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ABSTRACT
Knowledge representation and reasoning is a �eld of arti�cial intel-
ligence (AI) that formally represents and enables reasoning of infor-
mation about the world. Information is stored in a knowledge base,
from which conclusions are drawn based on the information pro-
vided. Current reasoning systems based on classical propositional
logic are able to perform working implementations of reasoning
correctly and e�ciently. However, as more information about the
world is added to these knowledge bases, instances of contradictory
information is more likely to occur. Defeasible reasoning is a form
of non-monotonic reasoning that allows the reasoner to retract
previously held beliefs when given contradictory information. The
knowledge base is able to accept, and handle, information that is
"typically" true, but not necessarily always true. This allows AI
systems to mimic human behaviour through atypical reasoning sce-
narios. Lexicographic closure is a method of defeasible entailment
proposed by Kraus, Lehmann and Magidor. Defeasible entailment
describes what should defeasibly follow from a knowledge base
containing classical and defeasible information. Some progress has
been made to create systems that incorporate defeasible reasoning.
However, there are still many improvements to be made to ensure
the scalability of these systems. This paper builds on previous work
in this regard to obtain more e�cient algorithms for defeasible rea-
soning. This focuses on the design and integration of algorithms for
the lexicographic closure approach. This investigation will evaluate
and compare the theoretical time and space complexities and the
practical execution times of these algorithms.

CCS CONCEPTS
• Theory of computation! Automated reasoning; • Comput-
ing methodologies! Non-monotonic, default reasoning and
belief revision.

KEYWORDS
arti�cial intelligence, knowledge representation and reasoning, de-
feasible reasoning, Boolean satis�ability solving

1 INTRODUCTION
Knowledge representation and reasoning (KRR) is a fundamental
part of arti�cial intelligence. KRR utilizes symbols to represent
knowledge in which inferences are made and new elements of
knowledge are formed about the world. To represent reasoning, we

will be di�erentiating between propositional reasoning and defeasi-
ble reasoning. Propositional reasoning is monotonic as previously
drawn conclusions must not be contradicted by new information
[16]. These contradictions can allow for all information to be de-
rived, making the knowledge base useless. To illustrate this logic,
we will use the common example, “Penguins can �y.”We, as humans,
know that penguins cannot �y. However, a knowledge base may
only know that birds have wings. Penguins are birds as they have
wings, therefore penguins can �y. Propositional logic is not fully
capable of mimicking human reasoning and is limited by the lack
of exceptions in the knowledge base. Thus, this research focuses on
non-monotonic reasoning, that allows for elements of knowledge
to be considered typically true [3]. Defeasible reasoning addresses
atypical reasoning scenarios in which humans fundamentally think
di�erently, which may be due to their beliefs, context, or other
circumstances. The reasoner can temporarily dismiss commonly
held beliefs when presented with new contradictory information.

The work in Sections 1, 2, and 6 were completed jointly with
Evashna Pillay.

2 BACKGROUND
2.1 Propositional Logic
Propositional logic [16] is a framework that represents information
about the world as logical statements known as formulas. A formula
consists of propositional atoms which can be assigned truth values
(true or false). Formulas use connectives to connect propositional
atoms (¬, ^, _, !, $). With U, V 2 L where L is the set of all
formulas we can create ¬U, U ^ V, U _ V, U ! V, U $ V . An
interpretation is a total function � : % 7! {) , � } that takes a formula,
U 2 L, and assigns each propositional atom in U a truth value.
The set of all of these interpretations is represented as W. The
truth value of an interpretation, created by U , is denoted as � (U). If
� (U) is true for the formula U , then � satis�es U . This is denoted as
� � U . A knowledge base is a �nite set of propositional formulas. A
knowledge base,K , is satis�ed by an interpretation, � , if and only if
for every U 2 K , � satis�es U . If at least one interpretation satis�es
K , then that � is a model of K .

2.2 Entailment
A knowledge base, K , entails a formula, U , (written as K |= U)
when every model ofK is satis�ed by U . Propositional entailment is
monotonic. This means that all logical statements and conclusions
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in the knowledge base are infallible. This means that any new
contradictory information that is introduced can never be made
as an exception [18]. However, the knowledge base must still be
able to handle this new information and could potentially derive
any formula. This renders the knowledge base generation useless
which is why a nonmonotonic approach is required [12] [14]. The
KLM style framework is our preferred choice.

When checking if K |= U , we can use a satis�ability (SAT) solver
[18]. The SAT solver checks the satis�ability of K by checking if
the models of K satisfy K [ {¬U}. This is discussed further in the
Relevant Works section.

2.3 KLM Approach to Defeasible Reasoning
The KLM Approach models its statements in the form of U |⇠
V . This is interpreted as "U typically implies V". This means that
we can conclude V from U unless contradictory information is
received. There are multiple methods used to deduce information
from a defeasible knowledge base, this notion is known as defeasible
entailment. Defeasible entailment determines whether a knowledge
base entails a defeasible implication. This approach adheres to the
rationality properties de�ned by Lehmann and Magidor [11]. Two
methods which fall within the KLM approach are rational closure
and lexicographic closure. This paper will discuss both methods
but will focus on the lexicographic method.

2.4 Rational Closure
Rational closure is an LM-rational method [8] of defeasible entail-
ment proposed by Lehmann and Magidor [8]. Before providing
an overview on rational closure, the following concepts will be
de�ned; minimal ranked entailment, materialisation and Base Rank
Algorithm.

