

CS/IT Honours Project

Final Paper 2022

Title: Sequence-to-Sequence Meaning Representation

Parsing with BART

Author: Chase Ting Chong

Project Abbreviation: MRP

Supervisor(s): Jan Buys

Category Min Max Chosen

Requirement Analysis and Design 0 20 0

Theoretical Analysis 0 25 5

Experiment Design and Execution 0 20 20

System Development and Implementation 0 20 0

Results, Findings and Conclusions 10 20 20

Aim Formulation and Background Work 10 15 15

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10 0

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

Sequence-to-Sequence Meaning Representation Parsing with
BART

Chase Ting Chong
University of Cape Town
Cape Town, South Africa
tngcha001@myuct.ac.za

ABSTRACT
Meaning Representation Parsing (MRP) is the parsing of a sentence
into a semantic graph. In this paper we implement a sequence-to-
sequence Elementary Dependency Structures (EDS) parser using
the BART pretrained encoder-decoder transformer model. This
parser converts English sentences into EDS semantic graphs. The
model is trained on gold graphs that are serialized using a modified
PENMAN notation. The parser improves upon a previous RNN-
based model achieving an EDM score of 91.12 which is 2.44 points
lower than the state-of-the-art Hitachi System.

KEYWORDS
Natural Language Processing, Natural Language Understanding,
Meaning Representation Parsing, Semantic Graph Parsing, Neural
Networks

1 INTRODUCTION
Meaning representation parsing [23] is the parsing of a sentence
into a semantic graph. A semantic graph represents the meaning of
a sentence and consists of nodes that correspond to words in the
sentence, and labelled edges that define the semantic interactions
between nodes. There are many semantic graph frameworks each
with their own properties. In this paper we will focus on the parsing
of English sentences into Elementary Dependency Structures (EDS)
[25], one of the semantic graph frameworks.

There are two well-established methods of meaning representa-
tion parsing in the literature namely Transition-based and Graph-
based parsing [23]; however, with the emergence of the Transformer
neural network architecture [32], there has been a shift to using
pretrained transformer models with a sequence-to-sequence (§3.2)
based approach [2, 22, 26]. A pretrained model is a model trained
on a large unlabelled corpus with some training objective. The goal
of pretraining is to create a model that has a general understanding
of a language that can then be used in a more specific downstream
task. To use a pretrained model it is further trained on data related
to a specific task, this process is called fine-tuning.

The aim of this paper is to extend the work of [3], a Recurrent
Neural Network (RNN) based sequence-to-sequence parser that
makes use of graph linearization techniques to encode graphs into
sequences that can be later converted back to graphs. We replace
the RNN with the pretrained encoder-decoder transformer model
BART [17]. Additionally we aim to answer the following research
questions:

• How does the F1 score of the BART model compare to the
F1 score of previous RNN based encoder-decoder models?

• How does the F1 score of a pretrained model compare to
that of a non-pretrained model?

A similar approach has been taken by [2] using BART to parse
English sentences to Abstract Meaning Representation (AMR) [1]
graphs. This work achieved state-of-the-art results at its time of
publication we therefore hypothesize that applying this approach
to EDS parsing will outperform the previous RNN based model.

2 BACKGROUND
2.1 Meaning Representation
In this section we describe twomeaning representation frameworks,
EDS which is the main representation used in this paper and AMR
which is used in all related works, shares similarities with PENMAN
and is used to compute the Smatch metric.

2.1.1 Elementary Dependency Structures.
EDS [25] is a type of semantic graph derived from Minimal Recur-
sion Semantics (MRS) [6]. MRS is the semantic representation used
by the English Resource Grammar (ERG) [9], a general-purpose
computational grammar that converts English Text to highly nor-
malized logical-form meaning representations.

An EDS graph is a rooted, labelled, connected, directed graph.
Node labels are called predicates and edge labels, arguments. Each
node in the graph corresponds with a token or a continuous set of
tokens in the sentence. This correspondence is called the alignment
or span of the node [3]. Figure 1 shows the EDS graph for the
sentence "The results were in line with analysts’ expectations.", the
graph was visualized using the RepGraph tool1.

2.1.2 Abstract Meaning Representation.
Abstract Meaning Representations (AMRs) [1] are rooted, directed,
edge-labeled, leaf-labeled graphs. Nodes are represented by vari-
ables that correspond to entities, events, properties, and states. Leaf
nodes are labelled by concepts which can be either English words,
PropBank [16] framesets, or special AMR keywords. A PropBank
frameset can be thought of as a unique verb label that corresponds
to a precise definition of how other words interact with the verb. A
relation or labelled edge defines the relationship between entities
(nodes), AMR uses approximately 100 relations. For example in
Figure 2 the root node is an instance of the want concept labelled
by the PropBank frameset want-01.

The main difference between EDS and AMR is that AMR does
not have an alignment between nodes in the graph and the tokens
of the surface sentence.

1https://repgraph.vercel.app/

https://repgraph.vercel.app/

Figure 1: EDS Graph for the sentence "The results were in line with analysts’ expectations."

Figure 2: AMR Graph for the sentence "The boy wants to go" [1]

2.2 Sequence-to-Sequence Neural Networks
Sequence-to-Sequence models are end-to-end models that when
given an input sequence predict an output sequence. Sequence-
to-Sequence models are implemented using an encoder-decoder
neural network architecture. Two commonly used neural network
architectures for sequence modelling will be discussed in this sec-
tion.

