
 

Usability and Maintainability of Scientific Tools 

 
L.Paton 

  

 

 

 

CS/IT Honours Project 

Final Paper 2022 
 

 

Title: Ensuring the Usability and Maintainability of Scientific Web-

Tools: A Case Study on “Glycarbo” 
 

Author: Lauren Paton  
 

Project Abbreviation: SugarToo 
 

Supervisor(s): Michelle Kuttel 
 

 

 
 

Category Min  Max Chosen 

Requirement Analysis and Design 0 20  

Theoretical Analysis 0 25  

Experiment Design and Execution 0 20  

System Development and Implementation 0 20  

Results, Findings and Conclusions  10 20  

Aim Formulation and Background Work 10 15  

Quality of Paper Writing and Presentation 10 10 

Quality of Deliverables 10 10 

Overall General Project Evaluation (this section 

allowed only with motivation letter from supervisor) 

0 10  

Total marks 80  
 

 

 

 

 

DEPARTMENT OF COMPUTER SCIENCE 



 

Usability and Maintainability of Scientific Tools 

 
L.Paton 

  

 

 

 

Ensuring the Usability and Maintainability of Scientific Web-

Tools 

A Case Study on “Glycarbo” 

 

Lauren Paton† 

Department of Computer Science 

University of Cape Town 

Cape Town, South Africa 

ptnlau002@myuct.ac.za 

 

 

ABSTRACT  
Research into the structural properties of carbohydrates is 

vital for the development of vaccines and in drug design. 

Such research relies on the use of software tools in order 

to visualise and understand the 2D and 3D structure of 

molecules. There are many existing tools for this purpose 

but few that provide both 2D and 3D visualisations 

through an intuitive and usable interface.  UCT’s 

Glycarbo is a tool built for this purpose and this project 

demonstrates the inspection, editing and testing of 

Glycarbo to produce a usable and maintainable tool.  

KEYWORDS 
Visualisation, Carbohydrate, Residue, Glycan, 

Glycoscience 

1 INTRODUCTION 
Carbohydrates are a focus of vaccine development 

because of their dense distribution on different pathogens 

[18]. According to Watson, Crick and Franklin’s “Central 

Dogma of life”, molecules “express” their function 

throughout their structure [5] and so the 3-dimensional 

qualities of a molecule determine their biological function. 

Glycans (carbohydrates) are complex bio-molecules [13] 

and structural data of glycan interactions is rare [18] so the 

development of structural visualisation tools is an 

important part of glycoscience research.  

There are three ways in which glycans can be represented: 

as strings (one-dimensional), graphically (2-dimensional) 

and as 3D rendered molecules. Both 2D and 3D 

visualisations of carbohydrates are very useful in the study 

of the molecule structure and functionality and can be  

used to populate figures in research papers. 

Casper notation/format is used to represent a glycan as a 

string [14]. A simple glycan in Casper format consists of 

a lowercase a/b (anomeric configuration) followed by an 

uppercase D/L (absolute configuration) followed by a 

residue’s abbreviation. This can be followed by other 

bonding (furonose/pyronse) and substituent information. 

A set of brackets containing bond locations shows two 

bonded monosaccharides, for example   aDGal(1-

>4)aDGlc. Side chains and repeats are represented using 

square brackets.  CarbBuilder, a tool for rendering 3D 

glycans developed at UCT, uses Casper Format [14]. 

Since structural glycobiology relies so heavily on use of 

tools and databases, certain conventions are required to 

efficiently communicate within the field [19]. There have 

been many attempts at developing visual and textual 

conventions for representing carbohydrates [13] and 

because of the wide variety of glycans – it has been a 

complex process [19]. One of the most recently developed 

and widely used 2D graphical representations for glycans 

is the SNFG (Symbol Nomenclature for Glycans) [13] 

convention.  SNFG (figure 1) has been developed through 

an active international effort to create a convention that 

copes with rapidly growing information in Glycoscience. 