2.4.1 Minimal Ranked Entailment. Ranked entailment is similar in
principle to ranked interpretations, the lower the ranked model the
more likely there exists a minimum ranked model in the ordering.
This principle involves a partial order for all ranked models of
knowledge base K and ranks the interpretations by how likely it is.
The rational closure of a knowledge base K is based on determining
the minimum ranked model [8], this must satisfy some defeasible
implication for the knowledge base K to entail it [4].

2.4.2 Materialisation. The material counterpart of a defeasible
implication U |⇠ V is the propositional formula U ! V [5]. The
material counterpart of a defeasible knowledge base K is denoted
as

�!K and represents the set of material counterparts, U ! V , for
every defeasible implication U |⇠ V 2 K .

2.4.3 Base Rank Algorithm. The initial step performed on a knowl-
edge base K is the base rank algorithm [17]. This determines the
minimum ranked model.

Pseudo-code of the algorithm is shown below:

(1) Divide the statements into the classical statements KC and
the defeasible statements KD .

(2) Materialise KD into
�!KD .

�!KD in E 0 and KC as is.

(3) For each U ! V 2 E 0 , determine if E 0 [ KC |= ¬U .

(4) If true, U is exceptional and all formulas within E 0 with U

are moved to E 1 .

(5) Rank R 0 is assigned to the formulas E 0 \E 1 .

(6) Repeat the process for the next subset, i.e., E 1 until no
more formulas need to be assigned.

(7) Add the �nal rank RK
1 to store KC .

Algorithm 1: Base Rank
Data: A knowledge base K
Result: An ordered tuple ('0,'1, . . . ,'=�1,'1,=)

1 8 := 0;

2 ⇢0 :=
�!K ;

3 while ⇢8�1 < ⇢8 do
4 ⇢8+1 := {U ! V 2 ⇢8 |⇢8 |= ¬U};
5 '8 := ⇢8\⇢8+1;
6 8 := 8 + 1;
7 end
8 '1 := ⇢8�1;
9 if ⇢8�1 = ; then
10 = := 8 � 1;
11 else
12 = := 8;
13 end
14 return ('0,'1, . . . ,'=�1,'1,=);

2.4.4 Rational Closure Algorithm. RK from the base rank algo-
rithm will be used, given a knowledge base K entails some defeasi-
ble implication U |⇠ V .

Pseudo-code of the algorithm is shown below:

(1) Check
�!K entails ¬U .

(2) If false, U is satis�ed with K . Check that
�!K entails U ! V .

(3) If true, U is unsatis�ed with K . The most preferred rank is
withdrawn from RK . The resulting knowledge base will be
denoted as K0

.

(4) If RK0
is an empty set, then K 6|⇡ U |⇠ V , else if RK0

contains at least one rank, we return to (1) with K0
.

2.5 Lexicographic Closure
Lexicographic closure [13] is di�erent from rational closure in that
lexicographic closure follows presumptive reading whilst rational
closure follows prototypical reading. Presumptive reading means
that atypical formulas are able to inherit the properties of more typ-
ical formulas. Lexicographic closure shows this change by changing
how rankings are formed. Lexicographic closure still uses the Base
Rank Algorithm however formulas within the ranks are also ranked
where the more typical formulas are ranked higher. By doing this,
we can check and remove one statement within a rank instead of
the whole rank. If all of the statements are removed then the whole
rank is removed.
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This method will be shown by giving the classic penguin example
of entailment that compare rational closure to lexicographic closure.
Given the knowledge base:

K = {1 |⇠ 5 , ? ! 1,1 |⇠ F , ? |⇠ ¬5 }
We can use the Base Rank Algorithm to create the following ranks:

1 ? ! 1
1 ? ! ¬5
0 1 ! 5 ,1 ! F

Table 1: Ranks of K

We then wish to query if ? |⇠ F is entailed by the knowledge base:

2.5.1 Rational Closure Method.

(1) Query if
�!K |= ¬? . ¬? is entailed so we remove rank 0,

which gives:

1 ? ! 1
1 ? ! ¬5
0 1 ! 5 ,1 ! F

Table 2: Ranks of K After Rank 0 Removal

(2) We then query if¬? is entailed by the remaining statements
in the ranks. ¬? is not entailed and so we check if

�!K entails
the statement ? ! F . In this case it does not, therefore
K |0 ? |⇠ F .

2.5.2 Lexicographic Closure Method.

(1) Rank each statement within the ranks based on all possible
rankings. Here, only rank 0 changes.

1 ? ! 1
1 ? ! ¬5
0 1 ! 5

1 ! F

Table 3: Lexicographic Ranking 1

1 ? ! 1
1 ? ! ¬5
0 1 ! F

1 ! 5

Table 4: Lexicographic Ranking 2

(2) Query
�!K |= ¬? . ¬? is entailed so the top statement is

removed from each ranking.

1 ? ! 1
1 ? ! ¬5
0 1 ! 5

1 ! F

Table 5: Lexicographic Ranking 1 After Removal

1 ? ! 1
1 ? ! ¬5
0 1 ! F

1 ! 5

Table 6: Lexicographic Ranking 2 After Removal

(3) We then query if the remaining statements entail ¬? . In
this example, ranking 1 does not and so we check if the
statements entail ? ! F . The statements do entail ? ! F
and so we conclude that K |⇡ ? |⇠ F .

This has demonstrated that presumptive reasoning is used for lexi-
cographic closure since it was presumed that penguins have wings.
Since rational closure uses prototypical reasoning, rational closure
would have come to the opposite conclusion.

3 PROJECT AIMS
The key aims of this project are as follows:

• Develop a console application-based defeasible reasoner
that reasons about some defeasible knowledge base by im-
plementing the lexicographic closure algorithm.

