
Scalable Defeasible Reasoning V2 Literature Review

Evashna Pillay
University of Cape Town

Cape Town, South Africa

plleva005@myuct.ac.za

ABSTRACT
Knowledge representation and reasoning formally represents and
enables reasoning of information about the world, this is an ap-
proach used in artificial intelligence. Reasoning systems based on
classical propositional logic are able to perform many reasoning
tasks correctly and quite efficiently, however it is likely that as
more information is attained, a contradiction occurs. While there
has been some work on developing efficient systems for defeasible
reasoning, much remains to be done. The goal of this project is
to build on a previous honours project to design and implement
algorithms for different forms of propositional defeasible reasoning,
and to evaluate the extent to which these algorithms are scalable.

CCS CONCEPTS
• Theory of computation→ Automated reasoning; • Comput-
ing methodologies → Nonmonotonic, default reasoning and
belief revision.

KEYWORDS
artificial intelligence, knowledge representation and reasoning, de-
feasible reasoning

1 INTRODUCTION
Propositional logic will be defined as well as its syntax and seman-
tics. A brief overview of defeasible reasoning and its underlying
approaches will be presented, including entailment and preferential
reasoning. Following this, the KLM approach will be introduced,
thereafter an overview of rational closure will be provided along
with the algorithm to compute it. Finally, the Boolean satisfiability
problem will be outlined, additionally two approaches; the DPLL
and Semantic tableaux based algorithms will be briefly described.

2 PROPOSITIONAL LOGIC
2.1 Motivation
Propositional logic is the study of logic including reasoning about
knowledge or information that human language represents in logi-
cal statements. To form ideal statements, we combine and modify
propositional statements using connectives such as equivalence,
and, or, not and implication, however these statements can be more
complex [1] [9]. Every base statement can be attributed to a truth
value. The truth value of a combination of statements depends on
these base statements. As a result, we can evaluate and rationalize
a statement or set of statements from which new conclusions are
isolated.

2.2 Syntax
The language of propositional logic consists of atomic assertions
(i.e., atoms or propositional letters) [9]. The proposition atom is
also called a variable or symbol. For example, the intuition is that
𝑆𝑜𝑐𝑟𝑎𝑡𝑒𝑠 is shorthand for a statement, or proposition such as “Socrates
is a philosopher." Atoms are then assigned truth values, they can
either be true, indicated by T, or false, indicated by F. The set of
statements or propositional atoms will be denoted as P and is finite.
Each propositional atom will be represented using meta variables
(e.g., 𝑝 , 𝑞, 𝑟 ,. . .). Atoms can be combined by a set of connectives
(i.e., ¬, ∧, ∨, → , ↔) to create more complex propositional for-
mulas [9]. The negation operator is unary and therefore takes in
one operand, whereas the other operators are all binary and takes
in two operands. See table below defining connectives and their
symbols.

Operator Symbol Operator Name
¬ Negation
∧ Conjunction
∨ Disjunction
→ Implication
↔ Equivalence

The set of all propositional formulas are denoted by L, and rep-
resented by lowercase Greek letters such as 𝛼, 𝛽,𝛾 ,. Formulas of
L are defined recursively such that L is defined as follows: for
some 𝑝 ∈ P and 𝛼, 𝛽 ∈ L, {𝑝, ¬𝛼, 𝛼 ∧ 𝛽, 𝛼 ∨ 𝛽, 𝛼 → 𝛽, 𝛼 ↔ 𝛽}.
Additionally, constants of L include ⊤ and ⊥.

Further explanation on L below:

• ⊤ is a tautology and is referred to as “top", which is a state-
ment that is always T. In contrast, ⊥ refers to a statement
which is always F.

• ¬𝛼 takes in a single statement that reads T when it is F and
F when it is T.

• 𝛼 ∨ 𝛽 is a disjunction of two statements such that “𝛼 or 𝛽”
is T if and only if either 𝛼 or 𝛽 are T.

• 𝛼 ∧ 𝛽 is a conjunction of two statements such that “𝛼 and
𝛽” is T if and only if both are T.

• 𝛼 → 𝛽 means 𝛼 implies 𝛽 , such that when 𝛼 is T, 𝛽 is always
T. Intuitively, the same as “if 𝛼 then 𝛽” and “𝛼 only if 𝛽 .”
The exception is when 𝛼 is T and 𝛽 is F.

