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ABSTRACT

Meaning Representation Parsing (MRP) is the task of encoding a
sentence into a meaning representation. We provide an overview of
how this meaning representation is represented in the Elementary
Dependency Structures (EDS) format. Following this is an overview
of neural network architectures and transition-based parsers. Fi-
nally we compare various state of the art parsers to the current state
of the art transition-based EDS parser to find gaps in the literature.
We conclude that transition-based EDS parsers are outperformed by
transformer based parsers and transformers have yet to be applied
to EDS parsers beyond deep contextualised words representations.
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1 INTRODUCTION

Meaning Representation Parsing (MRP) is the encoding of sentences
into meaning representations [1]. These meaning representations
take the form of a semantic graph, there are many existing mean-
ing representation frameworks which differ in their formal and
linguistic assumptions [19, 20]. Elementary Dependency Structures
(EDS) is one of these frameworks that adapts Minimal Recursion
Semantics (MRS) into variable free semantic graphs [21].

There are many different approaches to MRP of which transition-
based MRP is one of the most researched in the literature [19, 20].
Tranisition-based MRP is adapted from transition-based depen-
dency parsing which is the task of deriving a syntactic dependency
graph from a sentence [16]. This is achieved by predicting a se-
quence of transition actions via a neural network [5].

In this paper we aim to provide an overview of EDS transition-
based dependency concepts and commonly used neural network
architectures. We will then analyse the state of the art transition-
based parsers as well as state of the art EDS parsers in an attempt
to find a gap in EDS transition-based MRP.

2 MEANING REPRESENTATION

2.1 Trees versus Graphs

In the context of Dependency Parsing (§4) and MRP (§5) the out-
put of both parsing types can be represented as rooted, labelled,
connected, directed graphs [12, 16]. These graphs are called Depen-
dency Graphs and Semantic Graphs respectively.

Dependency graphs further restrict the structure to that of a tree
[16]. Trees place the additional restrictions in that they are acyclic
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Figure 1: Semantic representation of the sentence "Everybody
wants to meet John" in the EDS graph format [3].

and do not contain reetrancies [12, 24]. A reentrancy is a node that
contains in-degree of 2 or higher [12].

Semantic graphs are more general, allowing them to capture
deeper semantic meaning as opposed to tree structures that can
only capture shallow syntax [24]. Trees do however have desirable
computational and linguistic properties [24], therefore parsing to
semantic graphs requires a more complex approach (§5).

2.2 Elementary Dependency Structures

Elementary Dependency Structures (EDS; [21]) converts Minimal
Recursion Semantics (MRS; [6]) to a semantic graph. MRS is a
framework for computational semantics that can be used for parsing
or generation [6]. A property of MRS is that is underspecified i.e. it
does not resolve scope ambiguity [6]. This allows multiple scope-
resolved logical representations to be derived from a single MRS
structure [3]. The conversion of MRS to a semantic graph discards
this property [3, 20].

Dependency graphs have an ordered one-to-one mapping of
their nodes to the sentence used to construct the graph, i.e. the
first node in the graph corresponds to the first word of the input
sentence, the second node to the second word etc. [16, 20]. This is
however, not the case with EDS semantic graphs. EDS semantic
graphs have a many-to-many mapping this means that any number
of nodes could correspond to any substring from the input sentence
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Figure 2: A simple 2-layer feedforward network [11]

[20]. This mapping of nodes to substrings is called alignment or
anchoring [20].

Figure 1 shows an EDS graph. Node labels are called predicates
and edge labels arugments.