• Re�ne the optimisation approaches used to increase the
scalability of the lexicographic closure implementation com-
pared to the previous year’s SCADR project.

• Gather quantitative and qualitative information that shows
which knowledge bases and queries the optimisations are
most e�ective in obtaining better performance than previ-
ous implementations.

4 OPTIMISATION IMPLEMENTATIONS OF
LEXICOGRAPHIC CLOSURE

The project introduces three optimisation implementations. the �rst
is a more optimised iteration of the power set implementation from
last year [18]. The second optimisation was the use of the Fibonacci
search integrated with the ternary search implementation [18].
This optimisation will utilise the new power set implementation.
This implementation will be compared to the binary and ternary
implementations from last year [18]. The �nal optimisation uses
multi-threading and concurrency to allow for multiple queries to
be input and queried simultaneously.

The new implementations use the knowledge representation form
of classical logic. The implementations take in a defeasible knowl-
edge base and a defeasible query (queries for the concurrent al-
gorithm) as inputs. The base rank algorithm will construct the
rankings for the knowledge base. If there are classical statements,
they will be added to the in�nite rank. If not, the in�nite rank
remains empty. Defeasible statements are converted into classical
statements and to their associated ranks based on the algorithm.
The chosen implementation then checks whether the knowledge
base entails the query. For this project, Java was used for develop-
ment so that the TweetyProject [10] and Java Micro-bench Harness
libraries could be integrated with the implementations.

To analyse these implementations, the time and space complexi-
ties will be examined. Time complexity measures the execution
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time of an algorithm relative to the size of the input. For the time
complexity, we will only take the number of executed entailment
checks into consideration rather than the execution time of the
satis�ability solver. This is because the paper only focuses on the
implementations and not the satis�ability solver itself. Space com-
plexity measures the space that is taken up by the algorithm relative
to the input size. The Big O notation will be used to measure these
complexities. This notation measures the upper bound of the com-
plexity of the algorithm and disregards constants and lower order
terms.

4.1 TweetyProject
TweetyProject [10] is a multi-faceted collection of Java libraries that
is used for AI and knowledge representation and reasoning. This
project speci�cally uses the Propositional Parser, Belief Revision,
and Satis�ability Reasoner libraries from TweetyProject. The SAT
solver is the most important aspect of the project since it determines
whether the given query satis�es the knowledge base. For the SAT
solver, the project uses the Sat4jSolver since TweetyProject has built-
in support for it.

4.2 Power Set Optimisation
4.2.1 Analysis. This optimisation was �rst developed by Daniel
Park [18] in the previous year. They had noticed that in lexico-
graphic closure, the largest part of the algorithm is to prove if the
negation of the antecedent of the query is used in a subset of state-
ments in the worst rank. This typically means that each statement
in the rank would have to be checked. However, by using the de�-
nition of lexicographic closure used for Datalog [17], the subsets
can be combined into a single statement using disjunctions and
conjunctions.

De�nition 4.1. A power set of a set S is the set of all subsets of S.
This includes set S itself and the empty set, denoted as P(S).

The previous implementation of the power set function used the
previous de�nitions to �rst store the power set into a tuple of state-
ments and then combine them using conjunctions and disjunctions
separately. To combine them, each subset would be combined using
conjunctions and the sets containing the same number of state-
ments would be combined using disjunctions. This combination of
statements does not include the empty set. For example, for a set
S = {0,1, 2}, P(S) = {;, {0}, {1}, {2}, {0,1}, {0, 2}, {1, 2}, {0,1, 2}}.
This would then be combined to create:

{{0} _ {1} _ {2}, {0 ^ 1} _ {0 ^ 2} _ {1 ^ 2}, {0 ^ 1 ^ 2}}

With the previous power set algorithm, the algorithm would �rst
create the power set, store the power set, sort the power set, and
then combine the power set using conjunctions and disjunctions.
The prevPerm and printPowerSet algorithms improve upon this
by combining these steps. The printPowerset algorithm creates an
array that uses a binary indexing method where a 0 excludes the
statement and 1 includes the statement in the subset. The prevPerm
then checks that every permutation of that binary array has been
used. This ensures that the power set is created in ascending order of
number of statements in a subset. The printPowerset algorithm also

Algorithm 2: prevPerm
Data: An integer array (
Result: True, if i > 0, and False otherwise

1 = := ( .;4=6C⌘ � 1;
2 8 := =;
3 while 8 > 0 and (8�1  (8 do
4 8 := 8 � 1;
5 end
6 if 8  0 then
7 return False;
8 end
9 9 := 8 � 1;

10 while 9 + 1  = and ( 9+1 < (8�1 do
11 9 := 9 + 1;
12 end
13 C4<? := (8�1;
14 (8�1 := ( 9 ;
15 ( 9 := C4<? ;
16 B8I4 = = � 8 + 1;
17 for : = 0; : < 5 ;>>A (B8I4/2); : = : + 1 do
18 C4< := (:+8 ;
19 (:+8 := (=�: ;
20 (=�: := C4<;
21 end
22 return True;

adds the conjunctions and disjunctions while creating the power set.
The subsets and the operators are added onto a single string before
being stored. The algorithm will also remove the empty set and the
subset that includes the whole set since these are redundant. As
an example of these algorithms, let a rank R consist of statements
{0 ! 1, 0 ! 2, 0 ! 3}. The printPowerSet(R, length of ') function
will then return {{0 ! 1} _ {0 ! 2} _ {0 ! 3}, {0 ! 1 ^ 0 !
2} _ {0 ! 1 ^ 0 ! 3} _ {0 ! 2 ^ 0 ! 3}}.

