However, we also know that penguins cannot fly. It is evident that
propositional logic does not have the ability to model human reason-
ing and limits any possibility of exceptions in the knowledge base.
Thus, our research will focus on non-monotonic reasoning, that
allows for a more common-sense” approach to reasoning in which

elements of knowledge are typically true and not always definite
[2]. defeasible reasoning addresses atypical reasoning scenarios in
which humans fundamentally think differently, this may be due
to their beliefs, context, or other circumstances. The reasoner can
temporarily dismiss commonly held beliefs when presented with
new contradictory information.

2 BACKGROUND
2.1 Propositional Logic
Propositional logic [15] is a framework that represents information
about the world as logical statements known as formulas. Each
formula is made up of propositional atoms which can be assigned
truth values (true or false). Formulas can connect propositional
atoms together using connectives (¬, ∧, ∨, →, ↔). With 𝛼, 𝛽 ∈ L
where L is the set of all formulas we can create ¬𝛼, 𝛼 ∧ 𝛽, 𝛼 ∨
𝛽, 𝛼 → 𝛽, 𝛼 ↔ 𝛽 . An interpretation is a total function 𝐼 : 𝑃 ↦→
{𝑇, 𝐹 } that takes a formula, 𝛼 ∈ L, and assigns each propositional
atom in 𝛼 a truth value. The set of all of these interpretations is
represented as W. The truth value of an interpretation, created
by 𝛼 , is denoted as 𝐼 (𝛼). If 𝐼 (𝛼) is true for the formula 𝛼 , then 𝐼

satisfies 𝛼 . This is denoted as 𝐼 ⊩ 𝛼 . A knowledge base is a finite set
of propositional formulas. A knowledge base, K , is satisfied by an
interpretation, 𝐼 , if and only if for every 𝛼 ∈ K , 𝐼 satisfies 𝛼 . If at
least one interpretation satisfies K , then that 𝐼 is a model of K .

2.2 Entailment
A knowledge base,K , entails a formula, 𝛼 , (written asK |= 𝛼) when
every model ofK is satisfied by 𝛼 . Propositional logic, and therefore
propositional entailment, is monotonic. This means that all logical
statements and conclusions in the knowledge base are infallible.
This means that any new information that creates a contradiction
can never be made as an exception [18]. However, the knowledge
base must still reconcile with this new information and can form
incorrect conclusions. This makes knowledge base generation re-
dundant which is why we require a nonmonotonic approach [11]
[13]. The KLM style framework is our preferred choice.

When checking ifK |= 𝛼 can be done by using a satisfiability (SAT)
solver [18]. The SAT solver reduces entailment into satisfiability by
checking if the models of K satisfy K ∪ ¬𝛼 . This will be further
discussed in the relevant works section.
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2.3 KLM Approach to Defeasible Reasoning
The KLMApproachmodels statements written in the form of 𝛼 |∼ 𝛽 ,
which is interpreted as "𝛼 typically implies 𝛽". This means that we
are prepared to conclude 𝛽 from 𝛼 unless we receive contradictory
information. There are multiple methods used to deduce informa-
tion from a defeasible knowledge base, this notion is referred to as
defeasible entailment. Defeasible entailment determines whether a
defeasible implication is entailed by a knowledge base, the approach
used must adhere to the rationality properties defined by Lehmann
and Magnidor [10]. Two methods which fall within the KLM ap-
proach are rational closure and lexicographic closure, which our
research will address.

2.4 Rational Closure (RC)
Rational closure is an LM-rational method of defeasible entail-
ment proposed by Lehmann and Magidor [7]. Before providing
an overview on rational closure, the following concepts will be
defined; minimal ranked entailment, materialisation and Base Rank
Algorithm.