2.2.1 Recurrent Neural Networks.
A Recurrent Neural Network (RNN) processes sequences in time
steps, at each time step taking a new token from the input sequence.
RNNs contain cycles within its network connections allowing RNNs
to receive hidden state values from previous time steps. This in-
formation acts as a form of context or memory that is taken into
account when calculating the new hidden value at the current time
step [14]. This simple RNNmodel suffers from two problems. Firstly,
when processing a sequence, the information encoded in the hid-
den states are more relevant to the most recently processed tokens
therefore tokens processed long before the current time step do not
have a strong influence on current decisions. However, the ability
to remember distant information is an important feature to have
in many language applications [14]. Secondly, RNNs suffer from
the vanishing gradients problem [27], since the value of hidden
states depends on the values of previous time steps, there are many
repeated multiplications during backpropagation leading to the
gradients being driven to zero [14].

Long Short Term Memory (LSTM) [13] is an extension to RNNs
that mitigates the above problems. LSTMS add a memory cell that
stores the context. This context is sent along with the hidden state
at each time step. LSTMs make use of three gates to manage the
context [14]:

• The forget gate deletes information from the context that is
no longer needed.

3

• The add gate decides what information should be added to
the current context.

• The output gate decides which information is relevant for
the current hidden node.

2.2.2 Transformers.
A Transformer [32] is a type of neural network that maps sequences
of input vectors to sequences of output vectors. What differentiates
Transformers from other neural networkmodels is that it relies only
on attention. The idea behind attention is to compare a collection of
items based on their relevance to the current context. Transformers
make use of two kinds of attention, self-attention and multihead
attention. Self-attention is simply the comparison of an item in a
collection to other items in the same collection. However, there
may be various ways to classify something as relevant to a context,
this is solved by multihead attention. Multihead attention is a set
of self-attention layers, where each layer is called a head. Each
head of these self-attention layers can now attend to a different
representation of relevance [14].

Since Transformers do not use recurrence they do not encounter
the problems that RNNs face. They are superior in quality, easily
parallelizable and require significantly less time to train [32].

3 RELATEDWORK
3.1 Transition-based Parsing
Transition-based parsing [20] has its roots in dependency parsing,
which is the parsing of a sentence into a dependency graph. A
dependency graph treats each word in a sentence as a node and
labelled arcs (edges) between them represent syntactic modifiers.
For an arc from node 𝑖 to node 𝑗 , 𝑖 is called the head and 𝑗 the
dependant.

Transition-based dependency parsers construct dependency graphs
incrementally by predicting a sequence of actions that when exe-
cuted by a stack-based transition system create the graph. Actions
are predicted by a neural network based classifier that is trained by
an oracle. Transition systems follow an algorithm which defines the
transition set. We describe the arc-eager algorithm, one of many
algorithms, below. Many algorithms can be extended to parse se-
mantic graphs as well as general graphs by adding new transitions
to the transition set [21, 30].

Transition-based parsers are attractive because of their efficient
implementation and linear run time [21]. However, because of their
local greedy nature they are prone to search errors in sentences
that require long transition sequences [19].

3.1.1 Stack-Based Transition System.
A stack-based transition system consists of parser configurations,
a transition set, a way to map an input sentence to a starting con-
figuration and set of configurations that when transitioned to ter-
minates the algorithm [20].

• A parser configuration consists of a stack that holds nodes
currently being processed, a buffer holding tokens (words in
the sentence) that still need to be processed and a set of arcs.

• A transition set is a set of actions that perform a transforma-
tion to a parser configuration resulting in a new configura-
tion.

Figure 3:Arc Eager transition sequence for the sentence “Economic
news had little effect on financial markets”. Configurations are
represented by a triple (stack, buffer, arcs) [20]

• The initial configuration starts with an artificial root node 0
on the stack, nodes 𝑖 , for every word𝑤𝑖 in the input sentence,
on the buffer and the set of arcs is empty.

• A terminal configuration is any configuration where the
buffer is empty.

3.1.2 Arc Eager Algorithm.
The arc eager algorithm’s transition set consists of four types of
transitions [20]:

• Left-Arc𝑙 adds a dependency arc with label 𝑙 from the first
node in the buffer 𝑗 to node 𝑖 at the top of the stack and then
pops 𝑖 off the stack, given that 𝑖 is not the root node and does
not have a head.

• Right-Arc𝑙 adds a dependency arc with label 𝑙 from the
node 𝑖 at the top of the stack to the first node in the buffer 𝑗
and then shifts 𝑗 onto the stack, given that 𝑗 does not already
have a head.

• Reduce Pops the top node 𝑖 from the stack, given that 𝑖 has
a head.

• Shift removes the first node 𝑖 in buffer and pushes it to the
top of the stack.

The arc eager algorithm tries to attach right dependents as soon
as possible; therefore, the head and dependent must be stored on
the stack until the dependent gets all its right dependents and can
only then be popped of the stack using the reduce transition [20].
Figure 3 shows an example transition sequence.

3.1.3 Oracles.
A core part of training classifiers for transition-based dependency
parsers is an oracle. An oracle is a function that when given a gold
graph returns the optimal transition sequence to recreate the graph
[12].