• 𝛼 ↔ 𝛽 is read as “𝛼 if and only if 𝛽 ,” this is T if and only if
𝛼 and 𝛽 are both T or both F.

Evashna Pillay

We have defined the syntax of propositional logic. To determine
the truth value of a set of propositional formulas we will use a
model-theoretic definition, using semantics.

2.3 Semantics
The semantics of logic enables a systemic analysis of the language
whereby the meaning of T is defined. The notion of a statement
being T is called 𝑆𝑎𝑡𝑖𝑠 𝑓 𝑎𝑐𝑡𝑖𝑜𝑛. Propositional atoms are assigned
truth values known as valuations and referred to as 𝑤𝑜𝑟𝑙𝑑𝑠 or
𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛𝑠 , this will be denoted by the Latin alphabet.

The truth tables [13] below illustrate the truth values of the atoms
(left) and the resulting evaluations of the propositional formula(s)
mentioned in Section 2.2:

• ¬𝛼

𝛼 ¬𝛼
T F
F T

• 𝛼 ∨ 𝛽

𝛼 𝛽 𝛼 ∨ 𝛽
T T T
T F T
F T T
F F F

• 𝛼 ∧ 𝛽

𝛼 𝛽 𝛼 ∧ 𝛽
T T T
T F F
F T F
F F F

• 𝛼 → 𝛽

𝛼 𝛽 𝛼 → 𝛽

T T T
T F F
F T T
F F T

• 𝛼 ↔ 𝛽

𝛼 𝛽 𝛼 ↔ 𝛽

T T T
T F F
F T F
F F T

Definition 2.3.1 A valuation 𝑢 is a function, 𝑢 : 𝑃 ↦→ {𝑇, 𝐹 }. Every
propositional atom in the language is assigned either T or F.

E.g., P := {𝑝, 𝑞, 𝑟 }, a random valuation 𝑢 ∈ U could be 𝑝𝑞𝑟 , which
is read as 𝑝 and 𝑟 being T and 𝑞 being F.

Definition 2.3.2 The valuation 𝑢 satisfies the atom 𝑝 if an atom is
T in the valuation 𝑢.

E.g. 𝑝 ∈ P, 𝑢 (𝑝) = T, then 𝑢 |= 𝑝 , |= denotes that the valuation 𝑢
satisfies the atom 𝑝 .

Definition 2.3.3 For any valuation 𝑢 that satisfies 𝛼 ∈ L, let 𝛼 :=
{𝑢 ∈ U | 𝑢 |= 𝛼}. For 𝑢 ∈ 𝛼 , the valuation 𝑢 is referred to as a
model of 𝛼 . The set of all models of 𝛼 is denoted by 𝛼 .

• If 𝛼 contains at least one model, then 𝛼 is satisfiable.

• If 𝛼 is empty, then 𝛼 is unsatisfiable.

• If 𝛼 = U, then 𝛼 is a tautology, and T for every possible
valuation.

E.g., 𝑝 ∧ ¬𝑝 is unsatisfiable, and 𝑝 ∨ ¬𝑝 is a tautology.

Definition 2.3.4 Two formulas 𝛼 , 𝛽 ∈ L, 𝛼 ≡ 𝛽 if and only if 𝛼 |= 𝛽
and 𝛽 |= 𝛼 . 𝛼 and 𝛽 are logically equivalent, this is a meta-level
concept not defined as part of L itself. Logical consequence and
logical equivalence represent deductions that can be made about
statements in L.

Definition 2.3.5 A knowledge base, K ⊆ L, is a finite set of
propositional formulas. A knowledge base represents a set of facts
about the𝑤𝑜𝑟𝑙𝑑 .

E.g., K = {𝑝, 𝑝 → 𝑞} mean there are two known facts that hold,
that is 𝑝 and 𝑝 → 𝑞. Each formula in a knowledge base restricts
the set of valuations in U that satisfy the knowledge base.

It is possible that for every 𝑢 ∈ U that 𝑢 ̸ |= K , or that there is no
model of K , therefore the knowledge base is unsatisfiable. The set
of valuations satisfying K is the empty set, ∅.