It is also compatible with many other graphical 

representations [19]. 

2D glycans can be built by combining and “bonding” 

different residues from this convention set. There are 

many available carbohydrate visualisation tools that are 

both useful and usable. Throughout the course of this 

project, tools such as PolysGlycanBuilder [16], 

GlyCamWeb [6] and DrawGlycan-SNFG [4] were 

considered as reference tools – as each displayed useful 

design choices. 3D glycans can usually be generated from 

a Casper string or PDB file. There are also some existing 

tools for converting graphically-represented glycans to 3D 

structures including GlycanBuilder, DrawRings [19] and 

Glycarbo [21].  

Glycarbo is a web-tool for 2D and 3D building of 

carbohydrate molecules developed at UCT. Figure 2 

below shows Glycarbo’s interface. Glycarbo allows users 

the freedom to use any one of the three representations and 

for this reason, is one of the most useful carbohydrate 

visualisation tools to date. It comprises of two parts: A 2D 
Figure 1: Symbol Nomenclature for Glycans (SNFG) [13] 



 

Usability and Maintainability of Scientific Tools 

 
L.Paton 

  

 

 

builder (also known as Glycano, a tool also developed at 

UCT [7]) and a 3D rendered. The last iteration of 

developments on Glycarbo left it incomplete and difficult 

to maintain. Figure 3 below shows a use case diagram of 

the interface, the use cases in red represent those facing 

functional issues - mainly related to incorrect naming 

conventions. Glycano’s codebase structure was Suited to 

its original choice of convention, the “UCT” convention 

which was based on the use of both residues and 

substituents. However, upon being integrated into 

Glycarbo the codebases’s primary convention became 

SNFG, to which it was not suited. The previous iteration 

of design did not address any structural issues and just 

built over the existing substituent functionality. Glycano’s 

codebase lacked any documentation - maintainability and 

readability of scientific software is integral in ensuring its 

continued use. In Glycano’s case, the rapidly developing 

research into glycans means its lack of flexibility and 

documentation made it difficult to refactor and expand. 

The problem of Glycano’s maintainability and 

functionality is the focus of this paper. This paper presents 

the functional and non-functional changes made to 

Glycano and Glycarbo’s codebases to improve their 

chemical accuracy and usability, the documentation added 

to improve Glycano’s maintainability as well as testing 

performed.  

2 BACKGROUND AND PREVIOUS 

WORK 
Many of the available tools for carbohydrate visualisation 

are both useful and usable. PolysGlycanBuilder [16] has a 

“drag and drop” 2D builder as well as a 3D builder which 

uses the 2D glycan. However, the process of building is 

very unintuitive and slow. GlyCamWeb’s Carbohydrate 

builder [6] allows users to build glycans by clicking 

residues from a subset of the SNFG residues and generates 

a string. There is however, no visual representation of the 

structure. Finally, DrawGlycan-SNFG [4] allows users to 

enter a string and generate a 2D structure – this structure 

is not able to be manipulated by the user and also does not 

follow SNFG visual conventions. Although each tool 

fulfills a certain need, most lack evidence of usability 

practices in their design. Glycarbo’s functionality also 

encapsulates that of most the tools discussed above, while 

also allowing greater user freedom and control by 

allowing users to create and manipulate the structures– an 

important usability practice [11].  

Glycarbo has been built and refactored through a series of 

iterations since 2015, with changes made to its two parts – 

Glycano (2D visualisation) and its 3D builder.   

2.1 Glycano 

Glycano was originally built in 2015 as a stand-alone 

project for 2D-visualisation of carbohydrate molecules 

[7]. It is built using ScalaJS (a functional JavaScript 

framework) and React. It is designed to accept different 

conventions of residue representation but was primarily 

structured for a convention named “UCT”.  