These algorithms are then used by the lexicographic closure al-
gorithm. This algorithm was originally created by Park [18] but
there are new changes to this algorithm. The previous version used
to output the incorrect answer when given certain queries that
have the same formulas as the formulas in the knowledge base.
The output should return true since the information is entailed by
the knowledge base (it is the same information) but would instead
return false. This would mainly occur with the �rst few ranks since
the negation of the antecedent would not be entailed by the knowl-
edge base. Therefore, the new algorithm will check the entailment
of the formula if this occurs.

The below time and space complexities are for the worst-case sce-
nario.

4.2.2 Time Complexity. The time complexity of the previous lexi-
cographic closure algorithm (Algorithm 4) is O(=). This complexity
remains the same since the main focus of the power set optimisa-
tion has been to reduce the space complexity. This complexity was
broken down as follows:
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Algorithm 3: printPowerSet
Data: An object array (= , integer =
Result: A string arraylist BD1B

1 Create BD1B0, BD1B1, . . . , BD1B= ;
2 0=BF4A ="(";
3 Create 2>=C08=0, 2>=C08=1, . . . , 2>=C08== ;
4 2>=C08=0, 2>=C08=1, . . . , 2>=C08== := 0;
5 for 8 = 0; 8 < =; 8 = 8 + 1 do
6 2>=C08=8 := 1;
7 Create ⇠>=0,⇠>=1, . . . ,⇠>== ;
8 for 8=34G = 0; 8=34G < =; 8=34G = 8=34G + 1 do
9 ⇠>=8=34G = 2>=C08=8=34G ;

10 end
11 do
12 for 9 = 0; 9 < =; 9 = 9 + 1 do
13 if ⇠>= 9 = 1 then
14 0=BF4A := 0=BF4A + ( 9 .C>(CA8=6+ " && ";
15 end
16 end
17 0=BF4A := 0=BF4A .BD1BCA8=6(0,0=BF4A .;4=6C⌘ � 4);
18 0=BF4A := 0=BF4A+ ") || (";
19 while prevPerm(⇠>=);
20 0=BF4A := 0=BF4A .BD1BCA8=6(0,0=BF4A .;4=6C⌘ � 5);
21 Add 0=BF4A to BD1B;
22 0=BF4A := "(";
23 end
24 Remove BD1B= from BD1B;
25 return BD1B ;

• If the lowest rank contains = statements, then Algorithm 4
executes the entailment checker = times.

• If each rank consists of : statements, then Algorithm 4 will
be called : times.

This would form a total of : x =. With : < =, the time complexity
becomes O(=).

4.2.3 Space Complexity. For the space complexity, the previous
implementations required O(2=) since it stored the full power set
[20] before combining the power set. For the new algorithms:

• The algorithm clones the whole knowledge base of size : .
• If the worst rank consists of = statements, then the algo-

rithms stores 2= � 1 statements at a time (the empty set is
not created).

This would form a total of 2= � 1 + : which concludes to O(=) for
space complexity.

4.3 Fibonacci Search Optimisation
4.3.1 Analysis. This implementation builds upon the work that
was done for the power set optimisation. The Fibonacci search
optimisation is a combination of the Fibonacci search algorithm
and the ternary search optimisation from last year [18]. The typical
ternary search algorithm calculates the two positions needed to

Algorithm 4: Lexicographic closure using printPowerSet(',
length of ')

Data: A knowledge base K and a defeasible query U |⇠ V
Result: True, if K |⇡ U |⇠ V , and False otherwise

1 ('0,'1, . . . ,'=�1,'1,=) := BaseRank(K);
2 8 := 0;
3 ' :=

–:=�1
8=0 ': ;

4 while ' < ; do
5 if '1 [ ' |= ¬U then
6 for %( 2 printPowerSet('8 ) do
7 ' := '\'8 ;
8 ' := ' [ %( ;
9 if '1 [ ' 6|= ¬U then
10 if '1 [ ' |= U ! V then
11 return '1 [ ' |= U ! V ;
12 end
13 end
14 end
15 ' := '\'8 ;
16 8 := 8 + 1;
17 else
18 if '1 [ ' 6|= ¬U then
19 return '1 [ ' |= U ! V ;
20 end
21 end
22 end
23 return '1 [ ' |= U ! V ;

divide a sorted array into thirds. Each third would then be evaluated
to �nd the element requested. The algorithm will disregard the
thirds that do not contain the element, continue with the remaining
third, and repeat the process until the element is found.

However, for the ternary search optimisation, these positions are
instead used as ranges to search a knowledge base. The SAT solver
then uses these ranges to check for the negation of the antecedent.
Given the positions ?>B1 and ?>B2 where ?>B1  ?>B2, the algo-
rithm would SAT solve from ?>B1 to the end of the knowledge base.
If the negation of the antecedent is entailed, then the SAT solver
checks from ?>B2 to the end. If this range is not entailed, the SAT
solver checks from ?>B1 to ?>B2. If none of these ranges are entailed,
then the process is repeated from the beginning of the knowledge
base to ?>B2. This is done until the correct rank is found. When it is
found, the lexicographic closure algorithm is used on the remaining
statements and the query.

The typical Fibonacci search calculates the Fibonacci sequence until
the �nal value goes over the size of the array. The last three values
(e.g. 1 + 2 = 3 uses the values 1,2,3 for a size of 3) are used to generate
a position of a sorted array. This position is then used to �nd the
requested element in the array. If the element is less than the search
request, the variables that store the Fibonacci values are decreased
to the previous Fibonacci step (e.g. from 1 + 2 = 3 to 1 + 1 = 2) and
the position is changed by these values and an o�set. If the element
is greater than the search request, then the Fibonacci values will be
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changed in such a way that the new position will be above the old
position.