It is possible that multiple sequences lead to the same gold graph.
There are two types of oracles that each deal with this situation in
their own way:

• Static Oracles define a forced derivation order, typically
as rules for a given parser configuration, and returns a sin-
gle sequence. This has its limitations as the sequence given

4

by the oracle may not be the easiest to learn. In addition
since the parsing is greedy it possible for the parser to de-
viate from the gold sequence to configurations where the
gold graph is no longer reachable. The oracle does not have
a mechanism to deal with these configurations, this leads
to error-propagation as the parser’s classifier is faced with
configurations not observed in training [12].

• Dynamic Oracles do not restrict parsers to a single se-
quence but instead return all valid sequences leading to the
gold graph. Another improvement of dynamic oracles is that,
unlike their static counterpart, they are well-defined and
correct for all configurations. For configurations that have
deviated from the gold sequence, the dynamic oracle allows
all transitions that lead to a graph with minimum loss com-
pared to the gold graph thus mitigating error propagation
[12].

3.2 Sequence-to-Sequence Parsing
Sequence-to-Sequence parsers take advantage of sequence-to-sequence
neural network architectures to predict graphs in an end-to-end
manner only requiring minor postprocessing to transform the se-
quence back into a graph. To achieve this graphs are converted to
a sequence that the neural network can be trained to predict using
some form of graph linearization technique. Sequence-to-Sequence
parsers remove the need for complex pipelines typically found in
other models and have been found to outperform these models in
many Natural Language Understanding tasks [3, 34].

In this section we look at other sequence-to-sequence parsers
and discuss their relevancy to this work.

3.2.1 RNN Sequence-to-Sequence with Graph Linearizations.
[3] uses a RNN encoder-decoder architecture to implement a sequence-
to-sequence parser focused mainly on two graph-based conversions
of MRS, EDS and Dependency MRS (DMRS) [5] but can also parse
AMR. [3] compares two graph linearization approaches across each
framework. Firstly, a top-down linearization that linearizes the
graph as a pre-order traversal of its spanning tree starting from a
designated root node and secondly, as a sequences of actions that
can be used by a transition-based parser to reconstruct the graph.
This work is the basis on which we build our approach.

3.2.2 The Hitachi System.
The Hitachi System [26] is the current state-of-the-art parser for
EDS it was presented at the Conference for Computational Lan-
guage Learning (CoNLL) 2020 Shared Task [22]. The Hitachi System
is a multi-framework Text-to-Graph-Notation Transducer of which
EDS is included. The Hitachi System makes use of an encoder-
decoder Transformer architecture for sequence-to-sequence pre-
diction. The output sequence is encoded as a Plain Graph Notation
(PGN) a novel notation designed by the authors. The encoder uses
a pretrained language model (PLM). Decoding is done with a Trans-
former decoder controlled by a mode switching mechanism.

The approach of the Hitachi System is similar to ours and we
will use the results of the Hitachi System as a comparison to the
state-of-the-art.

3.2.3 AMR Parsing with BART.
[2] is a symmetric sequence-to-sequence AMR parser using BART,

converting AMR-to-Text as well as Text-to-AMR, we will focus
on the Text-to-AMR portion of this parser. [2] compares three
graph linearization approaches; A PENMAN, DFS-based and BFS-
based linearization. The PENMAN linearization uses the standard
PENMAN serialization described in §4.1. The DFS and BFS based
linearizations are created based on PENMAN notation. They make
use of special tokens to replace the AMR variables and remove the
‘/’. Node and edge labels are added in the order of the DFS and BFS
traversal respectively where brackets are used to indicate the depth.
[2] also applies various optimizations to the BART model some of
which we also apply and are discussed later in this paper.

4 METHODS
4.1 Graph Linearization
To fit the sequence-to-sequence model we need to linearize the
output graph to a sequence. In this section we discuss our chosen
method for graph linearization as well as other optimizations.

PENMAN [15] is a graph serialization format used to encode the
semantic dependencies for directed, rooted graphs. The structure
of PENMAN notation can be defined by the Parsing Expression
Grammar (PEG) [11] shown in Figure 4. A graph is represented in
PENMAN by nodes and relations, where the nodes contain the node
labels and relations contain a role (edge label) and a target node.
Edges that are inverted in the serialization are marked by adding
-of to the role. PENMAN notation assigns variable names to nodes
however these variable names do not appear in the graph and are
only used to reference nodes that are re-used in the serialization.
For example a typical PENMAN node would like this:

(e3 / _take_v_1 :lnk "<91:96>")

Where :lnk is the character level span (the characters in the input
sentence) that the node refers to. This representation contains un-
necessary information that the model will have to learn to predict,
we therefore use the following simplified encoding:

(< 10 10 > _v_1)

The lemma (root word) is removed from the node label and the
character level span is converted to a token level span, this reduces
data sparsity and makes it easier for the model to predict the spans
due to the input being tokenized. The concatenation of these two
properties forms a unique identifier for a node and can therefore
be used as the variable name. The node label and span information
are omitted as they are now encoded in the variable name. Figure
5 shows the simplified serialization for the sentence "The results
were in line with analysts’ expectations." the graph is shown in
Figure 1.

We make use of the penman2 python library to handle the encod-
ing and decoding of the graphs.