2.4.1 Minimal Ranked Entailment. Ranked entailment is similar in
principle to ranked interpretations, the lower the ranked model the
more likely there exists a minimum ranked model in the ordering.
This principle involves a partial order for all ranked models of
knowledge base K and ranks the interpretations by how likely it is.
The rational closure of a knowledge base K is based on determining
the minimum ranked model [7], this must satisfy some defeasible
implication for the knowledge base K to entail it [3].

2.4.2 Materialisation. The material counterpart of a defeasible
implication 𝛼 |∼ 𝛽 is the propositional formula 𝛼 → 𝛽 [4]. The
material counterpart of a defeasible knowledge base K is denoted
as

−→
K and represents the set of material counterparts, 𝛼 → 𝛽 , for

every defeasible implication 𝛼 |∼ 𝛽 ∈ K .

2.4.3 Base Rank Algorithm. The initial step performed when im-
plementing the rational closure of a knowledge base K is the base
rank algorithm [16]. This determines the minimum ranked model.

Pseudo-code of the algorithm is shown below:

(1) Separate the classical statements KC from the defeasible
statements KD .

(2) Materialise KD into
−→
KD .

−→
KD in E𝐾0 and KC as is.

(3) For each 𝛼 → 𝛽 ∈ E𝐾0 , determine if E𝐾0 ∪ KC |= ¬𝛼 .

(4) If true, 𝛼 is exceptional and all formulas within E𝐾0 with 𝛼

are moved to E𝐾1 .

(5) Rank R𝐾0 is assigned to the formulas E𝐾0 \E
𝐾
1 .

(6) Repeat the process for the next subset, i.e., E𝐾1 until no
more formulas need to be assigned.

(7) Add the final rank RK
∞ to store KC .

2.4.4 Rational Closure Algorithm. RK from the base rank algo-
rithm will be used, given a knowledge base K entails some defeasi-
ble implication 𝛼 |∼ 𝛽 .

Pseudo-code of the algorithm is shown below:

(1) Check if
−→
K entails ¬𝛼 .

(2) If this is not the case, 𝛼 is compatible with K . Then check
if
−→
K entails 𝛼 → 𝛽 .

(3) If this is the case, 𝛼 is incompatible with K . The most pre-
ferred rank is withdrawn from RK . The resulting knowl-
edge base will be denoted as K′

.

(4) If RK′
is an empty set, then K ̸|≈ 𝛼 |∼ 𝛽 , else if RK′

contains at least one rank, we return to (1) with K′
.

2.5 Lexicographic Closure (LC)
Lexicographic closure [12] is different from rational closure in that
lexicographic closure follows presumptive reading whilst rational
closure follows prototypical reading. Presumptive reading means
that atypical formulas are able to inherit the properties of more typ-
ical formulas. Lexicographic closure shows this change by changing
how rankings are formed. Lexicographic closure still uses the Base
Rank Algorithm however formulas within the ranks are also ranked
where the more typical formulas are ranked higher. By doing this,
we can check and remove one statement within a rank instead of
the whole rank. If all of the statements are removed then the whole
rank is removed.

This method will be shown by giving the classic penguin example
of entailment that compare rational closure to lexicographic closure.
Given the knowledge base:

K = {𝑏 |∼ 𝑓 , 𝑝 → 𝑏, 𝑏 |∼ 𝑤, 𝑝 |∼ ¬𝑓 }
We can use the Base Rank Algorithm to create the following ranks:

∞ 𝑝 → 𝑏

1 𝑝 → ¬𝑓
0 𝑏 → 𝑓 , 𝑏 → 𝑤

Table 1: Ranks of K

We then wish to query if 𝑝 |∼ 𝑤 is entailed by the knowledge base:

2.5.1 Rational Closure Method.

(1) Query if
−→
K |= ¬𝑝 . ¬𝑝 is entailed so we remove rank 0,

which gives:

∞ 𝑝 → 𝑏

1 𝑝 → ¬𝑓
0 𝑏 → 𝑓 , 𝑏 → 𝑤

Table 2: Ranks of K After Rank 0 Removal

(2) We then query if¬𝑝 is entailed by the remaining statements
in the ranks. ¬𝑝 is not entailed and so we check if

−→
K entails

the statement 𝑝 → 𝑤 . In this case it does not, therefore
K |0 𝑝 |∼ 𝑤 .
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2.5.2 Lexicographic Closure Method.