A round of testing and editing was done on Glycano in 

2020 so that it could be used in Glycarbo, to build 3D 

molecules. The edits made included changing Glycano’s 

primary convention to SNFG. The new interface can be 

seen on the left in Figure 2 above. However, the naming 

conventions remained incorrect and instead of being 

restructured to suit the SNFG convention, new 

functionality was merely added to Glycano’s codebase. 

This meant a lot of redundant functionality was built on 

top of and the final codebase was extremely complex and 

lacked proper structure. The codebase is extensive and has 

very little documentation, with a total of two lines of 

comments in the entire codebase.  

2.2 Glycarbo 

Glycarbo was built in 2020 and generates 3D carbohydrate 

molecules. Glycano is incorporated into the interface and 

acts as the 2D builder. The 3D molecules are built using a 

Casper string (either inputted by the user or automatically 

taken from the 2D builder) and uses CarbBuilder (a UCT-

built software) [14] to generate the image. The front-end 

users Angular to encapsulate Glycano and the 3D-builder 

and the back-end uses CarbBuilderWeb. Also developed 

in 2020, CarbBuilderWeb is used to connect CarbBuilder 

to Glycarbo. As it stands the 3D builder works suitably 

well when given a Casper string in the correct format (it 

does struggle to build large molecules resulting in the 

browser crashing). It allows the user to change the bond 

angles as well as the type of image rendered (ball-and-

stick etc.). However, the naming conventions of the 2D 

builder (Glycano) remained incorrect and most residues 

built in 2D could not then be built in 3D.  

Figure 2: Glycarbo’s Interface 

Figure 3: Glycarbo Use Case Diagram  



 

Usability and Maintainability of Scientific Tools 

 
L.Paton 

  

 

 

3  METHODOLOGY 
We followed an iterative approach to documenting and 

extending the codebases for both Glycano and Glycarbo. 

As usability evaluations are most effective when done 

iteratively throughout the design process [11], we 

performed regular inspections with a domain expert in 

order to ensure all requirements were being attended to 

throughout the project and were in keeping with the 

previous aims of the tools. The first phase consisted of 

studying and documenting the codebase. The structure of 

the codebase was also documented, see Appendix A, in 

order to study the interactions between classes.  This phase 

was followed by an initial interface inspection with a 

domain expert – which acted as a requirement gathering 

session. An initial coding block was then completed prior 

to testing to incorporate the feedback from our domain 

expert.  

3.1 Documentation of Codebase 

The main aim of this project was to ensure that Glycarbo 

reaches its full potential as a multi-use carbohydrate 

visualisation tool. In order to ensure the continued use of 

Glycarbo it is necessary to ensure its maintainability. 

Glycano’s maintainability was the main focus as the main 

functionality issues were related to Glycano and the 2D 

builder. The readability of its codebase was poor, with no 

documentation within in an already complex codebase. 

This phase of the project included improving the build 

instructions to include solutions to common issues that 

arose during development, commenting within the 

codebase and curating instructions for future development 

of Glycano – see Appendix B.  

3.2 Requirements Gathering 

A primary interface examination with a supervisor was 

done to record the expectations of a future user of 

Glycarbo and to highlight the design and logic errors of 

the system. This step was completed in order to record the 

expectations of a domain expert when using a visualisation 

tool. 

3.3 Initial Code Fixes  

Prior to the software feasibility demonstration and testing, 

the main issues regarding the structure of the codebase and 

the incorrect conventions were approached. Following 

this, other issues related to functional requirements were 

fixed – these included those related to bonding and other 

chemical functions. The non-functional needs were met 

following user- and expert-testing.  

3.3 Testing  

In order to test the changes implemented after the initial 

inspection, both expert and non-expert testing were 

performed on Glycarbo. An interface inspection and test 

were performed with three domain experts. Following 

this, a task-based user test was designed and completed by 

two UCT postgraduate Computer Science students with 

experience with usability practices and testing, but with 

limited carbohydrate knowledge. The choice to hold two 

focus group-like sessions of user-tests was to allow 

discussion between users [9]. Elaboration between the 

users when audio-recorded, is a very helpful form of 

feedback. It also means there is a higher likelihood of 

catching errors. Both sessions were audio-recorded and 

the recordings were deleted after the feedback was 

extracted. All users signed consent forms stipulating their 

consent to be recorded on the condition the recordings 

were deleted and the information was anonymised.  