3 DEFEASIBLE REASONING
3.1 Motivation
Defeasible reasoning is a form of non-monotonic reasoning, as it
allows the reasoner to temporarily dismiss commonly held beliefs
when presented with new contradictory information [14]. Atypical
reasoning scenarios in which humans fundamentally think differ-
ently, whether owing to their beliefs, context, or other conditions,
are likewise addressed by defeasible reasoning. AI systems may
mimic human thinking more precisely with defeasible reasoning
and its methods than with classical reasoning and the underlying
idea of non-monotonic reasoning.

Let’s use a familiar example to illustrate the defeasible reasoning
approach.

E.g., “Tweety is a bird” and the reasoner is aware of the following:

(1) Most birds can typically fly.

(2) Birds have wings.

Scalable Defeasible Reasoning V2 Literature Review

(3) Penguins are birds.

(4) Tweety is a penguin.

The reasoner can deduce that Tweety is a bird from the consequent
of (3). The reasoner can then deduce that Tweety can fly because
(1) follows (3). However, we know that penguins cannot fly due
to their biological makeup. As a result, penguins are distinct from
other birds. With the additional information made available to the
reasoner, the reasoner’s understanding that birds normally fly is
weakened. A variety of non-monotonic reasoning systems have
previously been developed. The KLM framework specifically for
defeasible reasoning provides a preferential approach to construct
defeasible systems [10]. The framework is based on conditional
logic and preferential logic [5] [16]. The defeasible reasoning algo-
rithms generated by this technique has proven to be intrinsically
computable and as efficient as classical reasoning algorithms [11].

3.2 A Preferential Approach
Preferential reasoning sets the semantic foundation that is shared by
many non-monotonic logic. A 𝑝𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

is indicated by |∼ in contrast to ⊢. It is a set of conditional assertions,
written as 𝛼 |∼ 𝛽 where 𝛼 , 𝛽 ∈ L, with the intended interpretation
of, from 𝛼 we are prepared to conclude 𝛽 unless we receive contra-
dictory information. This implies that any defeasible assertion can
be retracted after discovering contradictory information.

Definition 3.2.1The consequence relation denoted by |∼ represents
defeasible implication. Additionally consequence relations satisfy
the KLM postulates.

E.g., 𝑏𝑖𝑟𝑑 |∼ 𝑓 𝑙𝑖𝑒𝑠 reads as "birds typically fly."

Preferential semantics allows the preference of a valuation 𝑢 over a
valuation 𝑣 , as a result𝑢 will be considered before 𝑣 . This preference
can be interpreted in a variety of ways. One possible interpretation
is that typical valuations are chosen. An example to illustrate this
would be a valuation in which 𝑏𝑖𝑟𝑑𝑠 𝑐𝑎𝑛 𝑓 𝑙𝑦 over a valuation in
which 𝑏𝑖𝑟𝑑𝑠 𝑐𝑎𝑛𝑛𝑜𝑡 𝑓 𝑙𝑦.

Definition 3.2.2 Preferential interpretation P is a triple 〈S, 𝑙 , ≺〉
where S denotes an infinite set of states, 𝑙 is a function such that
𝑙 : S ↦→ U maps states to valuations, and ≺ denotes a strict partial
order on S.

For 𝛼 ∈ L and P, [[𝛼]]P := {𝑠 ∈ S,S ∈ P, 𝑙 (𝑠) ⊩ 𝛼}. [[𝛼]]P is the
set of all states in P such that the valuation associated with each
state satisfies 𝛼 .

A subset of preferential interpretations are ranked interpretations.
In a ranked interpretation, if given two states then the states are
either equal in rank, or either one is preferred. This differs from
preference interpretations using a non-modular partial order, in
which two states might be incomparable in a variety of ways. As
opposed to preferential interpretations, ranked interpretations don’t
allow duplicate states.

Definition 3.2.3 A ranked interpretation is a function R : U ↦→
N ∪ {∞}. For every 𝑖 ∈ N , if there is some 𝑢 ∈ U where R(𝑢) = 𝑖 ,
then 𝑣 ∈ U such that R(𝑣) = 𝑗 where 0 ≤ 𝑗 < 𝑖 [7].