The Fibonacci search optimisation combines these algorithms by
using the generated Fibonacci numbers as the ranges mentioned
in the ternary search optimisation. The algorithm �rst uses the
size of the knowledge base to calculate the three values however,
the third Fibonacci value is not used. The algorithm uses the �rst
two values to act as ?>B1 and ?>B2 (e.g. 3 + 5 = 8 uses the values
3,5 for a size of 8). Once the algorithm starts repeating the whole
process, the Fibonacci values are recalculated based on the size of
the new range. This method was added to reduce the number of
statements that the SAT solver would need to check at any one
time. For example, for a knowledge base of 100 ranks, both ?>B1
and ?>B2 would initially be 33 for the ternary method while the
Fibonacci method would be 55 and 89 respectively.

The below time and space complexities are for the worst-case sce-
nario.

4.3.2 Time Complexity.

• If the worst rank consists of : statements, then the algo-
rithm executes the SAT solver : times.

• To �nd the worst rank, where the subsets of the knowledge
base have to be checked against the query, at least three
entailment checks are required. It then takes ;>63 (=) [1]
times to �nd the rank.

This forms a total of : + 3;>63 (=) which leads to a time complexity
of O(;>6(=)).

4.3.3 Space Complexity. The ternary search implementation has a
space complexity of O(2=) due to the previous power set implemen-
tation. Since the Fibonacci search optimisation builds upon the new
power set optimisation, the space complexity is reduced to O(=).

Algorithm 5: �bEntail
Data: ('0,'1, . . . ,'=�1,'1,=),U |⇠ V,1468=, 4=3
Result: A4<>E4'0=:

1 A4<>E4'0=: = �1;
2 B8I4 := 4=3 � 1468=;
3 5 812 := 0;
4 5 811 := 1;
5 5 81" := 5 812 + 5 811;
6 while 5 81" < B8I4 do
7 5 812 := 5 811;
8 5 811 := 5 81" ;
9 5 81" := 5 812 + 5 811;

10 end
11 if 1468= < 4=3 then
12 5 812 := 5 812 + 1468=;
13 5 811 := 5 811 + 1468=;
14 ' :=

–:=�1
8=5 812+1 ': ;

15 if '1 [ ' |= ¬U then
16 if 5 811 < = then
17 ' :=

–:=�1
8=5 811+1 ': ;

18 if '1 [ ' |= ¬U then
19 return

5 81⇢=C08; (('0,'1, . . . ,'=�1,'1,=),U |⇠
V, 5 811 + 1, 4=3);

20 else
21 ' :=

–:=�1
8=5 811 ': ;

22 if '1 [ ' |= ¬U then
23 return 5 811;
24 else
25 return

5 81⇢=C08; (('0,'1, . . . ,'=�1,'1,=),U |⇠
V, 5 812 + 1, 5 81 � 1);

26 end
27 end
28 else if 5 811 = '.;4=6C⌘ then
29 return 5 81⇢=C08; (('0,'1, . . . ,'=�1,'1,=),U |⇠

V, 5 812 + 1, 5 81 � 1);
30 else
31 ' :=

–:=�1
8=5 812 ': ;

32 if '1 [ ' |= ¬U then
33 return 5 812;
34 else
35 return 5 81⇢=C08; (('0,'1, . . . ,'=�1,'1,=),U |⇠

V,1468=, 5 812);
36 end
37 end
38 else
39 if 1468= = 4=3 then
40 return 1468=;
41 else
42 return False;
43 end
44 end
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Algorithm 6: Lexicographic closure using Fibonacci search
Data: A knowledge base K , a defeasible query U |⇠ V ,

begin, end
Result: True, if K |⇡ U |⇠ V , and False otherwise

1 ('0,'1, . . . ,'=�1,'1,=) := BaseRank(K);
2 1468= := 0;
3 4=3 := =;
4 ' :=

–:=�1
8=0 ': ;

5 A4<>E4'0=: := 5 81⇢=C08; (('0,'1, . . . ,'=�1,'1,=),U |⇠
V,1468=, 4=3);

6 if A4<>E4'0=: < 1 then
7 ' :=

–:=�1
8=A4<>E4'0=: ': ;

8 for %( 2 ?A8=C%>F4A(4C ('8 ) do
9 ' := '\'8 ;

10 ' := ' [ %( ;
11 if '1 [ ' 6|= ¬U then
12 return '1 [ ' |= U ! V ;
13 end
14 end
15 ' := '\'8 ;
16 return '1 [ ' |= U ! V ;
17 else
18 return False;
19 end

4.4 Concurrent Optimisation
4.4.1 Analysis. So far the idea of scalability has been to reduce
the execution time to evaluate one query with one knowledge
base. The concurrent optimisation introduces a new interpretation
of scalability. After the knowledge base has been generated, the
optimisation takes in a text �le of queries as input. The algorithm
then creates three threads and separates the queries into three
parts. It then calls the Fibonacci search implementation. The output
will display the queries with their answer alongside them. This
allows multiple statements to be done simultaneously instead of
doing each statement sequentially. In terms of thread safety, the
algorithm does not rely on shared memory and the algorithm waits
until each thread has been completed before the entire application
can continue.

4.4.2 Time Complexity. Since the concurrent optimisation creates
threads to compute the Fibonacci search optimisation, the time
complexity would still be O(;>6(=)). Therefore, the speedup will be
evaluated in the Results section.