3.3.1  Expert Testing  

The aim of doing expert testing is to get feedback from 

actual potential users of the interface. Doing so before a 

final round of code editing is to ensure all naming and 

structural conventions are correct and any important 

changes can be implemented before any other user tests. 

At this stage, most of the work done on Glycarbo was done 

on the 2D part, so this was the subject of testing. 

Three domain experts performed unstructured usability 

testing. After a brief verbal introduction of the software 

and its capacity, one expert was asked to use the tool while 

the others observed. The tester answered any questions 

that arose but for the most part, observed the users’ 

interactions with the interface in order to note any changes 

that need to made.   

3.3.2  Task-Based User Tests  

In order to improve quality of feedback from testing, the 

design of the user-tests was an important aspect of the 

testing phase. It is important to incorporate usability 

practices throughout the design process [10] and so user-

tests were conducted prior to a final code edit, in order to 

incorporate user feedback into the final design. Two non-

experts completed a semi-structured task-based test. The 

test allowed the users freedom to navigate the interface 

with very general instructions/tasks to complete. Again, 

the users were observed and their discussion recorded.  

The main aim of doing task-based user tests with non-

Figure 4: Results from Initial Expert Inspection 



 

Usability and Maintainability of Scientific Tools 

 
L.Paton 

  

 

 

experts was to highlight any obvious usability and flow 

issues. Additionally, users with no domain knowledge 

would have had no expectations of the software and would 

be able to provide unbiased feedback.  

Again, the test mostly focused on the 2D builder. 

However, in this case, users also interacted with 

Glycarbo’s 3D renderer. 

3.3.3         Stress Testing 
Stress testing was done in the form of generating specified 

glycans using the 2D builder. A list of ten glycans was 

provided from the database GlycanDB (another Honours 

project) and used to cover the use cases of Glycano and to 

generate an in-depth list of issues.  

 

4 DOCUMENTATION OF 

CODEBASE 
This phase consisted of adding the necessary 

documentation to Glycano’s code so that it can be 

maintained and edited as required. At the start of the 

project the codebase was 0% documented. This was vastly 

improved upon and each class now contains a description 

of its use and interactions with other classes. Important 

methods are preceded with a description of their 

functionality.  

There was also a lack of in-depth build instructions for 

both Glycano and Glycarbo and so setting up the 

development environment was time-consuming. More 

depth was added to the build instructions, as well as 

development “shortcuts” learned along the way – in order 

to improve the efficiency of future work on these projects. 

A guide for future developers was also curated (see 

Appendix B). This includes a list of classes and methods 

to change based on the desired changes. This also contains 

information about previous versions of the codebase – 

should there be any need to reimplement functionality that 

has been removed.  

 

5 REQUIREMENTS GATHERING  
The results from the requirements gathering phase are 

tabulated above (figure 4). The issues that arose are all 

mainly related to issues of convention, bonding and some 

non-functional issues. The structural issues within the 

codebase overarch all of the above issues and were the 

main priority for the first phase of coding. 

5.1 Structural Issues 

A core function of Glycarbo is the use of the 2D builder 

to generate a Casper string that is used by the 3D builder. 

However, after the last iteration on Glycarbo most of the 

residue names were incorrect and thus this function was 

not operational. This made the task of correcting the 

residue names the highest priority. The way that Glycano 

was previously designed required a restructuring of the 

codebase in order to change the residue names. Previously 

the “UCT” convention was used. This allowed users to 

combine both residues and substituents to build a glycan. 

This meant that both the residue and substituent type 

dictated the shape and colour of residues on the canvas. 