The rank of 𝑢 ∈ U in R shall be denoted by the notation R(𝑢).
Ranks in this case imply that valuations with a lower-rank are more
typical, or regular, while infinite-rank valuations are impossible.

E.g., For P := {𝑝, 𝑞, 𝑟 }, the ranked interpretation R is represented
below:

∞ 𝑝𝑞𝑟 𝑝𝑞𝑟

2 𝑝𝑞𝑟 𝑝𝑞𝑟 .
1 𝑝𝑞𝑟 𝑝𝑞𝑟 𝑝𝑞𝑟

0 𝑝𝑞𝑟

• R (𝑝𝑞𝑟) =R (𝑝𝑞𝑟) =∞, therefore 𝑝𝑞𝑟 and 𝑝𝑞𝑟 are impossible.

• R (𝑝𝑞𝑟) = R (𝑝𝑞𝑟) = 2 and R (𝑝𝑞𝑟) = R (𝑝𝑞𝑟) = R (𝑝𝑞𝑟) = 1.

• R (𝑝𝑞𝑟) = 0, 𝑝𝑞𝑟 is the most preferred and signifies the most
typical world.

Definition 3.2.4 Given a defeasible knowledge base K and a de-
feasible implication 𝛼 |∼ 𝛽 , K |≈P 𝛼 |∼ 𝛽 if and only if for every
preferential model P, of K , P ⊩ 𝛼 |∼ 𝛽 .

Preferential entailment is analogous to classical entailment such
that if a query is satisfied by every preferential model P of a knowl-
edge base K , then it is preferentially entailed by the knowledge
base K .

Ranked preferential entailment functions are analogous to proposi-
tional logic. This means that ranked entailment is monotonic.

Definition 3.2.5 Given a knowledge base K and a defeasible im-
plication 𝛼 |∼ 𝛽 , K |≈R 𝛼 |∼ 𝛽 if and only if for every ranked
interpretation R, where R ⊩ K , R ⊩ 𝛼 |∼ 𝛽 .

3.3 KLM-Style Defeasible Entailment
Defeasible reasoning unlike propositional logic does not define a
fixed method to determine defeasible entailment. Thus to determine
whether a defeasible implication is entailed by a knowledge base,
the method must only adhere to the rationality properties defined
by Lehmann and Magnidor [12].

The rationality properties for knowledge base K and propositional
formulas 𝛼, 𝛽,𝛾 [9]:

(Ref) K |≈ 𝛼 |∼ 𝛼 And K |≈𝛼 |∼𝛽,K |≈𝛼 |∼𝛾
K |≈𝛼 |∼𝛽∧𝛾

(LLE) K |≈𝛼↔𝛽,K |≈𝛼 |∼𝛾
K |≈𝛽 |∼𝛾 Or K |≈𝛼 |∼𝛾,K |≈𝛽 |∼𝛾

K |≈𝛼∨𝛽 |∼𝛾
(RW) K |≈𝛼→𝛽,K |≈𝛾 |∼𝛼

K |≈𝛾 |∼𝛽 (CM) K |≈𝛼 |∼𝛾,K |≈𝛼 |∼𝛽
K |≈𝛼∧𝛽 |∼𝛾

3.4 Rational Closure
Rational closure is an LM-rational method of defeasible entailment.
We will first define minimal ranked entailment, materialisation,
Base Rank Algorithm before providing an overview of the Rational
Closure Algorithm.

Definition 3.3.1 Minimal Ranked Entailment. Ranked entailment
is similar to the principle of ranked interpretations in the sense
that the lower the ranked model, the more likely there exists a
minimum ranked model in the ordering. This principle involves a

Evashna Pillay

partial order for all ranked models of knowledge base K referred
to as ⪯K . The rational closure of a knowledge base K is based on
finding this minimum ranked model [6] as the minimum ranked
model must satisfy some defeasibile implication for the knowledge
base K to entail it [7].

Definition 3.3.2 Materialisation. The material counterpart of a
defeasible implication 𝛼 |∼ 𝛽 is the propositional formula 𝛼 →
𝛽 . The material counterpart of a defeasible knowledge base K is
denoted as

−→
K and represents the set of material counterparts, 𝛼 →

𝛽 , for every defeasible implication 𝛼 |∼ 𝛽 ∈ K .