(1) Create ranks within the ranks that are based on all possible
rankings. In this case only rank 0 needs to change.

∞ 𝑝 → 𝑏

1 𝑝 → ¬𝑓
0 𝑏 → 𝑓

𝑏 → 𝑤

Table 3: Lexicographic Ranking 1

∞ 𝑝 → 𝑏

1 𝑝 → ¬𝑓
0 𝑏 → 𝑤

𝑏 → 𝑓

Table 4: Lexicographic Ranking 2

(2) Query if
−→
K |= ¬𝑝 . ¬𝑝 is entailed so we remove the top

statement in each ranking.

∞ 𝑝 → 𝑏

1 𝑝 → ¬𝑓
0 𝑏 → 𝑓

𝑏 → 𝑤

Table 5: Lexicographic Ranking 1 After Removal

∞ 𝑝 → 𝑏

1 𝑝 → ¬𝑓
0 𝑏 → 𝑤

𝑏 → 𝑓

Table 6: Lexicographic Ranking 2 After Removal

(3) We then query if the remaining statements entail ¬𝑝 . In this
case, ranking 1 does not and so we check if the statements
entail 𝑝 → 𝑤 . The statements do entail 𝑝 → 𝑤 and so we
conclude that K |≈ 𝑝 |∼ 𝑤 .

This has shown us that lexicographic closure uses presumptive
reasoning and presumed that penguins do have wings. This is the
opposite of rational closure which used prototypical reasoning to
come to the opposite conclusion.

3 PROJECT DESCRIPTION
3.1 Overview of Problem
Currently, research for checking satisfiability within defeasible rea-
soning in the propositional context has mainly been theoretical. In
terms of practical implementations, there is only the previous year’s
SCADR project [1] [8] [18]. This means that there is still a large
gap in practical research especially when compared to reasoners
for other types of logic such as classical reasoning and description
logics.

While these other reasoners do exist, they are very limited in their
own ways. Classical reasoners has monotonicity which fails under

contradicting information and description logics [2] would be too
impractical to translate into propositional logic.

This also means that more work can still be done to improve the
scalability and efficiency on rational [13] and lexicographic [12]
algorithms from last year’s project. Another key issue is that we can
hopefully build upon the knowledge base generation work from
last year’s work and continue to see how parameters affect the
efficiency of the project.

3.2 The Importance of the Problem
With research primarily focused on the theoretical aspect of non-
monotonic reasoning, there is little to no implementation of auto-
mated defeasible reasoning. This research project which builds on
the previous year’s SCADR project [9] will recognize aspects of
the theoretical nature of work done on defeasible reasoning and
analyse its feasibility when implementing the automated model.
Furthermore, an implementation of automated defeasible reasoning
would signify a large contribution to the logic-based AI community
(i.e., robotics and medical decision-making systems etc).

4 PROBLEM STATEMENT
4.1 Research Questions [9]
4.1.1 Evashna Pillay.

(1) How does the execution time of the optimised rational
closure algorithm compare to the previous year’s SCADR
project implementation?

(2) What is the relationship between the performance of the
rational closure algorithm and fixed-sized knowledge bases
with different parameters (i.e., number of ranks and varying
rank distributions)?

(3) What is the experience of testing the rational closure algo-
rithm for completeness with the knowledge base generator?

4.1.2 Dhiresh Thakor Vallabh.

(1) How does the execution time of the optimised lexicographic
closure algorithm compare to the previous year’s SCADR
project implementation?

(2) What is the relationship between the performance of the
lexicographic closure algorithm and fixed-sized knowledge
bases with different parameters (i.e., number of ranks and
varying rank distributions)?