Although this functionality is useful for some purposes, it 

is not suited for the purposes of Glycarbo – nor for the 

SNFG convention. The task of renaming the residues was 

made more complicated by the use of substituents as 

Glycano’s parser was programmed to expect a bond 

location before the substituent type – which was not 

compatible with SNFG. A class diagram of the former 

version of Glycano (Appendix A) demonstrates the 

redundant classes and functionality that were removed 

during this task- all classes in red were removed. The 

removal of these classes will open up opportunity for 

small, incremental changes to Glycarbo in the future, a 

good usability practice [6] as the codebase now relies less 

on the convention used and will be more flexible to 

change.  Following the code clean- up, the SNFG naming 

convention was implemented throughout the system. The 

use of substituents was removed from all classes but will 

be easy to reimplement if needed. Functionality related to 

Residue Types (Aldoses, Ketoses, etc.) remains in the 

codebase for future use.  

5.2 Bonding and Chemical Properties 

Both usability and functional issues were identified during 

the initial examination when inspecting the bonding 

feature of Glycano. In previous versions, bonding was 

done by dragging a residue to the canvas and rotating the 

residue around until the correct bond location was found. 

This feature was largely faulty as not all linkage locations 

could be reached without overlapping residues. Bonds 

were done by finding the closest distance between residues 

and this limited user control. This feature was replaced 

with manual bonding in order to improve user-freedom 

and control and address the bonding difficulties 

experienced during the evaluation.  

Some functionality related to improving the accuracy of 

the chemical properties of the molecules was not in place. 

Residues are joined by a glycosidic linkage from the 

anomeric carbon of one residue to a carbon on the other 

[3]. The structure of carbon molecules differs for each 

residue and thus residues have different linkage 

functionality – for example all residues except for ketones 

bond from carbon position one, while ketones bond from 

position two [2]. This functionality was not included in 

Glycano’s previous iterations and was thus added. 

Additionally, some resides have link locations to which 

bonds cannot be formed. This functionality was also added 

and the corresponding link locations were “blocked” to 

ensure no “illegal” residues were generated or passed into 

the 3D builder. Below (figure 5) shows the new bond 

design, which allows the user to click the link location 

they desire, while also displaying the locations that are 

blocked in red (specific to each residue).  

Features of Glycano (2015) were removed when it was 

edited in 2020 and a mode known as “straighten” was 

added, which centered all bonds to the middle of the 

Figure 5: New Bonding Functionality 



 

Usability and Maintainability of Scientific Tools 

 
L.Paton 

  

 

 

residue shape. This functionality was made the default and 

the option to be in “build” or “straighten” mode removed.  

5.3 Non-Functional Requirements  

Prior to user testing there were still some minor “flow” 

issues that needed to be addressed. This included the bond 

labels being hidden at certain angles and an unclear call to 

action between 2D and 3D builders. These cosmetic flaws 

were fixed while user feedback was incorporated into the 

interface. 

Initial Software Feasibility Demonstration 

During the demonstration it was finalised that the primary 

concern of the project (after fixing the major functional 

issues) would be to improve the maintainability of 

Glycarbo’s codebase. The metrics for ensuring a 

developer-friendly code-base were discussed, including 

adequate build instructions, necessary method 

descriptions and comments throughout the code-base.  

 

6  TESTING 
6.1 Expert Testing 

The feedback from the from the expert testing is tabulated 

above (figure 6). 

In both user tests, there was no immediate call to action 

after the residues were placed on the canvas. This meant 

that the “create bond” button needs to be made more 

obvious.  

The graph-building functionality, when using repeat 

residues, was not robust. The Casper string generated is 

correct only if the user bonds from begin repeats and to 

end repeats. For example, the Casper string for Klebsiella 

pneumoniae K2 shows up as [->3)bDGlc(1-

>4)[aDGlcA(1->3)]bDMan(1->4)[](1->6)]aDGlc when 

the user bonds from the end repeat, when it should be [-

>3)bDGlc(1->4)[aDGlcA(1->3)]bDMan(1->4)aDGlc(1-

>]. This was fixed so that the user did not need to bond 

“from right to left” in order to generate the correct Casper 

string.  