E.g., 𝑏𝑖𝑟𝑑 |∼ 𝑓 𝑙𝑖𝑒𝑠 is replaced with 𝑏𝑖𝑟𝑑 → 𝑓 𝑙𝑖𝑒𝑠 .

Definition 3.3.3 The Base Ranks Algorithm. Base Ranks is the
initial step performed when implementing rational closure to K
to determine the minimum ranked model. Each formula in

−→
K is

mapped to a rank in N ∪ {∞}, this denotes the exceptional subset
of K , EK

𝑛 .

A walk-through of the Base Ranks Algorithm:

(1) Separate K into classical (i.e., K𝐶) and defeasible (i.e., K𝐷)
components.

(2)
−−→
K𝐷 in EK

0 and 𝐾𝐶 as is.

(3) For each 𝛼 → 𝛽 ∈ EK
0 , determine if EK

0 ∪ 𝐾𝐶 |= ¬𝛼 .

(4) If true, 𝛼 is exceptional and all formulas within EK
0 with 𝛼

are moved to EK
1 .

(5) Rank RK
0 is assigned to the formulas E𝐾0 \EK

1 .

(6) Repeat the process for the next subset, i.e., EK
1 until no

more formulas need to be copied/assigned.

(7) Add the final rank R𝐾∞ to 𝐾𝐶 .

Definition 3.3.4 The Rational Closure Algorithm. Rational Closure
will make use of R𝐾 from the Base Rank Algorithm, given a knowl-
edge base K and some defeasible implication, 𝛼 |∼ 𝛽 [4].

A walk-through of the Rational Closure Algorithm:

(1) Check if
−→
K entails ¬𝛼 .

(2) If this is not the case, 𝛼 is compatible with K . Then check
if
−→
K entails 𝛼 → 𝛽 .

(3) If this is the case, 𝛼 is incompatible with K . The most pre-
ferred rank is withdrawn from RK . The resulting knowl-
edge base will be denoted as K ′.

(3.1) If RK′
is an empty set, then K ̸|≈ 𝛼 |∼ 𝛽 .

(3.2) If RK ′ contains at least one rank, we return to (1) with
K ′.

E.g., The knowledge base K = {𝑏 |∼ 𝑓 , 𝑝 → 𝑏, 𝑝 |∼ ¬𝑓 , 𝑅 → 𝑏,𝑏 |∼
𝑤} is a continuation of the penguins and birds example mentioned
in Section 3.1. 𝑅𝑜𝑏𝑖𝑛𝑠 𝑎𝑟𝑒 𝑏𝑖𝑟𝑑𝑠 (i.e., 𝑅 → 𝑏) and 𝑏𝑖𝑟𝑑𝑠 𝑡𝑦𝑝𝑖𝑐𝑎𝑙𝑙𝑦
ℎ𝑎𝑣𝑒 𝑤𝑖𝑛𝑔𝑠 (i.e., 𝑏 |∼ 𝑤) are added to the knowledge base K .

Using Base Rank Algorithm:

• 𝐾𝐶 = {𝑝 → 𝑏, 𝑅 → 𝑏}

• 𝐾𝐷 = {𝑏 → 𝑓 , 𝑝 → ¬𝑓 , 𝑏 → 𝑤}.

• 𝑝 is exceptional and found in EK
0 .

To illustrate the Base Rank Algorithm RK , a table of results is
provided below.

∞ 𝑝 → 𝑏, 𝑅 → 𝑏

1 𝑝 → ¬𝑓
0 𝑏 → 𝑓 , 𝑏 → 𝑤

Using Rational Closure Algorithm:

• Determine if K entails the query 𝑝 → ¬𝑓 , that is penguins
don’t fly.

• Determine if
−→
K |= ¬𝑝 .

• We deduce there is no model 𝑢 of
−→
K such that 𝑢 ⊩ 𝑝 . There-

fore, we retract the most preferred rank from RK , that is
RK

0 .

To illustrate the Rational Closure Algorithm, an adjusted table of
results is provided below.

∞ 𝑝 → 𝑏, 𝑅 → 𝑏

1 𝑝 → ¬𝑓

We repeat the first step:

• Determine if
−→
K |= ¬𝑝 . This is not the case.

• There exists a model 𝑢 of
−→
K such that 𝑢 ⊩ 𝑝 , e.g, {𝑝𝑏𝑟 𝑓 }.