4.4.3 Space Complexity. Since the concurrent optimisation creates
threads to compute the Fibonacci search optimisation, the space
complexity would be O(=).

4.5 Comparison of Complexities
It is clear that the space complexity of the new implementations
has improved due to the power set implementation however, the
time complexities have not changed. This is because the number of
entailment checks have remained the same.

Naive Power Set Binary Search Ternary Search
Time O(=3) $ (=) O(;>6(=)) O(;>6(=))
Space O(=) O(2=) O(2=) O(2=)

Table 7: Time and Space Complexities of Previous Implemen-
tations

Power Set Fibonacci Search Concurrent
Time O(=) O(;>6(=)) O(;>6(=))
Space O(=) O(=) O(=)

Table 8: Time and Space Complexities of the New Implemen-
tations

5 EXPERIMENT DESIGN AND EXECUTION
This experiment aims to measure the performance of the implemen-
tations on knowledge bases with various number of statements,
ranks, and distributions. The experiment will measure all of the
implementations for lexicographic closure. This is because all of the
implementations need to be measured from the same machine for
comparable results. The test knowledge bases were made using the
knowledge base generator by Bailey [2]. This generator allows for
the statements, ranks, and distribution to be adjusted as parameters.
The statements will be generated in such a way that the Base Rank
algorithm will create the ranks that were requested. The statements
will also be defeasible statements with numerical atoms e.g., 1! 0.
The current distributions of statements are uniform, normal, and
inverse normal.

5.1 Speci�cations & Limitations
The machine used to test both the new and the old implementations
are as follows:

• Model: Macbook Air (2015)
• CPU: Intel Core i5-5250U, 2 cores, 1.6GHz clock speed
• RAM: 2x4gb DDR3
• Power supply: 54 Whr

Due to the limitations of the previous power set implementation,
the function cannot handle more than 13 statements within a single
rank. This because the space complexity of the method is $ (2=)
which causes the machine to return "out of space" error. Since
every implementation uses the Power Set implementation, the ex-
ponential and inverse exponential distribution cannot be tested and
compared. Another limitation is that the concurrent implementa-
tion will use the System library instead of the Java Microbench
Harness due to java heap space memory errors.

5.2 Hypothesis
This experiment has threemain focuses. The �rst focus is comparing
the new power set implementation to the previous implementation.
Since the new version has a space complexity of O(=) while the
previous version is O(2=), the new version will be able to handle
more statements. This change in space complexity will correlate
with a better execution time since there is less time needed for
reading memory.
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The second is comparing the execution times of the binary search
and ternary search with the Fibonacci search. From the theoretical
analyses, binary search takes 2;>62 (=) times, ternary search takes
3;>63 (=) times, and Fibonacci search takes 3;>63 (=). This shows
that the Fibonacci search will perform better than the binary search.
For the ternary search, the di�erence will be much smaller to notice.
Although, the complexities are the same, the di�erence in execution
time will be determined by how much information is being sent to
the SAT solver. The Fibonacci search may require more look-ups
but the reduction of time for the SAT solver will compensate for
this. Therefore, the Fibonacci search will perform slightly better
than ternary search.

The third focus is comparing the execution times of multiple queries
on the Fibonacci search with the concurrent implementation. In
this case, I expect the concurrent implementation to only perform
better than the Fibonacci search. This is because creating multiple
threads can cause allow more statements to be done in a shorter
amount of time.

5.3 Java Microbench Harness
The Java Microbench Harness (JMH) is a tool that builds, runs,
and analyses benchmarks for Java programs. JMH is part of the
OpenJDK collection of libraries. JMH was chosen since it has many
advantages/features that are better suited for testing. Firstly, re-
sults are not skewed from optimisations from the virtual machine.
Secondly, any unused or useless code is removed before running.
Lastly, it is also more accurate than using the System library’s
time functions. JMH will be used to test the execution time of the
implementations around the SAT solver.

The tool will set up the knowledge base and call the Base Rank
algorithm before measuring the execution time. This was done to
not measure the creation of the knowledge base and to reduce any
other external factors, thereby giving a more accurate measurement
of the execution times of the algorithms.

JMH will use the following parameters:

• Fork (value = 2)
• Measurement (iterations = 10, time = 1)
• Warmup (iterations = 5, time = 1)

Fork refers to the number of trials that will be performed. Each
trial consists of a set of warmups and iterations. Warmups refers to
the number of warmup tests which are done to properly optimise
the JVM before running the benchmark. This ensures that the JVM
does not skew the benchmark results. The measurements refer to
the number of times that the tests are run for each fork. This tracks
the best, average, and worst times of each iteration. In total, the
JMH will generate results from 20 runs.

5.4 Test Cases
Five test cases will be conducted for this experiment that use various
knowledge bases. Test 1 will test the execution time of the ternary
search, binary search, and Fibonacci search implementations. The
knowledge base consists of 250 ranks with 1000 statements, con-
taining only defeasible statements, and an uniform distribution.

The query set for test 1 will use a statement from rank 0 and every
10C⌘ rank (26 queries).

Test 2 will test the ternary search, binary search, and Fibonacci
search implementations against all distributions (uniform, normal,
inverted-normal). The knowledge base consists of 50 ranks with 200
statements, and only containing defeasible statements. The query
set for test 2 will use a statement from every 7C⌘ rank starting from
rank 0 (8 queries).