A feature to make the 2D build uniform (in terms of bond 

length and alignment) was discussed as a very useful 

feature. This was added, and upon the user clicking 

“straighten”, bonds are aligned at 45 ̊,90̊ and 180̊/0̊ degrees 

to their “parent” (the residue to which they are bonded) - 

depending on their original alignment. The bonds are also 

all set to a uniform length.  

The functionality to remove/edit all bonds existed in the 

original version of Glycano. This was reimplemented in 

order to allow users easy reversal of errors [11].  

It was also brought up that being able to enter a Casper 

string and generate a 2D glycan would be very useful. This 

is the same as the functionality of Glycarbo and is noted 

as potential for future work. It is possible that some of the 

graph-building logic used in Glycarbo could be used for 

this purpose.  

The new bonding functionality was commented on as 

being much easier to use.  

 

Figure 6: Feedback from Expert Testing 

Figure 7: Feedback from Task-Based User Tests 



 

Usability and Maintainability of Scientific Tools 

 
L.Paton 

  

 

 

6.2 Task-Based User Tests 

The feedback from the task-based user testing is tabulated 

above (figure 7). Similar to the expert tests the bonding 

functionality was noted as being useful and clear. 

However, the users found that having the bond line 

attached to the mouse didn’t make it clear that the user 

needed to click a bond location. This has hence been 

edited so there is no visible bond until a bond location is 

clicked.  

The non-experts also tested Glycarbo. No issues were 

faced when entering a valid Casper string and generating 

a 3D render. When asked to change the 3D representation, 

the “apply” button was not obvious enough.  

The “load from builder” button also confused users.   

6.3. Stress Testing 

The results from the stress testing showed several minor 

issues in Glycano’s functionality. The results are tabulated 

in figure 8 above. Most issues that arose during stress 

testing were minor. Issues such as the bond disappearing 

and the linkage types not changing were easy to recover 

from by just re-bonding or by changing the linkage type 

using the residue overview panel that was added back to 

Glycano’s functionality following expert testing. These 

issues will be fixed if time allows. Adding the option to 

use furonose/pyronose should also be noted for future 

work on Glycano. Some functionality required to build 

certain Klebsiella pneumoniae bacteria is not available. 

This will be noted for future work. See Appendix C for the 

output of the stress testing (the ten Klebsiella pneumoniae 

glycans).   

7  DISCUSSION 
7.1 Code Improvements 

7.1.1 Maintainability 

As discussed, a primary concern about Glycarbo was its 

complexity and lack of maintainability. The aim with this 

project was to ensure Glycarbo’s future use and capacity 

to change. In cleaning and documenting the codebase of 

Glycano, editing Glycarbo will become a much smaller 

task, and it can hopefully change as user requirements 

grow. The documentation in the form of a class diagram - 

see Appendix A - will be extremely helpful to developers 

and researchers at UCT in the future, as well as the editing 

instructions -see Appendix B. Documentation within the 

code will help future developers to pin-point where edits 

need to be made without requiring a complete 

understanding of the entire codebase. The codebase for 

Glycano can be considered much more maintainable and 

readable.   

7.1.2 Usability  

The introduction of manual bonding to Glycano means 

that users now have much more control over the molecular 

and visual layout of 2D builds. This feature will hopefully 

make Glycarbo the choice tool for rapidly drawing and 

building residues as this is a rare feature.  The option to 

edit previous bonds also promotes user control and 

freedom [11].  

7.1.3 Functionality 

As a result of Glycano’s new bonding functionality and 

naming conventions, all Casper strings generated will be 

correct and usable by Glycarbo’s 3D renderer.  