• Determine if
−→
K entails 𝑝 → ¬𝑓 .

• This is the case, 𝑝 → ¬𝑓 is a formula within
−→
K and as such,

any model of
−→
K is also a model of 𝑝 → ¬𝑓 .

Thus, we can conclude that K |≈ 𝑝 → ¬𝑓 .

4 SAT SOLVERS
4.1 Boolean Satisfiability Problem
The Boolean Satisfiability Problem is an NP-complete problem that
determines if there exists some interpretation which satisfies a
given boolean formula [2]. Sat-solvers work with propositional
formulas in conjunctive normal form (CNF) [15]. CNF is a language
containing clauses and connectives (i.e., ∧). Atomic literals and ∧
connectives are used to form clauses. Atom literals can be assigned
T or F values. Given a propositional formula in CNF, (𝑏∨𝑝)∧(𝑏∨¬𝑝)
and we assign b to true then (𝑇 ∨ 𝑝) ∧ (𝑇 ∨ ¬𝑝).

Scalable Defeasible Reasoning V2 Literature Review

4.2 Semantic Tableaux Based Complete
Algorithm

The tableau is constructed by decomposing a formula into sets
of atomic literals, resulting in a tree-like tableau [1]. Each branch
ends with a complementary pair of formulas, that is referred to
as a closed branch, or contains a set of non-contradictory literals,
that is referred to as an open branch. Each open branch represents
a model for the given formula. When no further decomposition
can take place, the construction is complete. The initial formula
is found to be unsatisfiable when there is a clash. A clash occurs
when literals for an atom are found within the same subset, this
results in a contradiction. To determine a formula’s satisfiability, a
completed tableau is required.

4.3 DPLL
The DPLL is a sat-solver algorithm first published in 1960 [3]. Many
individuals have made changes since then to the algorithm which
have improved its proficiency and allowed for further optimisations
[8]. DPLL is a backtracking algorithm. The algorithm allows for
the input of a propositional formula in CNF format, in which T is
returned if the formula is satisfiable or F is returned if the formula is
unsatisfiable. A branching procedure is executed where some atom
in 𝛼 is set to a random truth value. Branching continues until an
assignment satisfies 𝛼 and T is returned, or 𝛼 is F and the algorithm
backtracks.

Backtracking involves retrieving the recent branching assignment
and re-branching with a different assignment. If there are no new
assignments to branch to, then backtrack. If there exists no new
branches to be taken and we cannot backtrack, false is returned
and 𝛼 is unsatisfiable.

An example below to illustrate the DPLL algorithm:

Given

(𝑝 ∨ ¬𝑞) ∧ (¬𝑝 ∨ 𝑞)

DPLL executed as follows:

• Branch 𝑝 := 𝑇

• (𝑇 ∨ ¬𝑞) ∧ (𝐹 ∨ 𝑞)

• Branch 𝑞 := 𝐹

• (𝑇 ∨ 𝐹) ∧ (𝐹 ∨ 𝐹)

• Unsatisfied

• Backtrack 𝑞 := 𝐹

• (𝑇 ∨ ¬𝑞) ∧ (𝐹 ∨ 𝑞)

• Branch 𝑞 := 𝑇

• (𝑇 ∨ 𝐹) ∧ (𝐹 ∨𝑇)

• Satisfied

• Return true

5 CONCLUSIONS
Principles of propositional logic were defined and explored, as well
as concepts such as entailment and satisfiability. The concept of
defeasible reasoning was defined and rendered classical reason-
ing useless when adding contradictory information to an existing
knowledge base. Defeasible reasoning was shown to be more ex-
pressive than propositional logic due to its non-monotonicity. Ad-
ditionally, rational closure was defined and its algorithm outlined.
It was observed that rational closure reduces defeasible entailment
to classical propositional entailment. Thus, it can be implemented
using sat solvers. Sat solvers were briefly discussed, specifically the
semantic tableaux and DPLL based algorithms, in which the DPLL
sat solver was shown to be more efficient.

REFERENCES
[1] Mordechai Ben-Ari. 2012. Propositional Logic: Formulas, Models, Tableaux.