(3) What is the experience of testing the lexicographic clo-
sure algorithm for completeness with the knowledge base
generator?

4.2 Research Aims
(1) To develop an optimised reasoner console-application based

on some defeasible knowledge base that implements the
rational closure algorithm.

(2) To refine the optimisation approaches used to increase the
scalability of the rational closure implementation compared
to the previous year’s SCADR project.
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(3) To develop an optimised reasoner console-application based
on some defeasible knowledge base that implements the
lexicographic closure algorithm.

(4) To refine the optimisation approaches used to increase the
scalability of the lexicographic closure implementation com-
pared to the previous year’s SCADR project.

(5) To develop an application for the generation of knowledge
bases that will be utilized during the testing of the opti-
mised reasoner applications for rational and lexicographic
implementations.

5 PROCEDURES AND METHODS
The project work is divided into three parts. Namely, the defeasible
reasoners that use rational closure and lexicographic closure and
the knowledge base generator. The defeasible reasoners will be
built in Java and the knowledge base generator will be built using
Scala.

We will integrate the KLM style for propositional logic with defea-
sible reasoning to create our algorithms for both reasoners. The
knowledge base generator will generate a knowledge base which
will be used for testing purposes. This knowledge base and a defea-
sible logic statement will be given as input to either of the defeasible
reasoners. The reasoners will then use their algorithms and a satis-
fiability (SAT) solver to check for entailment and return the output.
We will then measure metrics that can be used to compare the
performance of these tools.

5.1 Knowledge Base Generator
Before starting development on the knowledge base generator, we
will develop an understanding if how classical knowledge bases are
structured. We will then see how KLM properties and defeasible
reasoning is integrated into the classical structure to create a de-
feasible knowledge base. We can then look into the previous year’s
knowledge base generator [1] [8] [18] to build our understanding
of what worked and where improvements can be made.

The previous year’s work can also be used to identify what parame-
ters they have used and where we can add changes. This will require
an understanding of how rational closure and lexicographic closure
works. These parameters can affect two aspects of the knowledge
base: the ranking of the defeasible statements in the knowledge
base and the defeasible entailment checking. These two aspects will
give an indication of the efficacy of different parameters. Once we
use all of these parameters collectively, we will then use metrics to
measure how successful these parameters are.

5.2 Rational and Lexicographic Reasoners
To create these reasoners, we will need to have an understanding
of how each algorithm works and how it can be reduced to check-
ing for satisfiability (for the SAT solver). We will also study the
previous year’s work [1] [8] [18] to see how they implemented
these algorithms. We will ensure correctness in our algorithms by
generating test knowledge bases, inputting defeasible statements
and checking the output. Once the initial versions are developed,

we can add the optimisation techniques from last year’s project and
add our own techniques to improve the performance.

Metric testing and comparisons will be done on the initial version,
the previous year’s version, and the newer versions. These metrics
will measure metrics like computational resource utilisation and
execution time. We will also do this testing using different knowl-
edge bases that vary in structure. These structures will vary how
many ranks are created and how statements are added to ranks.
This testing will be automated by creating a test-bench.

These reasoners will be executable through the command line. If
all aspects of the project are completed, we could potentially wrap
these tools into an API to build a singular, large framework.

5.3 Possible Challenges
• Finding an intuitive SAT solver that is compatible with

propositional logic formats.

• Identifying a more optimal, generic solution to knowledge
base generation for different logics.

• Identifying useful optimisation techniques that also im-
prove upon the previous year’s work.

• Identifying knowledge base generation parameters that will
create knowledge bases of varying structures (how ranking
is performed).

6 ETHICAL, PROFESSIONAL, AND LEGAL
ISSUES

The algorithms that we are using were from publicly released aca-
demic literature therefore we are not infringing on any intellectual
property rights. We will only be required to appropriately acknowl-
edge the creators of these algorithms. The Java and Scala languages,
that we will be using, uses OpenJDK which has a General Public
License with the Classpath exception. This allows us to use the
OpenJDK facilities and executables to our own discretion. There-
fore, there will be no legal issues in this regard. We also do not
require any user testing and we do not require private data. This
means that there will be no ethical issues or possible breaching of
the POPI act. In conclusion, there are no obvious signs of future
legal, professional, or ethical issues arising in our project.