7.2 Testing  

The use of focus group - like testing sessions was 

extremely useful in providing in- depth feedback and this 

structure should continue to be used when testing 

specialised software like Glycarbo.  

Performing tests with two groups (with different levels of 

expertise) was also very helpful for maximising feedback. 

Not only but the quality of feedback was excellent, with 

the different groups finding different types of errors or 

design flaws.   

 

8 CONCLUSIONS 
The main aims for Glycarbo of maintainability, 

readability, functionality and improved usability have 

been achieved. The combination of adding documentation 

to all classes within Glycano’s codebase and providing 

editing guidance will streamline any future development 

on Glycano, and contribute to its maintainability and 

readability. Improving the build instructions by 

incorporating development tips will also speed up the 

development process. Removing the redundant classes 

will also simplify the process of understanding the 

Figure 8: Results from Stress-Testing  



 

Usability and Maintainability of Scientific Tools 

 
L.Paton 

  

 

 

codebase. However, should the use of substituents be 

required in the future – it will be relatively easy to re-

implement the functionality removed.  

In terms of the functionality of Glycarbo, ensuring the 

naming conventions were correct allowed Glycarbo to 

operate at its full capacity and render any 3D glycans that 

can be built from residues within the SNFG set. Thus - the 

functionality of Glycarbo has been improved.  

Improving the bonding functionality to allow better user 

control and also allow users to reverse bonding errors at 

any stage have made Glycano a much more usable and 

intuitive tool. There is room to improve the intuitiveness 

of the interface and make the flow of control more obvious 

to the user (such as making the “create bond” and “load 

from builder” buttons more obvious).  

9 FUTURE WORK 
As noted during expert testing, Glycano could become an 

even more useful tool if it had the capacity to take in a 

Casper string and generate its 2D glycan. This requires 

building a parser to build a graph and reverse-engineer a 

glycan. This can be proposed as another iteration of 

Glycano- DrawGlycanSNFG [4] has this functionality, but 

can be vastly improved upon. Glycano also has room to 

expand as more capabilities (eg. Furonose/Pyronose) and 

residues are added and could possibly become the tool of 

choice for populating visual glycan databases. Glycano 

and Glycarbo still face minor functionality and flow issues 

that could be improved upon.  

 

REFERENCES  
[1] Ajit Varki, Richard D Cummings, Markus Aebi et al. 

Symbol Nomenclature for Graphical Representations 

of Glycans, Glycobiology, Volume 25, Issue 12, 

December 2015, Pages 1323–

1324, https://doi.org/10.1093/glycob/cwv091 

[2] Albert L. Lehninger, David L. Nelson, and Michael 

M. Cox. (2017). Chapter 7: Carbohydrates and 

Glycobiology. Lehninger Principles of Biochemistry 

(7th Ed.) W. H. Freeman.  

[3] Classes of Monosaccharides. (2019).  Chapter 16: 

Carbohyrdates. 410 Health Chemistry. LibreTexts 

(Chemisty).  

[4] DrawGlycan-SNFG. 2020. Render glycans and 

glycopeptides with fragmentation info. using the 

Symbolic Nomenclature for Glycans [SNFG]. 

Retrieved from 

http://www.virtualglycome.org/DrawGlycan/. 

Accessed May 2022.  

[5] Felipe Albrecht, Peter Ebert and Markus List. (2017). 

Ten Simple Rules for Developing Usable Software in 

Computational Biology. PLOS Computational 

Biology. Volume 13(1), 1-5. 

https://doi.org/10.1021/acs.jctc.1c00169. 

[6] GLYCAM Web. 2020 Complex Carbohydrate 

Research Center, University of Georgia, Athens, GA. 

Retrieved from http://glycam.org. Accessed May 

2022  

[7] Glycano. Glycano. Available at: 

http://Glycano.cs.uct.ac.za/ 

[8] Jennifer Preece, Yvonne Rogers, Helen Sharp. 

(2019). Chapter 13: Introducing Evaluation.  