3 NEURAL NETWORKS

The simplest kind of neural network is a feedforward neural net-
work, a multi-layer network that does not contain cycles [11]. A
feedforward neural network consists of an input layer, any num-
ber of hidden layers, and an output layer. Figure 2 shows a simple
2-layer feedfoward network. The input layer is represented by an
input vector x containing each input x;. The input vector is multi-
plied by a weight matrix W and an additional bias term b is added
the result of this is a vector that is used as input to the hidden
layer. The hidden layer then applies a non-linear function called
the activation function o to this vector returning an output vector
h. h is then multiplied by another weight matrix U resulting in
a vector z. z is then used as input to the output layer which then
applies a normalizing function, typically softmax which converts
the real number vector z into a vector y that encodes a probability
distribution. This is summarized by the below equations. [11]

h=0c(Wx+Db)
z=Uh
y = softmax(z)

Training a neural network entails finding values for the weight
matrices and biases the details of which we will not go into in this

paper.

3.1 Long Short Term Memory

Long Short Term Memory (LSTM) is an extension to Recurrent
Neural Network (RNN). A RNN is any network that contains a
cycle [11]. A simple RNN processes input in time steps and at each
time step uses information from the previous time step’s hidden
nodes h;—1 in the current hidden node h; calculation.

RNN s have two problems that LSTM tries to solve. Firstly when
processing a sequence the information encoded in the current hid-
den state h; is mostly based on recent inputs from previous hidden
states i.e. hy—1 therefore inputs that were processed long before
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Figure 3: A self attention layer in a transformer [11]

the current time step does not have a strong influence on current
decisions, which is an important feature in many language applica-
tion. Secondly training RNNss is very difficult as hidden nodes are
dependent on previous hidden nodes. [11]

LSTM attempts to solve these problems by adding an extra mem-
ory cell that stores the context ¢;. The model now sends this context
along with the hidden state at each time step. The context is con-
trolled by three gates [11]:

o The forget gate deletes information from the context that is
no longer needed.

o The add gate decides what information should be added to
the current context.

o The output gate decides which information is relavant for
the current hidden node.

3.2 Transformers

A Transformer maps sequences input vectors (xi, ..., xp) to se-
quences (Y1, ..., ym) of output vectors and are made up of trans-
former blocks, multi-layer networks made by combining simple
linear layers, feedforward layers, and self-attention layers [11].

What differentiates transformers from other models is it’s self-
attention mechanism. The idea behind attention is to compare a
collection of items based on their relevance to the current context.
Self-attention is simply the comparing of an item in a collection to
other items in the collection. For example in Figure 3 the compu-
tation of y4 is based on which elements x; to x4 are most relevant.
(11]

There may be various ways to classify something as relevant to
a context, to address this transformers use multihead self-attention
layers also known as multihead attention. This is simply a set of
self-attention layers, each layer called a head, now each head attend
to a different representation of relevance. [11]

Since transformers do not use recurrence they do not encounter
the problems that RNN face. They are superior in quality, easily
parallelizable and require significantly less time to train. [25].

4 TRANSITION-BASED DEPENDENCY
PARSING

The goal of dependency parsing is to parse a sentence into a depen-
dency graph [15, 16]. A dependency graph of a sentence represents
each word and its syntactic modifiers through labeled directed arcs,
as shown in Figure 4 [15]. For an arc from node i to node j, i is
called the head and j the dependent [17].
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Figure 4: An example dependency graph [15]

Transition-based dependency parsers construct dependency graphs
by predicting a sequence of actions that create the graph via a stack-
based transition system [16, 17]. Actions are predicted via a neural
network based classifier that is trained by an oracle §4.4 [5]. Data-
driven dependency models can be implemented very efficiently,
an advantage of transition-based parsing in particular, is its linear
run time [8, 9, 18]. We show two algorithms for transition-based
parsing using stack-based transition systems (§4.2, §4.3)

4.1 Stack-Based Transition System

A stack-based transition system consists of parser configurations,
a transition set, a way to map an input sentence to a starting con-
figuration and set of configurations that when transitioned to ter-
minates the algorithm [17].

e A parser configuration consists of a stack that holds nodes
currently being processed, a buffer holding tokens (words in
the sentence) that still need to be processed and a set of arcs.

e A transition set is a set of actions that perform a transforma-
tion to a parser configuration resulting in a new configura-
tion.

o The initial configuration starts with an artificial root node 0
on the stack, nodes i, for every word w; in the input sentence,
on the buffer and the set of arcs is empty.

e A terminal configuration is any configuration where the
buffer is empty.