4.2 BART
4.2.1 Model.
BART [17] is an encoder-decoder transformer model. BART uses a
BERT-like [7] bidirectional encoder, which uses bidirectional self-
attention and a Masked Language Model (MLM) to produce deep
contextualized representations that combine left and right context.
2https://penman.readthedocs.io/en/latest/index.html

5

https://penman.readthedocs.io/en/latest/index.html

Figure 4: Parsing Expression Grammar for PENMAN Notation2

For decoding BART uses a GPT-like [28] autoregressive decoder,
meaning it uses previous predictions to generate output from left-
to-right. BART makes use of various noising approaches for its
pretraining scheme, such as token masking, token deletion, text
infilling, sentence permutation and document rotation. Documents
are corrupted via the above methods and then the reconstruction
loss, the cross-entropy between the decoder output and the original
document, is optimized to pretrain the model. BART performs well
when fine tuned for generative tasks such as question answering
and summarization [17].

We fine-tune the BART model to predict linearized graphs given
an English sentence. We do this by further training the model
on sentence-PENMAN pairs using the sentence as input and the
PENMAN linearization as the target output.

4.2.2 Tokenizer.
The BART tokenizer uses the same byte-pair encoding (BPE) [31]
as GPT-2 [29] [17]. BPE uses a subword vocabulary to encode out
of vocabulary words [31], this vocabulary is optimized for English
sentences therefore the tokenizer struggles with EDS labels. To
combat this all role labels found in the training corpus as well as
their inversions are added to the vocabulary as well all node labels
that occur more than 100 times in the training corpus. A similar
approach was also taken in [2].

4.3 Postprocessing
To make sure that graphs predicted by the model are valid, it is
necessary to perform some postprocessing on the output of our
models.

Firstly the brackets of the output sequence is balanced to restore
the tree structure. Thereafter we attempt to decode with the penman
library, if this fails then there are either unexpected or bad tokens
in the output sequence, if this is the case a LL(1) parser based on
the PEG in Figure 4 is used to correct the output.

At the tokenization stage of parsing two common problems
emerge in the predicted output, firstly some node labels are sepa-
rated by spaces when they should be a single label, and secondly
some tokens are malformed. Both these problems are addressed
using regular expression matching to rejoin labels or remove bad
tokens.

At the parsing stage if an unexpected token is found then either;
tokens are ignored until a valid token is found or in the cases where
it is possible to correct, a new token is inserted, these cases include:

• Inserting a missing left bracket
• Inserting a generic node or role to complete an edge

The latter did not occur in the test set and therefore was not imple-
mented, it is however simple to extend the parser to include this
functionality.

If the sequence ended on an unexpected token; then, if the token
is a role it can be replaced by a right bracket otherwise the end
tokens are removed until the sequence ends on the correct token.

5 EXPERIMENTAL DESIGN
5.1 Data
Our data is sourced from the DeepBank [10] treebank, a MRS anno-
tation of the Penn Treebank [18] Wall Street Journal (WSJ) corpus.
DeepBank follows the dynamic treebanking approach [24] which
couples treebank annotation with grammar development and is
therefore coupled with the ERG. We use the data splits used in [3]
for EDS which corresponds to ERG 12143, with sections 0 to 19
for training data, 20 for development and 21 for testing. To extract
the EDS graphs we use a mrs-processing tool4 which uses the py-
Delphin library5 to extract the EDS graph and then performs the
following preprocessing steps:

• Removes lemmas from node labels
• Converts character level spans to token level spans

The EDS graphs are then converted into PENMAN following
the method described in §4.1. These PENMAN linearizations are
then paired with the input sentence to create sentence-PENMAN
pairs which is used as input to train out models. Following this,
encodings that are longer than 512 tokens are removed from the
training pairs to minimize padding and allow for a reasonable batch
size without running out of memory on the GPU.

The data is tokenized using a pretrained BART Tokenizer from
the Huggingface transformers[33] library6 with a modified vocabu-
lary as described in §4.2.2.

5.2 Models
We train four models: a pretrained and non-pretrained bart-base
and bart-large. The non-pretrained BART models, have the same
architecture as the pre-trained BART models but do not use the
weights found during pretraining. The training loop was imple-
mented using the Huggingface Trainer API using the training
data split for training and the development data split for valida-
tion. We use some of the hyperparameters suggested in [2] which
are as follows: The model hyperparameters are the default model
parameters (for bart-base or bart-large) defined in Huggingface’s
transformers library. The training hyperparameters are shown
in Table 1. Our models are trained on the Lengau High Perfor-
mance Cluster (HPC)7 with a Nvidia V100 GPU and 10 CPU cores.
Training information was sent to Weights and Biases for analysis,
3http://svn.delph-in.net/erg/tags/1214/
4https://gitlab.cs.uct.ac.za/jbuys/mrs-processing
5https://github.com/delph-in/pydelphin
6https://huggingface.co/docs/transformers/index
7https://www.chpc.ac.za/

6

http://svn.delph-in.net/erg/tags/1214/
https://gitlab.cs.uct.ac.za/jbuys/mrs-processing
https://github.com/delph-in/pydelphin
https://huggingface.co/docs/transformers/index
https://www.chpc.ac.za/

Figure 5: PENMAN Serialization for the sentence "The results were in line with analysts’ expectations."

the evaluation and training loss can be seen in Appendix A, the
large models are split into two runs as the runtime exceeded the
maximum walltime allowed per job on the HPC.