Test 3 will compare the number of comparisons and execution times
between the Fibonacci search, binary search, and ternary search.
The results will also be used to compare the time complexities
with the comparisons. The knowledge base consists of 50 ranks
with 200 statements, containing only defeasible statements, and
a uniform distribution. The comparisons will be measured using
internal counters that count entailment checks. The query set for
test 3 will use a statement from every 7C⌘ rank starting from rank
0 (8 queries). The execution times will show the total time taken to
run all queries.

Test 4 will compare the concurrent the execution time of the con-
current implementation with the Fibonacci search. The knowledge
base will consist of 50 ranks with 200 statements, containing only
defeasible statements, and a uniform distribution. The query set for
test 4 will use a statement from every 7C⌘ rank starting from rank
0 (8 queries). The execution times will show the total time taken to
run all queries.

Test 5 will be used to test the execution time of the power set
implementations. The knowledge base consists of 50 ranks with 200
statements, containing only defeasible statements, and an uniform
distribution.The query set for test 5 will use a statement from every
2=3 rank starting from rank 0 (25 queries). The execution times will
show the total time taken to run all queries.

5.5 Results
5.5.1 Test 1. The summary below and Figure 1 (See Supplementary
Information (SI) A) shows that the Fibonacci search has the highest
average time between the three implementations. This is due to the
larger execution time in the second third of the knowledge base
(between rank 80 and 160). This occurred due to the additional
entailment checks required to reach that middle portion which in
turn increased the average execution time. The Fibonacci search
has, however, outperformed both implementations for the best case
(located in rank 180). This is because the other implementations
would require more entailment checks that check a large portion
of the knowledge base to reach that rank.

Binary Search Ternary Search Fibonacci Search
Best 324.804068 362.314401 294.660394

Average 513.9112347 544.1770445 554.1821034
Worst 884.727327 751.142284 769.239586

Table 9: Summary of Test 1 (in ms)
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5.5.2 Test 2. The tables below and the �gures in SI B have shown
that the Fibonacci search has outperformed in most categories. This
is particularly true for the normal and inverse normal distributions.
This shows that the power set implementations have reduced the
execution time through the space complexity. This is true since the
ranks that contain the most statements are still much lower than
that of the previous implementations.

The uniform distribution of Test 2 is in stark contrast of Test 1’s
uniform distribution. As the knowledge base has increased, the
overhead of comparisons increase for ranks that are in the �rst two
thirds while decreasing for the last third.

Binary Search Ternary Search Fibonacci Search
Best 267.962712 204.036052 219.908109

Average 482.304789 386.6634044 384.9115139
Worst 754.731928 528.448789 534.819639

Table 10: Summary of Uniform Distribution for Test 2 (in
ms)

Binary Search Ternary Search Fibonacci Search
Best 252.424176 201.800873 195.10106

Average 447.3732729 385.905811 340.0518308
Worst 545.395394 526.146552 492.056261

Table 11: Summary of Normal Distribution for Test 2 (in ms)

Binary Search Ternary Search Fibonacci Search
Best 320.194511 442.844887 218.072917

Average 483.9600438 840.2043348 452.3762614
Worst 653.11928 1033.944199 680.732539

Table 12: Summary of Inverse Normal Distribution for Test
2 (in ms)

5.5.3 Test 3. Table 13, Table 14, and Figure 5 (SI C) follow a similar
trend to Test 2 in terms of execution time. In this case, the Fibonacci
search implementation outperforms all categories for execution
time. In terms of the comparisons, the Fibonacci search also out-
performs in all categories. This is all due to the overall size of the
knowledge base, how the positions (?>B1 and ?>B2) are distributed,
and where the rank is situated. There is also a positive correlation
between execution time and comparisons. From Test 2’s uniform
distribution we can also see a correlation between the distribution
and the number of comparisons required.

In terms of the worst-case scenarios, the implementations’ compar-
isons match the time complexities as expected. The binary search
is 2;>62 (50) = 11.28 which can be approximated to 13 (or at least
higher than the other implementations). 3;>63 (50) = 10.68 ⇡ 11.

Binary Search Ternary Search Fibonacci Search
Best 2974.545262 2486.428984 2637.942748

Average 3153.764501 2703.557163 2654.605634
Worst 3332.983739 2920.685342 2671.26852
Table 13: Summary of Execution Time for Test 3 (in ms)

Binary Search Ternary Search Fibonacci Search
Best 6 4 3

Average 9.75 8.625 7.125
Worst 13 11 11
Table 14: Summary of Comparisons for Test 3 (in ms)

5.5.4 Test 4. The Fibonacci search without the concurrent imple-
mentation yielded an average time of 21999.35418 ms whilst the
concurrent implementation yielded an average time of 6672.516258
ms. This leads to a speed up of 3.297010203 times.

5.5.5 Test 5. From the data below and Figure 6 (SI E), the new
power set implementation is very similar in execution time and
only slightly outperforms the previous power set method in terms of
average time. This is due to the time complexity being very similar.
The new power set also outperforms for the worst case execution
time. The average time and worst case time can be attributed to the
better space complexity as this a�ects the execution time. Although
the old power set method has a better best case execution time, this
is due to the implementation giving the incorrect answer for rank
0. Therefore, this best time must be disregarded, making the new
power set method better by default.