4.2 Arc Standard Algorithm

The arc standard algorithm’s transition set consists of three types
of transitions [17]:

o Left-Arc; adds a dependency arc with label [ from the node
i at the top of the stack to the first node j in the buffer and
then pops i off the stack, given that i is not the root node.

¢ Right-Arc; adds a dependency arc with label [ from the first
node j in the buffer to the node i at the top of the stack and
and then pops i off the stack and replaces j with i at the front
of the buffer, given that j does not already have a head.

o Shift removes the first node i in buffer and pushes it to the
top of the stack.

The arc-standard parser is similar to the shift-reduce parser for
context-free grammars. Where the left and right arc transitions
correspond to reduce and shift to shift [17].

Transition Configuration
([0 ,....9, 0 )
SHIFT = ( [0,1], [2,...,9], 0 )
LEFT-ARCyyop = ( [0], [2,...,9], A;={(2,NMOD,1)} )
SHIFT = ( [0,2], [3,..., 9], A )
LEFT-ARCqy; = ( [0], [3,..., 9], A, =A,U{(3,3B],2)} )
RIGHT-ARChoor = ( [0,3], [4,..., 9], A; =A,U{(0,rO0OT,3)} )
SHIFT = ( [0,3,4] [5,...,9], A, )
LEFT-ARCyyon = ( [0,3], [5,..., 9], Ay =A3U{(5NMOD,4)} )
RIGHT-ARCG, = (- [0,3,5], [6,..., 9], As=A;U{(3,08],5)} )
RIGHT-ARC{yop = ( [0,..., 6], 17,8,9], Ag = AsU{(5,NMOD, 6)} )
SHIFT — ( [0,..., 71, 18,91, Ap )
LEFT-ARCyyop = ( [0,...6], [8,9] A; = AgU{(8, NMOD, 7)} )
RIGHT-ARC},op = ( [0,..., 8], [91 Ag = A;U{(6,PMOD, 8)} )
REDUCE = ( [0,..., 6], [9]. Ag )
REDUCE = ( [0,3,5], 91, Ag )
REDUCE = ( [0,3], 91, Ag )
RIGHT-ARC, = ( [0,3,9], [1, Ag = AgU{(3,P,9)} )

Figure 5: Arc Eager transition sequence for the sentence “Eco-
nomic news had little effect on financial markets”. Configu-
rations are represented by a triple (stack, buffer, arcs) [17]

4.3 Arc Eager Algorithm

The arc eager algorithm’s transition set consists of four types of
transitions [17]:

o Left-Arc; adds a dependency arc with label ! from the node
i at the top of the stack to the first node j in the buffer and
then pops i off the stack, given that i is not the root node
and does not have a head.

¢ Right-Arc; adds a dependency arc with label [ from the first
node j in the buffer to the node i at the top of the stack and
and then pops i off the stack and shifts j onto the stack, given
that j does not already have a head.

e Reduce Pops the top node i from the stack, given that i has
a head.

o Shift removes the first node i in buffer and pushes it to the
top of the stack.

The arc eager algorithm tries to attach right dependents as soon
as possible therefore the head and dependent must be stored on
the stack until the dependent gets all its right dependents and can
only then be popped of the stack using the reduce transition [17].
Figure 5 shows a example transition sequence.

4.4 Oracles

A core part of training classifiers for transition-based dependency
parsers is an oracle which, when given a gold parse tree returns the
optimal transition sequence [10].

4.4.1 Static Oracles. translate a given tree into a sequence of tran-
sitions that when run in sequence will return the gold tree. It is
possible that multiple sequences exist that lead to the same gold tree,
in this case static oracles define a forced derivation order resulting
in a single sequence being returned. Static oracles are typically
defined as rules for a given parser configuration. For example given
a configuration with properties X and gold tree Y, then the correct
transition is Z [10].