Parameters Value
Optimizer AdamW
Epochs 30
LR 5 * 10−5
Betas 0.9, 0.999
Dropout 0.25
W. Decay 0.004
Grad. accum. 10
Beam Size 5
Table 1: Training hyperparameters

5.3 Hyperparameter Search
The hyperparameters suggested in [2] were optimized for a pre-
trained BART model, we therefore train an additional model for
comparison after doing a hyperparameter search for the non-pretrained
bart-base model.

As in [2] we perform a random search with a similar search
space for 8 trials followed by a grid search for dropout rate in the
range [0, 0.25] (+0.05). The hyperparamter search was performed
using the Weights and Biases Sweeps API8.

The final hyperparameters and search space are shown in Table
2. The evaluation loss and hyperparameter search results are shown
in Appendix B.

Parameters Value Search Space
Optimizer AdamW -
Epochs 30 -
LR 5 * 10−5 1/5 ∗ 10−5
Betas 0.9, 0.999 -
Dropout 0.05 0 to 0.25, (+0.05)
W. Decay 0.004 0.001 to 0.01, (+0.001)
Grad. accum. 1 1/5/10/15/20
Beam Size 5 -

Table 2: Final Hyperparameters for bart-base and search space

5.4 Evaluation
To evaluate our models we make use of Elementary Dependency
Matching (EDM) [8] to calculate the precision, recall and F1 score
and the Smatch [4] library9 to calculate Smatch score. These are
common metrics used to evaluate semantic graph structures [23].
8https://docs.wandb.ai/guides/sweeps
9https://github.com/snowblink14/smatch

5.4.1 EDM.
To calculate the precision, recall and F1 score via EDM, the gold
graph and the predicted graph are converted into a series of tuples.
A tuple can be either a node tuple or an edge tuple. Node tuples
consist of the node span and the node label, whereas edge tuples
consist of the span of the head node, the edge label and the span
of the dependant node. Once the two graphs have been converted
into tuples, the tuples are matched to get the true positives (TP),
false positives (FP) and false negatives (FN) for the nodes and edges
respectively. The precision, recall, and F1 score is then calculated
as follows:

TP = Tuples in the predicted graph that are in the gold graph
FP = Tuples in the predicted graph that are not in the gold graph
FN = Tuples in the gold graph that are not in the predicted graph

Precision =
TP

(TP + FP)

Recall =
TP

(TP + FN)

F1 Score =
2 ∗ precision ∗ recall
precision + recall

The node and edge precision, recall and F1 score is averaged to get
the overall precision, recall and F1 score.

5.4.2 Smatch.
Smatch is an evaluation metric for AMR graphs. The Smatch score
is calculated by finding the a node mapping that maximizes the
number of matching edge triples. The main difference between
EDM and Smatch is that Smatch does not consider the alignment
between the graph and its surface sentence.

To use the Smatch tool it is necessary to convert our EDS graphs
into AMR graphs this is done similarly to §4.1 as PENMAN is an
AMR representation, we now however include the node label again.
Another thing to note is that PENMAN is a tree structure so a
general graph can be represented by multiple trees, therefore the
predicted graph and the gold graph may not have the same node
and edge order when represented as triples (which is how penman
represents the graph). To create consistent AMR graphs the triples
of the predicted and gold graphs are sorted before encoding into
PENMAN.

6 RESULTS AND DISCUSSION
6.1 Results
We report the results of evaluating our five models on the test data
split in Table 3 where pt- indicates the model is pretrained and
bart-base-tuned is the base model that was trained using the
hyperparameters found from the hyperparameter search. The table
includes the following metrics:

• EDM - the overall EDM score
7

https://docs.wandb.ai/guides/sweeps
https://github.com/snowblink14/smatch

Model EDM EDMP EDMA Start EDM Start EDMA Smatch
bart-base 70.01 74.26 65.76 71.72 69.17 81.24
bart-base-tuned 70.65 74.61 66.69 72.28 69.96 82.39
pt-bart-base 91.12 93.08 89.16 91.89 90.70 91.60
bart-large 64.72 68.83 60.61 66.68 64.53 80.46
pt-bart-large 89.73 91.69 87.78 90.59 89.50 92.59
Table 3: EDM and Smatch scores of models. pt- indicates that the models was pretrained. -tuned indicates that the models was trained
using the hyperparameters found during the hyperparameter search

Model EDM EDMP EDMA Smatch
pt-bart-base 91.12 93.08 89.16 91.60
pt-bart-large 89.73 91.69 87.78 92.59
AE RNN [3] 85.48 88.14 82.20 86.50
Hitachi [26] 93.56 - - -
Table 4: Comparison between our models, Buys and Blunsom’s
Arc Eager Transition based parser and the Hitachi System’s results
for EDS

• EDMP - EDM score for predicates (nodes)
• EDMA - EDM score for arguments (edges)
• Start EDM - overall EDM score which requires only the start
alignment span to match [3]

• Start EDMA - Start EDM for arguments
• Smatch - the overall Smatch score

As seen in Table 3 the pt-bart-base model achieved the best
results for all EDM scoreswhile the pt-bart-largemodel achieved
the highest Smatch score. This is a slightly unexpected result as
the larger model should be more accurate in general. In addition to
this, given that the large model achieved a slightly lower eval and
train loss compared to the base model as seen in Appendix A, the
lower EDM scores may be due slight overfitting in the large model.

Looking at the start EDMmetricswe can see that pt-bart-large
model is slightly less accurate at predicting node ends spans com-
pared to that of the pt-bart-base model. The large model has
a 1.72 difference between EDMA and start EDMA while the base
model has a difference of 1.54.