7 RELATEDWORK [9]
RC and LC reduce to a number of checks pertaining to classical
entailment. Therefore, Boolean satisfiability is applicable to our re-
search. Boolean satisfiability (SAT) determines whether there exists
an assignment satisfying a given Boolean formula [[5], [19]]. In
analyzing the SAT solvers for classical reasoning we can determine
which SAT solvers are appropriate for our defeasible reasoning
model.

7.1 Classical SAT Solvers
7.1.1 Semantic Tableaux. The tableau is constructed by decompos-
ing a formula into sets of atomic literals, resulting in a tree-like
tableau [15]. Each branch ends with a complementary pair of for-
mulas, that is referred to as a closed branch, or contains a set of
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non-contradictory literals, that is referred to as an open branch.
Each open branch represents a model for the given formula. When
no further decomposition can take place, the construction is com-
plete. The initial formula is found to be unsatisfiable when there is
a clash. A clash occurs when literals for an atom are found within
the same subset, this results in a contradiction. To determine a
formula’s satisfiability, a completed tableau is required.

7.1.2 DPLL. DPLL is a backtracking algorithm [6]. The algorithm
allows for the input of a propositional formula in CNF format, in
which true is returned if the formula is satisfiable or false is returned
if the formula is unsatisfiable. A branching procedure is executed
where some atom in 𝛼 is set to a random truth value. Branching
continues until an assignment satisfies 𝛼 and true is returned, or 𝛼 is
false and the algorithm backtracks. Backtracking involves retrieving
the recent branching assignment and re-branching with a different
assignment. If there are no new assignments to branch to, then
backtrack. If there exists no new branches to be taken and we
cannot backtrack, false is returned and 𝛼 is unsatisfiable.

7.1.3 Conflict-Driven Clause Learning (CDCL). The creation of
the CDCL [14] was motivated by the DPLL SAT solver. The key
difference between the CDCL SAT solver and the DPLL SAT solver
is that backtracking in the CDCL SAT solver is non-chronological
[6]. Conflicts caused by variable assignments are cached. This leads
to optimized efficiency and execution.

7.2 Defeasible SAT Solvers
SAT solvers only cover a limited scope of reasoning, specifically
classical. There is no SAT solver which deduces if a defeasible
statement is satisfiable or unsatisfiable in relation to the rational
closure or lexicographic closure of a defeasible knowledge base
[12].

8 ANTICIPATED OUTCOMES
8.1 Software Developed [9]

• A console-application which improves the execution time
of the rational closure implementation.

• An console-application which improves the execution time
of the lexicographic closure implementation.

• An application to generate defeasible knowledge bases tak-
ing in to account several parameters (i.e., size, number of
ranks and varying rank distribution etc).

8.2 Expected Impact
Argumentation theory (AT) is a branch of logic-based artificial intel-
ligence that serves as the foundation for computational models of
defeasible reasoning. AT has emerged as a promising research area
for adopting defeasible reasoning, based on promising results [17].
However, applications are typically ad-hoc frameworks that do not
include all of the layers and procedures necessary in an argumen-
tation process, constraining their usability across domains. This
research project will provide a complete defeasible-based frame-
work, from assignment formation through conflict resolution to
the final conclusion (i.e., true or false) [9].

8.3 Evaluation of the System
To determine whether our reasoners are successful we will cre-
ate specific test cases, query sets and include system time calls to
measure the execution time of each reasoner.

8.3.1 Test Cases. The knowledge base generator will only include
defeasible statements in the form of 𝛼 |∼ 𝛽 . The knowledge bases
used will differ in number of ranks (i.e., 10, 50 and 100) and varying
statement distribution (i.e., 50, 100, 200) [8].