There are a few limitations to using static oracles. When there
are multiple possible sequences, the sequence given by the oracle
(because of the forced derivation order) may not be the easiest to
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Figure 6: HIT-SCIR 2019 Architecture [4]

learn, one of the alternate sequences may give better results. In
addition since the parsing is greedy it possible for the parser to
deviate from the gold sequence to configurations where the correct
tree is no longer reachable. The oracle does not have a mechanism
to deal with these configurations, this leads to error-propagation
as the parser’s classifier is faced with configurations not observed
in training [10].

4.4.2  Dynamic Oracles. check if a transition Z is valid in a config-
uration X when trying to create the best possible tree Y. Dynamic
oracles do not restrict parsers to a single sequence but instead return
all valid sequences leading to the gold tree. Another improvement
of dynamic oracles is that, unlike their static counterpart, they are
well-defined and correct for all configurations. For configurations
that have deviated from the gold sequence, the dynamic oracle al-
lows all transitions that lead to a tree with minimum loss compared
to the gold tree thus mitigating error propagation [10].

5 TRANSITION-BASED MRP
5.1 General Graph Parsing

To extend transition-based dependency parsers to parse general
graph structures the following transitions are added:

5.1.1
a data-driven approach to parsing to directed acyclic graphs (DAGs)
based on shift-reduce dependency parsing. To allow words to have
multiple heads, two new parser transitions are added that do not
remove nodes from the stack, thereby removing them from further
consideration.

o Left-Attach creates a left arc between the top two nodes on
the stack, provided that a right arc does not exist between
the two nodes.

o Right-Attach creates a right arc between the top two nodes
on the stack, provided that a left arc does not exist between
the two nodes.

5.1.2  Supporting Crossing Edges. Traditional transition-based de-
pendency parser produce projective graphs [16]. A projective graph

Supporting Reentrancies. To support reentrancies [24] presents

is a graph that does not contain crossing edges when drawn in
the halfplane above the sentence [12]. Figure 4 is a non-projective
graph as it contains crossing edges.

To support Crossing Edges [18] presents a transition system
for parsing non-projective trees. This is achieved by adding a new
transition Swap. Swap moves the second node on the stack back
to the buffer reversing the order of the top two nodes. A swap can
only be performed when the top two nodes are in their original
word order, this prevents nodes from being swapped more than
once, and when the second node is not the root node. Reversing
the order of the top two nodes allows Left-Arc and Right-Arc to
create crossing edges therefore creating a non-projective graph.

5.2 Deep Contextualized Word Embeddings

One of the disadvantages of transition-based parsers is that because
of its local greedy nature it is prone to search errors in sentences
that require long transition sequences [13, 15]. To combat this [13]
proposes Deep Contextualized Word Embbedings, a word represen-
tation that encodes words with respect to the context of the entire
sentence therefore giving some global context to transition-based
parser classifiers.

The advantages of deep contextualized word embeddings is that
they produce contextualized representations over several layers of
abstraction based on the neural network’s model’s different layers
and are pre-trained on corpora much larger than typical treebanks
[13].

One popular deep contextualized embedding model is Bidirec-
tional Encoder Representations from Transformers (BERT; [23]).
BERT is designed to pretrain deep bidirectional representations
from unlabeled text. The pre-trained BERT model can be finetuned
with one additional output layer to create state-of-the-art models
for a wide range of tasks [23]. [4] applies BERT to transition-based
MRP obtaining results similar to those in [13] showing that the
global information provided by deep contextualized word embed-
dings help prevent search errors in greedy parsing.
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5.3 State of the Art

The current state of the art transition-based parser for EDS is the
HIT-SCIR 2020 system ([7]). HIT-SCIR 2020 is a multi-framework
transition-based parser presented at the 2020 Conference for Com-
putational Language Learning (CoNLL; [19]) shared task. The HIT-
SCIR 2020 system has different approaches for different frameworks,
but for EDS it directly uses the top system from the 2019 CoNLL
shared task ([20]), HIT-SCIR 2019 ([4]). The HIT-SCIR 2019 system
makes use of stack LSTMs which are explained in a section below
(§5.4).