The pt-bart-large model achieved a Smatch score of 92.59
compared to 91.60 of the pt-bart-base model. This indicates that
the large model was better at predicting the graph structure. How-
ever, this is also an indication that the large model is less accurate
at predicting node spans than the base model in general as the base
model outperformed the large model in EDM scores which take
node spans into account.

6.2 Pretrained vs Non-pretrained models
As expected both pretrained models greatly outperform their non-
pretrained counterparts with a difference of 21.11 and 25.01 for
EDM score and 10.36 and 12.13 for Smatch score for pt-bart-base
and pt-bart-large respectively. Furthermore the hyperparameter
tuned model bart-base-tuned only improved the results by an
average of 0.74 points across all metrics. This could be attributed to
the limited number and depth of the trials that were able to be run
during the hyperparameter search (see §9). We however, believe

that the understanding of the English language that is encoded
into the pretrained models greatly influences the models ability to
predict node and edge labels as these labels are closely related to
the role an English word plays in the sentence which the pretrained
model should have some understanding of.

6.3 Comparison to Other Work
We compare the results of our two pretrained models to that of
Buys and Blunsom’s Arc Eager Transition-based (AE RNN) model
and The Hitachi System’s results for EDS shown in Table 4.

Buys and Blunsom’s AE RNN model outperformed their Top
Down Graph Linearization (TD RNN) model and therefore only the
results of AE RNN are reported in their paper for EDS. Both our
models and Buys and Blunsom’s are trained on the same data as
well as tested on the same data, the results are therefore directly
comparable. As seen in Table 4 both our base and large model
outperformed the AE RNN model across all metrics and hence
also their TD RNN model, notably pt-bart-base achieved a 5.64
greater EDM score and pt-bart-large achieved a 6.09 greater
Smatch score.

When comparing our models to the Hitachi System while both
were trained on the same training data the Hitachi System uses
a slightly different data set containing data mixed in from other
sources for validation and testing. We therefore, cannot directly
compare the models. However, it is possible to assert some con-
jectures. Given that the test set for the Hitachi System is larger
and consists of mixed texts it can be argued that the results of
the Hitachi System are more accurate and the model has a better
ability to generalize. While the EDM score of the Hitachi System is
2.44 points higher than our current models’ we hypothesize that
the BART model has the potential to outperform the Hitachi Sys-
tem (see §9) this however, requires further research to support this
claim.

7 CHALLENGES AND RECOMMENDATIONS
The training of the models in this paper was implemented using
the Huggingface Trainer API. This API greatly abstracts from the
underlying training loop and prediction. While this may be good
for common neural network tasks, for specialized fine tuning tasks
such as the task in this paper, the high level of abstraction makes
it a necessity to have a high level knowledge of the fundamentals
of training a neural network. This led to many deep dives into the
documentation and extra research whereas if the implementation
was done in native PyTorch many configurations would be required
parameters.We therefore recommend for any specialized task to use

8

a native machine learning framework so that nothing is overlooked
because of abstraction.

8 CONCLUSIONS
Through our experiments we have shown that our BART-based
models outperforms the previous RNN-based model improving
EDM and Smatch score by 5.64 and 6.09 respectively. Furthermore
our results show that the use of pretraining greatly impacts the
performance of our models with the pretrained model outperform-
ing the non-pretrained model by 21.11 and 25.01 for EDM score
and 10.36 and 12.13 for Smatch score for the base and large models
respectively. Finally our model achieves a EDM score 2.44 points
lower than that of the state of the art Hitachi System, we therefore
hypothesize that the BART has the potential to outperform the
Hitachi System if further optimized.

9 LIMITATIONS AND FUTUREWORK
Due to the tight timeline allocated to this project many optimiza-
tions were omitted as well as the investigation of other graph lin-
earization approaches. We therefore leave the following as future
work:

9.1 Hyperparameter Tuning
Due to the long training times of the models and the maximum
wall time of 12 hours on the CHPC hyperparameter tuning was
only done for the non-pretrained bart-base model. In addition
only a small number of trials were performed with a low number
of epochs per trial. All models can therefore be further optimized
with a more thorough hyperparameter search.

9.2 Transition-based Graph Linearization
In [3] the transition-based graph linearization outperformed the
top-down graph linearization approach, therefore the next logical
step would be to verify if this is also the case for the BART model.

9.3 Special Token-based Graph Linearizations
Both [2] and [26] made use of special tokens in their graph lineariza-
tions to make it easier for the model to learn the graph structure
this is therefore an optimization that can be explored in future
work.