Interaction Design: Beyond Human-Computer 

Interaction (5th edition). Wiley. 

[9] Jennifer Preece, Yvonne Rogers, Helen. Sharp 

(2019). Chapter 7: Identifying needs and 

establishing requirements. Interaction Design: 

Beyond Human-Computer Interaction (5th 

edition). Wiley.  

[10] Jonah Miller, Raniere Silva, Francisco Queiroz. 

2017.  Track 1 Paper: Good Usability Practices in 

Scientific Software Development. DOI: 

10.6084/m9.figshare.5331814 

[11] Laurisha Rampersaad, Sarah Blyth, Ed Elson and 

Michelle Kuttel, M. 2017. Improving the Usability of 

Scientific Software with Participatory Design: a new 

Interface Design for Radio Astronomy Visualisation 

Software. In Proceedings of SAICSIT’17, September 

26- 28, Thaba Nchu, South Africa, 1-9. 

https://doi.org/10.1145/3129416.3129899 

[12] Lavanya Ramakrishnan and Daniel Gunter. Ten 

principles for Creating Usable Scientific Software. 

(2017). IEEE 13TH International Conference on 

eScience. October 24-27, 2017, Auckland, New 

Zealand, 210-218. doi: 10.1109/eScience.2017.34.  

[13] Markus Aebi, Richard D Cummings Ajit Varki et al. 

(2015). Glyco-Forum. Glycobiology. Volume 25, 

issue 12. Pages 1323 -1324. doi: 

10.1093/glycob/cwv091. 

[14] Michelle Kuttel et al. 2016. CarbBuilder: Software 

for building molecular models of complex oligo-and 

polysaccharide structures. Journal of computational 

chemistry. 37, 22 (2016), 2098–2105 

[15] Naelah Al-Ageel, Areej Al-Wabil, Noura AlOmar 

and Ghada Badr. (2015). Human factors in the design 

and evaluation of bioinformatics tools. Procedia 

Manufacturing, Volume 3, 2003-2010. 

https://doi.org/10.1016/j.promfg.2015.07.247.  

[16] PolysGlycanBuilder. A user friendly tool for to build 

3D structures of complex glycan and 

polysaccharides. http://glycan-

builder.cermav.cnrs.fr/. Accessed May 2022. 

[17] Reed Milewicz, Paige Rodeghero et al. 2019. 

Position Paper: Towards Usability as a First-Class 

Quality of HPC Scientific Software. In Proceedings 

of the IEEE/ACM 14th International Workshop on 

Software Engineering for Science. May 28, 2019, 

Montreal, QC, Canada. 41-42. doi: 

10.1109/SE4Science.2019.00012 

[18] Rena D. Astronomo and Dennis R. Burton. (2010). 

Carbohydrate vaccines: developing sweet solutions 

to sticky situations? Nature Reviews | Drug 

Discovery. Volume 9. Pages 308-324. DOI:  

[19] Serge Perez and Kiyoko F. Aoki-Kinoshita. (2017). 

Chapter 2: Development of Carbohydrate 

Nomenclature and Representation. A Practical 

Guide to Using Glycomics Databases. Pages 7 -25. 

DOI 10.1007/978-4-431-56454-6_2 



 

Usability and Maintainability of Scientific Tools 

 
L.Paton 

  

 

 

[20] Sofya I. Scherbinina and Philip V. Toukach. 2020. 

Three-Dimensional Structures of Carbohydrates and 

Where to Find Them. Int J Mol Sci, Volume 21(20), 

1-46. Doi: 

https://dx.doi.org/10.3390%2Fijms21207702. 

[21] Tristan Wood and Renee Panday. 2020. Glycarbo. 

Glycarbo.cs.uct.ac.za 

 

 

 

 

 

 

 

Appendix A 

 

 

 

 



 

Usability and Maintainability of Scientific Tools 

 
L.Paton 

  

 

 

Appendix B  

Appendix C  
 

 

 

 

 