8.3.2 Query Sets [1]. We will create three query sets:

• A set of queries in which the antecedents are equally unique
and equally repeated.

• A set of queries which result in all the ranks except the
final rank being retracted and the antecedents becomes
consistent with the knowledge base.

• A set of queries whose antecedents all become consistent
with the knowledge base after the first rank has been re-
tracted.

8.4 Key Success Factors

• The defeasible reasoner developed outputs the correct result
which can be validated using the knowledge base generator
and test cases.

• The approaches used to improve the performance and scala-
bility of the rational closure algorithm is faster in execution
time/performance compared to the previous year’s SCADR
project [8].

• The approaches used to improve the performance and scal-
ability of the lexicographic closure algorithm is faster in ex-
ecution time/performance compared to the previous year’s
SCADR project [18].

• The application for the generation of knowledge bases is
valid and useful for testing the optimised reasoners for
rational and lexicographic implementations [1].

9 PROJECT PLAN
9.1 Risks
See subsection A.1 of the Appendix.

9.2 Timeline
See subsection B.2 of the Appendix.

9.3 Resources Required
We require access to the previous year’s SCADR project to establish
the scope of their research [9].Wewill use their results for efficiency
and performance of the rational and lexicographic closure as a
benchmark to improve on. We will be using two separate laptops to
write up our research, as well as develop the defeasible reasoners
and the knowledge base generator. We will utilize publicly available
SAT solvers and lastly, the IDE used will support both Java and
Scala (OpenJDK) development.
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9.4 Deliverables
The main project deliverables include the literature review, project
proposal presentation, project proposal, software feasibility demon-
stration, final project paper, final project demonstration, project
poster, and project webpage. The project itself will produce multiple
versions of the rational closure and lexicographic closure reasoners.
The initial version will be an amalgamation of the previous year’s
SCADR project [1] [8] [18] and our own naive approach. Newer
versions will integrate optimisation techniques that improve scal-
ability. The project will also produce a knowledge base generator
which will be used for testing. We will also produce metrics that
relate to every version of our reasoners and compare them to each
other and the previous year’s work. This is to compare the effi-
ciency and scalability of the different versions and show the degree
of success of our project compared to the previous year.

9.5 Milestones
See B.1 of the Appendix.

9.6 Work Allocation

Student Work Allocation
Evashna Pillay Development of the defeasible reasoner

that uses the rational closure algorithm.
Extensive research will be done for op-
timisation techniques to improve upon
the previous SCADR project.

Dhiresh Thakor Vallabh Development of the defeasible reasoner
that uses the lexicographic closure algo-
rithm. Extensive research will be done
for optimisation techniques to improve
upon the previous SCADR project.

Both members will develop the knowledge base generator which
will provide test cases to test the scalability and efficiency of both
algorithms. Potential work can be done to wrap the tools into an
API which will be done by both members.
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Scalable Defeasible Reasoning V2 with focus on Rational and Lexicographic Closure

Appendix

A RISKS
A.1 Risk Identification, Mitigation, Monitoring, and Management

ID Risk P (1-5) I (1-5) Mitigation Monitoring Management
1 Supervisor unavailable

as well as team mem-
bers unable to contact
or meet supervisor in a
timely manner.

3 4 Determine when it is suitable to
meet with the supervisor every
two weeks, this will ensure an
agreed upon scheduled interac-
tion.

Ask about the supervi-
sor’s schedule before
ending meetings to
know when they are
available next.

Correspond regularly with su-
pervisor to determine in ad-
vance when they will be avail-
able or not.

2 Quality of work im-
pacted by poor time
management due to
differing schedules of
team members.

2 4 Create mini deadlines for deliv-
erables before the hard deadline,
this will ensure work is being
done regularly.

Check upcoming dead-
lines regularly to re-
member deadline dates.