REFERENCES
[1] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf

Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider.
2013. Abstract Meaning Representation for Sembanking. In Proceedings of the 7th
Linguistic Annotation Workshop and Interoperability with Discourse. Association
for Computational Linguistics, Sofia, Bulgaria, 178–186. https://aclanthology.
org/W13-2322

[2] Michele Bevilacqua, Rexhina Blloshmi, and Roberto Navigli. 2021. One SPRING
to Rule Them Both: Symmetric AMR Semantic Parsing and Generation without
a Complex Pipeline. Proceedings of the AAAI Conference on Artificial Intelligence
35, 14 (May 2021), 12564–12573. https://ojs.aaai.org/index.php/AAAI/article/
view/17489

[3] Jan Buys and Phil Blunsom. 2017. Robust Incremental Neural Semantic Graph
Parsing. In Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, Vancouver, Canada, 1215–1226. https://doi.org/10.18653/v1/P17-1112

[4] Shu Cai and Kevin Knight. 2013. Smatch: an Evaluation Metric for Semantic
Feature Structures. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). Association for Computational
Linguistics, Sofia, Bulgaria, 748–752. https://aclanthology.org/P13-2131

[5] Ann Copestake. 2009. Invited Talk: Slacker Semantics: Why Superficiality,
Dependency and Avoidance of Commitment can be the Right Way to Go. In
Proceedings of the 12th Conference of the European Chapter of the ACL (EACL
2009). Association for Computational Linguistics, Athens, Greece, 1–9. https:
//aclanthology.org/E09-1001

[6] Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan Sag. 2005. Minimal
Recursion Semantics: An Introduction. Reseach On Language And Computation 3
(07 2005), 281–332. https://doi.org/10.1007/s11168-006-6327-9

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[8] Rebecca Dridan and Stephan Oepen. 2011. Parser Evaluation Using Elementary
Dependency Matching. In Proceedings of the 12th International Conference on
Parsing Technologies. Association for Computational Linguistics, Dublin, Ireland,
225–230. https://aclanthology.org/W11-2927

[9] Dan Flickinger. 2000. On building a more effcient grammar by exploiting
types. Natural Language Engineering 6 (03 2000), 15–28. https://doi.org/10.
1017/S1351324900002370

[10] Dan Flickinger, Yi Zhang, and Valia Kordoni. 2012. DeepBank : a dynamically
annotated treebank of the Wall street journal. In Proceedings of the Eleventh
International Workshop on Treebanks and Linguistic Theories (TLT11). Lisbon,
85–96. HU.

[11] Bryan Ford. 2004. Parsing Expression Grammars: A Recognition-Based Syntactic
Foundation. SIGPLAN Not. 39, 1 (jan 2004), 111–122. https://doi.org/10.1145/
982962.964011

[12] Yoav Goldberg and Joakim Nivre. 2012. A Dynamic Oracle for Arc-Eager Depen-
dency Parsing. In Proceedings of COLING 2012. The COLING 2012 Organizing
Committee, Mumbai, India, 959–976. https://aclanthology.org/C12-1059

[13] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural computation 9, 8 (1997), 1735–1780.

[14] Daniel Jurafsky and James H. Martin. 2000. Speech and Language Processing:
An Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition (1st ed.). Prentice Hall PTR, USA.

[15] Robert T. Kasper. 1989. A Flexible Interface for Linking Applications to Penman’s
Sentence Generator. In Speech and Natural Language: Proceedings of a Workshop
Held at Philadelphia, Pennsylvania, February 21-23, 1989. https://aclanthology.
org/H89-1022

[16] Paul Kingsbury and Martha Palmer. 2002. From TreeBank to PropBank. In
Proceedings of the Third International Conference on Language Resources and
Evaluation (LREC’02). European Language Resources Association (ELRA), Las
Palmas, Canary Islands - Spain. http://www.lrec-conf.org/proceedings/lrec2002/
pdf/283.pdf

[17] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Association for Computational
Linguistics, Online, 7871–7880. https://doi.org/10.18653/v1/2020.acl-main.703

[18] Mitchell P. Marcus, Beatrice Santorini, and Mary AnnMarcinkiewicz. 1993. Build-
ing a Large Annotated Corpus of English: The Penn Treebank. Computational
Linguistics 19, 2 (1993), 313–330. https://aclanthology.org/J93-2004

[19] Ryan McDonald and Joakim Nivre. 2007. Characterizing the Errors of Data-
Driven Dependency Parsing Models. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL). Association for Computational Linguistics,
Prague, Czech Republic, 122–131. https://aclanthology.org/D07-1013

[20] Joakim Nivre. 2008. Algorithms for Deterministic Incremental Dependency
Parsing. Computational Linguistics 34, 4 (2008), 513–553. https://doi.org/10.1162/
coli.07-056-R1-07-027

[21] Joakim Nivre. 2009. Non-Projective Dependency Parsing in Expected Linear
Time. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural Language Processing of the
AFNLP. Association for Computational Linguistics, Suntec, Singapore, 351–359.
https://aclanthology.org/P09-1040

[22] Stephan Oepen, Omri Abend, Lasha Abzianidze, Johan Bos, Jan Hajic, Daniel
Hershcovich, Bin Li, Tim O’Gorman, Nianwen Xue, and Daniel Zeman. 2020.
MRP 2020: The Second Shared Task on Cross-Framework and Cross-Lingual
Meaning Representation Parsing. In Proceedings of the CoNLL 2020 Shared Task:
Cross-Framework Meaning Representation Parsing. Association for Computational
Linguistics, Online, 1–22. https://doi.org/10.18653/v1/2020.conll-shared.1

[23] Stephan Oepen, Omri Abend, Jan Hajic, Daniel Hershcovich, Marco Kuhlmann,
Tim O’Gorman, Nianwen Xue, Jayeol Chun, Milan Straka, and Zdenka Uresova.
2019. MRP 2019: Cross-Framework Meaning Representation Parsing. In Proceed-
ings of the Shared Task on Cross-Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning. Association for Computational