New Power Set Old Power Set
Best 166.126 65.002704

Average 2478.15836 2480.408163
Worst 4898.107 5630.298724
Table 15: Summary of Test 5 (in ms)

5.6 Conclusions
Test 1 has shown that for larger knowledge bases, the overhead of
execution times for the Fibonacci search implementation increases
because the �rst two thirds become larger and therefore require
more entailment checks.
Test 2 further proves that the Fibonacci search implementation is
better for smaller knowledge bases unlike the binary search and the
ternary search which improved as the size increased. The normal
and inverse normal distributions also shows that the Fibonacci
search implementation is better at handling ranks that had a large
number of statements.
Test 3 has shown that the distribution of the statements, size of the
knowledge base, and the number of ranks greatly a�ects how many
comparisons are made. The test has shown that the distribution
can also a�ect the number of comparisons. The test has also shown
that the time complexities of the implementations closely match
the comparisons which solidi�es the time complexities.
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Test 4 showed a large improvement for reading in and evaluating
multiple queries at a time.
Test 5 has shown the importance of space complexity and how it
a�ects execution times. It has also highlighted the issue within the
previous power set implementation where the incorrect output is
given for antecedents in the beginning ranks.

This paper has shown that the Fibonacci search optimisation did
not prove to be more scalable than the ternary search or the binary
search due to the increase in execution times for larger knowledge
bases. However, by removing this particular method as a potential
optimisation for defeasible reasoners, it has shed more light on how
to build better scalable defeasible reasoners. It has also shown that
the concurrent implementation is very e�ective in dealing with
multiple queries at once and proves that scalability can be improved
in more ways than one.

6 RELATEDWORK
6.1 Classical SAT Solving
Rational closure and lexicographic closure reduce to a number of
classical entailment checks. This makes Boolean satis�ability ap-
plicable to this research. Boolean satis�ability (SAT) determines
whether there exists an assignment satisfying a given Boolean
formula [[6], [19]]. In analyzing the SAT solvers for classical rea-
soning we can determine which SAT solvers are appropriate for
our defeasible reasoning model.

6.1.1 Semantic Tableaux. The tableau decomposes a formula into
sets of atomic literals, creating in a tree-like tableau [16]. Each
branch ends with a complementary pair of formulae, a closed
branch, or consists of a set of non-contradictory literals, an open
branch. A model for the given formula is represented by an open
branch.When decomposition is no longer possible, the construction
is complete. If there is a clash then the initial formula is considered
unsatis�able. A clash this represents a contradiction and occurs
when literals for an atom are found within the same subset. A com-
pleted tableau is required to determine a formula’s satis�ability.

6.1.2 DPLL. DPLL is a backtracking algorithm [7]. The algorithm
allows for the input of a propositional formula in CNF format. If the
formula is satis�able, the algorithm returns true. If the formula is
unsatis�able, the algorithm returns false. A branching procedure is
executed to set some atom in U to a random truth value. Branching
repeats until an assignment either satis�es U or not. If not, the
algorithm will backtrack. Backtracking retrieves the most recent
branching assignment and re-branches it with a di�erent assign-
ment. Backtracking will repeat if there are no new assignments. U
is unsatis�able if there exists no new branches and backtracking is
not possible.

6.1.3 Conflict-Driven Clause Learning (CDCL). The creation of the
CDCL [15] was motivated by the DPLL SAT solver. The distinc-
tion between the SAT solvers is that the CDCL SAT solver uses
non-chronological backtracking [7]. Con�icts caused by variable
assignments are cached. This leads to optimised e�ciency and
execution.

6.1.4 Defeasible SAT Solvers. SAT solvers only cover a limited
scope of reasoning, speci�cally classical. SAT solvers currently

cannot deduce the satis�ability of a defeasible statement in rela-
tion to the rational closure or lexicographic closure of a defeasible
knowledge base [13].

6.2 SCADR Project (2021)
The Scalable Defeasible Reasoning research is work that is built
upon last year’s (2021) work and so is related to this project as well.

6.2.1 Park [18]. Daniel Park developed the lexicographic closure
implementations which were used for comparison. He speci�cally
developed the power set optimisation, the binary search optimisa-
tion, and the ternary search optimisation. He has also developed a
concurrent base ranking model which was used for this project.

6.2.2 Rational Closure [9]. Although the work of Hamilton [9] was
not directly about rational closure, theory and examples were dis-
cussed to understand lexicographic closure. Hamilton developed the
rational closure implementations. This includes the binary search
optimisation, an indexing optimisation, and a binary indexing opti-
misation.

6.2.3 Bailey [2]. A knowledge base generator had to be used for
this project. This generator allowed for di�erent parameters to be
set such as number of ranks, number of statements, distributions,
and optional inclusion of classical statements.

7 FUTUREWORK
The improvements made for this project focused on the implemen-
tations of lexicographic closure. Future researchers should consider
improving upon the knowledge base generator created by Bailey.
By generating more complicated statements, more tests and anal-
yses can be done for the current and previous implementations.
Although this paper did not focus on the Base Rank method, no
changes were made to the previous implementations. Improving
this algorithm would make ranking the knowledge base faster for
larger data sets. More research should also be done for the concur-
rent implementation. With better thread creation and management,
the implementation could become faster.
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Supplementary Information

A TEST 1

Figure 1: Comparison of Execution Times for Implementations Using Fibonacci Search, Ternary Search, and Binary Search
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B TEST 2

Figure 2: Comparison of Execution Times for Implementations Using Fibonacci Search, Ternary Search, and Binary Search -
Uniform Distribution
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Figure 3: Comparison of Execution Times for Implementations Using Fibonacci Search, Ternary Search, and Binary Search -
Normal Distribution
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Figure 4: Comparison of Execution Times for Implementations Using Fibonacci Search, Ternary Search, and Binary Search -
Inverse Normal Distribution
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C TEST 3

Figure 5: Comparison of Entailment Checks for Implementations Using Fibonacci Search, Ternary Search, and Binary Search
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D TEST 5

Figure 6: Comparison of Execution Times for the New and Old Power Set Implementations