Teammembers shouldmeet and
provide the work they have
completed, this way everymem-
ber is held accountable.

3 Inadequate understand-
ing of the research topic
as a result of its complex
theoretical nature.

2 5 Gain a thorough understanding
of the content early, and iden-
tify and address areas of uncer-
tainty.

Members question each
other on their knowl-
edge of the topic be-
fore moving on to a new
topic.

Meet with team to discuss con-
fusion and if necessary contact
supervisor for further guidance.

4 Experiencing conflict
within the team.

1 3 Maintain openness and regular
communication to address con-
cerns as they occur.

Members ask each
other how they feel
about certain topics
and/or issues.

Team must convene to voice
concerns and provide solutions,
if necessary seek advice from
supervisor.

5 Viewing of past re-
search and deliverables
made difficult due to
load-shedding (i.e.,
unreliable internet
connection) or access
restrictions.

4 3 Save files to local drive, this of-
fline copy can be accessed at
any time given one’s laptop is
charged.

Keep track of the load
shedding schedule as
much as possible and
check if papers require
access.

Ensure supervisor has granted
access to past papers (and use
UCT credentials).

6 Team member falling ill
and unable to complete
deliverables.

2 4 Ensure team members follow
the mini deadline schedule, so
that when a team member falls
ill, work already completed can
be turned over to another team
member to complete in full.

Be wary of our own
well-being and commu-
nicate any health con-
cerns.

Team members must have a
legitimate ailment otherwise
members will reach out to the
supervisor for further action.

7 Team member decides
they no longer want
to participate in the re-
search project.

1 5 This risk however likely or not
cannot be mitigated.

Members communicate
their opinions and
feelings towards the
project.

Team members are responsible
for ensuring the work they take
on can standalone as a separate
project from the group.

8 Unable to improve on
the optimization of al-
gorithms from the pre-
vious year.

3 3 Research and assess/implement
the algorithms used in previous
years as well as broadly in this
area of study.

Use test metrics to
compare the exe-
cution times and
computational resource
utilisation of the project
with the previous year’s
project.

Compare the performance,
speed and usefulness of the
algorithms implemented in this
project with the previous year
and optimize accordingly.

P stands for Probability. I stands for Impact.
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B TIMELINE
B.1 Tasks and Milestones

Milestones Start Date End Date
PHASE 1: Project Planning 10/04/2022 27/05/2022
Literature Review 10/04/2022 04/04/2022
Project Proposal Draft 05/05/2022 22/05/2022
Project Proposal Presentation 05/05/2022 25/05/2022
Project Proposal 05/05/2022 27/05/2022
PHASE 2: Project Work 13/06/2022 14/08/2022
Knowledge Base Generator 13/06/2022 10/07/2022
Construct Test-bench 13/06/2022 17/06/2022
Construct Knowledge Base Generator 18/06/2022 26/06/2022
Add Parameters to KB Generation 27/06/2022 10/07/2022
Rational Closure Project Work 25/06/2022 14/08/2022
Initial Prototype and Test Metrics 25/06/2022 15/07/2022
Develop Optimised Versions 16/07/2022 07/08/2022
Create New Metrics and Comparisons 08/08/2022 14/08/2022
Lexicographic Closure Project Work 25/06/2022 14/08/2022
Initial Prototype and Test Metrics 25/06/2022 15/07/2022
Develop Optimised Versions 16/07/2022 07/08/2022
Create New Metrics and Comparisons 08/08/2022 14/08/2022
PHASE 3: Project Completion 25/07/2022 10/10/2022
Software Feasibility Demonstration 25/07/2022 29/07/2022
Draft of Final Paper 30/07/2022 23/08/2022
Complete Final Paper 24/08/2022 02/09/2022
Final Project Demonstration 03/09/2022 23/09/2022
Project Poster 24/09/2022 03/10/2022
Project Webpage 04/10/2022 10/10/2022

B.2 GANTT Chart
See last page of Appendix for GANTT Chart.
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