Springer London, London, 1, 7–47.
[2] Stephen A Cook. 1971. The complexity of theorem-proving procedures. In

Proceedings of the third annual ACM symposium on Theory of computing. 151–
158.

[3] Martin Davis, George Logemann, and Donald Loveland. 1962. A Machine
Program for Theorem-Proving. Commun. ACM 5, 7 (July 1962), 394–397.
https://doi.org/10.1145/368273.368557

[4] Michael Freund. 1998. Preferential reasoning in the perspective of Poole default
logic. Artificial Intelligence 98, 1 (1998), 209–235. https://doi.org/10.1016/S0004-
3702(97)00053-2

[5] D. M. Gabbay. 1985. Theoretical Foundations for Non-Monotonic Reasoning in
Expert Systems. In Logics and Models of Concurrent Systems, Krzysztof R. Apt
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 439–457.

[6] L. Giordano, V. Gliozzi, N. Olivetti, and G.L. Pozzato. 2015. Semantic characteriza-
tion of rational closure: From propositional logic to description logics. Artificial
Intelligence 226 (2015), 1–33. https://doi.org/10.1016/j.artint.2015.05.001

[7] Ivan Varzinczak Giovanni Casini, Thomas Meyer. 2018. Defeasible Entailment:
from Rational Closure to Lexicographic Closure and Beyond. In 17th International
Workshop on Non-Monotonic Reasoning (NMR). Arizona, USA, 109–118.

[8] Eugene Goldberg and Yakov Novikov. 2007. BerkMin: A fast and robust SAT-
solver. Discrete Applied Mathematics 155, 12 (2007), 1549–1561.

[9] Adam Kaliski. 2020. An Overview of KLM-Style Defeasible Entailment. Master’s
thesis. Faculty of Science, University of Cape Town, Rondebosch, Cape Town,
7700.

[10] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. 1990. Nonmonotonic
reasoning, preferential models and cumulative logics. Artificial Intelligence 44,
1-7 (1990). https://doi.org/10.1016/0004-3702(90)90101-5

[11] Daniel Lehmann. 1999. Another perspective on Default Reasoning. Annals of
Mathematics and Artificial Intelligence 15 (11 1999). https://doi.org/10.1007/
BF01535841

[12] Daniel Lehmann and Menachem Magidor. 1992. What does a conditional knowl-
edge base entail? Artificial Intelligence 55, 1 (1992), 1–60. https://doi.org/10.
1016/0004-3702(92)90041-U

[13] P. D. Magnus, Tim Button, Aaron Thomas-Bolduc, Richard Zach, and Robert
Trueman. 2020. Forall X: Calgary. An Introduction to Formal Logic. Open Logic
Project. 1–101,378 pages.

[14] Drew McDermott and Jon Doyle. 1980. Non-monotonic logic I. Artificial Intelli-
gence 13, 1 (1980), 41–72. https://doi.org/10.1016/0004-3702(80)90012-0 Special
Issue on Non-Monotonic Logic.

[15] Alexander Nadel. 2009. Understanding and improving a modern SAT solver. Ph.D.
Dissertation. Tel Aviv University.

[16] Y. Shoham. 1987. A semantical approach to nonmonotonic logics. In LICS 1987.

https://doi.org/10.1145/368273.368557
https://doi.org/10.1016/S0004-3702(97)00053-2
https://doi.org/10.1016/S0004-3702(97)00053-2
https://doi.org/10.1016/j.artint.2015.05.001
https://doi.org/10.1016/0004-3702(90)90101-5
https://doi.org/10.1007/BF01535841
https://doi.org/10.1007/BF01535841
https://doi.org/10.1016/0004-3702(92)90041-U
https://doi.org/10.1016/0004-3702(92)90041-U
https://doi.org/10.1016/0004-3702(80)90012-0

	Abstract
	1 Introduction
	2 Propositional Logic
	2.1 Motivation
	2.2 Syntax
	2.3 Semantics

	3 Defeasible Reasoning
	3.1 Motivation
	3.2 A Preferential Approach
	3.3 KLM-Style Defeasible Entailment
	3.4 Rational Closure

	4 SAT Solvers
	4.1 Boolean Satisfiability Problem
	4.2 Semantic Tableaux Based Complete Algorithm
	4.3 DPLL

	5 Conclusions
	References