Although HIT-SCIR 2019 is the best transition-based parser for
EDS it not the best EDS parser. The Hitachi system ([22]) outper-
forms HIT-SCIR 2019 using a text-to-graph-notation transducer,
leveraging transformers and biaffine attention, the details of which
are beyond the scope of this paper.

We now turn our attention to another parser that leverages trans-
formers, [9] proposes a stack transformer architecture (described
in §5.5) that achieved state of art results (later improved by [14])
for Abstract Meaning Representation (AMR; [2]), another MRP
framework [19].

It can be seen that transformers are achieving state of the art
results in many applications [9, 19, 22]. There is therefore a clear gap
where transformers have not been applied to transition-based EDS
parsing beyond using deep contextualized word representations

[4].

5.4 HIT-SCIR 2019 Architecture

The architecture of HIT-SCIR 2019 is shown in Figure 6. HIT-SCIR
feeds BERT contextualized word representations into a transition-
based parser to construct a general graph as well as additional
tagger models to predict various node label [4]. Since HIT-SCIR
2019 is a multi-framework parser, the construction of the specific
MRP framework graphs is done as a post processing step [4]. We
will focus on the transition-based parser in this section.

The transition-based parser represents the parsing state as a
tuple (S, L, B,E, V) where S is a stack holding processed words, L
is a list holding words popped out of S that will be pushed back
later, B is a buffer holding unprocessed words, E is a set of labeled
dependency arcs, and V is a set of nodes [4]. S, L, B and the action

history is modelled with stack LSTMs (described in §5.5) based on
the work of [8]. The outputs of these stack LSTMs are then passed
to a classifier that outputs an action that maximizes the score using
the following formula where a is an action and s is the parser state
represented by the stack LSTMs:

exp{gq - STACK LSTM(s) + bs}
> exp{ga - STACK LSTM(s) + by}

plals) =

5.5 Stack Architectures

5.5.1 Stack LSTMs. A stack LSTM is shown in Figure 7, it consists
of a list of entries containing, the input to the LSTM x;, a memory
cell and gates and the LSTM output y;. A “stack pointer” is used
to represent the entry corresponding to the top of the stack, this
entry is called the top. The stack LSTM has 3 operations [8]:

e Push adds a new entry at the end of the list that contains
the next input, a new memory cell that is calculated with
the memory cell provided by the current top, and the out-
put calculated with the new memory cell. The pointer then
moves to this new entry and a back-pointer to the previous
top is added.

e Pop moves the stack pointer to the previous element using
the back-pointer.

e Query Returns the output vector of the top entry.

5.5.2  Stack Transformers. [9] proposes that instead of using a stack
LSTM described above to encode the stack and buffer in transitions
systems, a transformer can be used instead. [9] takes advantage
of how sequences are encoded as a weighted sum of tokens plus
positional embeddings as well as the multi-headed attention mech-
anism to achieve this. Since all tokens are summed there is no need
for a stack pointer, an item that is popped off the stack or buffer can
just be masked out of the score calculation. To separately model
the stack and buffer two heads of the attention mechanisms are
specialized to attend to the stack and buffer respectively [9].

6 CONCLUSION

In this paper we have reviewed some of the state of the art transition-
based parsers and EDS parsers. Our findings show that transformer
based neural network architectures have shown state of the art



results in parsing. Transformers have already been used to achieve
state of the art results in transition-based ARM parsing but the
current state of the art transition-based EDS parser is still outper-
formed by other approaches using transformers. There is a gap
in the research as transformer neural networks have not yet been
applied to transition-based EDS parsing beyond use in deep con-
textualised word representations.
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