
SCALABLE DEFEASIBLE REASONING V2
Knowledge Representation

Propositional logic is a framework that represents 
information about the world as logical statements, known as 

formulas, in a knowledge base. 

E.g., “Tweety is a penguin,” this can be represented as: 

t ⟶ p

This information can be reasoned about to form conclusions. 
With the statements:

“penguins are birds” (i.e., p ⟶ b) 

“birds fly” (i.e., b ⟶ f)

We can conclude that “Tweety can fly” (i.e., t ⟶ f)

If  the statement “penguins don’t fly” was added to the 
knowledge base, we conclude that penguins cannot exist. 

Although the reasoning is correct, the outcome is undesirable.

Defeasible reasoning retracts previously held beliefs when 
presented with additional information. 

E.g., changing “birds fly” (b ⟶ f) to “birds typically fly” 

( i.e., b |∼ f  ).

Using defeasible reasoning, we can conclude Tweety can’t fly.

Rational Closure
1. Determines which defeasible conclusions can be drawn.

2. An algorithm for computing Rational Closure exists. Ranks 
defeasible statements automatically according to the 

generality of  the statements (more general = higher ranked).

3. It performs a series of  entailment checks and removes ranks 
until a conclusion can be drawn.

Lexicographic Closure
Lexicographic Closure is similar to Rational Closure, but it can 
be viewed as a refinement of  Rational Closure. Each statement 
within a rank is checked before removing the entire rank and 

drawing any conclusions.

Key Aims of  Lexicographic Closure
• Create a program to compute Lexicographic Closure

• Test new optimisations to obtain a version of  the algorithm 
which performs better than previous iterations.

Optimisations
• Power Set: Decreases entailment checks. Improved by taking 

up less storage in memory.

• Fibonacci Search: Speeds up finding the rank to remove. 
New iteration on Ternary Search from previous year.

• Concurrent Approach: Computes multiple queries 
simultaneously.

Key Aims of  Rational Closure
• Develop a program to compute Rational Closure

• Test new optimisations to increase the scalability of  Rational 
Closure which performs better than previous iterations.

• Acquire empirical results that show the effective performance 
of  the optimization techniques.

Optimisations
• Ternary Search: Decreases the search range and number 

of  entailment checks, with a time complexity of  O(log n 
base 3).

• Concurrency Approach: Uses the Fork/Join framework.
Users can enter multiple queries in one instance. The 
negations of  the antecedents and the rank at which the 
antecedents becomes consistent are stored in a HashMap.

Conclusions
Rational Closure: the Concurrency Approach is more scalable as it 
is able to query multiple sets at a time. An increase in rank size 
leads to a consistent increase in performance above all other 

implementations. This approach speeds up computation time by 
recovering the rank, instead of  performing the calculation 

several times for the same antecedent.

Lexicographic Closure: the Power Set approach allowed for more 
statements to be handled within the ranks. The Fibonacci Search 

proved to be slower than the Ternary Search at larger scale 
knowledge bases. The concurrent Approach proved to be much 

faster than performing each query sequentially.

Future Work
Test a range of  sequential thresholds on computers with more 

than two cores. 
Improve upon knowledge base generation to produce more 

complex statements.
Improve the sub-algorithm for ranking statements with focus on 

ranking the knowledge base at a faster rate. 
Extend the system to other languages such as C or C++, which 

are platform independent and much faster than Java.
Consider developing or utilizing other tools (i.e., similar to 

TweetyProject libraries) to increase performance.
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