9

https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://ojs.aaai.org/index.php/AAAI/article/view/17489
https://ojs.aaai.org/index.php/AAAI/article/view/17489
https://doi.org/10.18653/v1/P17-1112
https://aclanthology.org/P13-2131
https://aclanthology.org/E09-1001
https://aclanthology.org/E09-1001
https://doi.org/10.1007/s11168-006-6327-9
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/W11-2927
https://doi.org/10.1017/S1351324900002370
https://doi.org/10.1017/S1351324900002370
https://doi.org/10.1145/982962.964011
https://doi.org/10.1145/982962.964011
https://aclanthology.org/C12-1059
https://aclanthology.org/H89-1022
https://aclanthology.org/H89-1022
http://www.lrec-conf.org/proceedings/lrec2002/pdf/283.pdf
http://www.lrec-conf.org/proceedings/lrec2002/pdf/283.pdf
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/J93-2004
https://aclanthology.org/D07-1013
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
https://aclanthology.org/P09-1040
https://doi.org/10.18653/v1/2020.conll-shared.1

Linguistics, Hong Kong, 1–27. https://doi.org/10.18653/v1/K19-2001
[24] Stephan Oepen, Dan Flickinger, Kristina Toutanova, and Christopher D. Manning.

2004. LinGO Redwoods. Research on Language and Computation 2, 4 (01 Dec
2004), 575–596. https://doi.org/10.1007/s11168-004-7430-4

[25] Stephan Oepen and Jan Tore Lønning. 2006. Discriminant-Based MRS Banking.
In Proceedings of the Fifth International Conference on Language Resources and
Evaluation (LREC’06). European Language Resources Association (ELRA), Genoa,
Italy. http://www.lrec-conf.org/proceedings/lrec2006/pdf/364_pdf.pdf

[26] Hiroaki Ozaki, Gaku Morio, Yuta Koreeda, Terufumi Morishita, and Toshinori
Miyoshi. 2020. Hitachi at MRP 2020: Text-to-Graph-Notation Transducer. In
Proceedings of the CoNLL 2020 Shared Task: Cross-Framework Meaning Repre-
sentation Parsing. Association for Computational Linguistics, Online, 40–52.
https://doi.org/10.18653/v1/2020.conll-shared.4

[27] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of
training recurrent neural networks. In Proceedings of the 30th International Con-
ference on Machine Learning (Proceedings of Machine Learning Research, Vol. 28),
Sanjoy Dasgupta and David McAllester (Eds.). PMLR, Atlanta, Georgia, USA,
1310–1318. https://proceedings.mlr.press/v28/pascanu13.html

[28] Alec Radford and Karthik Narasimhan. 2018. Improving Language Understanding
by Generative Pre-Training.

[29] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners.

[30] Kenji Sagae and Jun’ichi Tsujii. 2008. Shift-Reduce Dependency DAG Parsing.
In Proceedings of the 22nd International Conference on Computational Linguistics
(Coling 2008). Coling 2008 Organizing Committee, Manchester, UK, 753–760.
https://aclanthology.org/C08-1095

[31] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Berlin, Germany, 1715–1725. https:
//doi.org/10.18653/v1/P16-1162

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[33] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational
Linguistics, Online, 38–45. https://doi.org/10.18653/v1/2020.emnlp-demos.6

[34] Jiawei Zhou, Tahira Naseem, Ramón Fernandez Astudillo, Young-Suk Lee, Radu
Florian, and Salim Roukos. 2021. Structure-aware Fine-tuning of Sequence-
to-sequence Transformers for Transition-based AMR Parsing. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Online and Punta Cana, Dominican
Republic, 6279–6290. https://doi.org/10.18653/v1/2021.emnlp-main.507

10

https://doi.org/10.18653/v1/K19-2001
https://doi.org/10.1007/s11168-004-7430-4
http://www.lrec-conf.org/proceedings/lrec2006/pdf/364_pdf.pdf
https://doi.org/10.18653/v1/2020.conll-shared.4
https://proceedings.mlr.press/v28/pascanu13.html
https://aclanthology.org/C08-1095
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.emnlp-main.507

A EVALUATION AND TRAINING LOSS OF MODELS

Figure 6: Evaluation loss per Epoch

Figure 7: Train loss per Epoch

11

B EVALUATION LOSS AND HYPERPARAMETER SEARCH FOR NON-PRETRAINED MODEL

Figure 8: Evaluation loss per Epoch

Figure 9: Random Search

12

Figure 10: Grid Search

13

	Abstract
	1 Introduction
	2 Background
	2.1 Meaning Representation
	2.2 Sequence-to-Sequence Neural Networks

	3 Related Work
	3.1 Transition-based Parsing
	3.2 Sequence-to-Sequence Parsing

	4 Methods
	4.1 Graph Linearization
	4.2 BART
	4.3 Postprocessing

	5 Experimental Design
	5.1 Data
	5.2 Models
	5.3 Hyperparameter Search
	5.4 Evaluation

	6 Results and Discussion
	6.1 Results
	6.2 Pretrained vs Non-pretrained models
	6.3 Comparison to Other Work

	7 Challenges and Recommendations
	8 Conclusions
	9 Limitations and Future Work
	9.1 Hyperparameter Tuning
	9.2 Transition-based Graph Linearization
	9.3 Special Token-based Graph Linearizations

	References
	A Evaluation and Training Loss of Models
	B Evaluation Loss and Hyperparameter Search for Non-pretrained Model

