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1 PROJECT DESCRIPTION

Meaning Representation Parsing is an area of computational lin-
guistics. Within this area is Semantic Graph Parsing, which is
the task of creating graphical meaning representation for natu-
ral language, that can be interpreted by computers [11, 28]. This
topic is crucial within natural language processing (a field of com-
puter science which combines artificial intelligence and linguistics
[39]). It has, therefore, been studied extensively over recent years
[8, 19, 36, 42, 48].

Semantic parsers are systems that formally derive the seman-
tic meaning of sentences. They need to be efficient and accurate
at understanding and predicting the meaning of sentences. The
resulting graphical representations are used within various fields
such as robotics (understanding commands) and data exploration
(understanding varying amounts of data) [28]. The overall goal of
these parsers is to correctly process sentences of the many lan-
guages without manual (human) processing. Many studies, such
as [2,4,7,9,11, 12,17, 29, 31, 33, 37, 46, 51], have been published,
whereby researchers create, analyse, and compare different seman-
tic parsers. Each one intends to use a novel approach or outperform
existing, similar models using slight methodological variations.

This project, too, attempts to combat the problem of creating
some formal representation for a given English sentence that is
interpretable by computers. We propose two different approaches
to predicting the interpretation of English sentences using neural
networks. We will be focusing on a computational framework called
Elementary Dependency Structures (EDS). This task deals with
constructing meaning representation graphs for (solely English, in
our scope) sentences. Each graph consists of labelled nodes and
edges. The nodes represent the tokenised input and can consist
of either a single token, multiple tokens or sub-tokens. The edges
represent the relationships between the different nodes.

This Project Proposal introduces the topic that we are research-
ing and developing within. We begin with our motivation for un-
dertaking this project, reviewing the problems we are focusing on.
We then delve into various sections of related work. Subsequently,
we discuss how we aim to address our project’s problems. We then
explain the methodologies that we adopt and provide a section on
the project’s ethics. We conclude this proposal with our expected
outcomes and our project plan.
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2 RESEARCH MOTIVATION

2.1 Problem Statement

Semantic parsing is a broad field with many approaches aiming
to provide differing insights into the semantic meanings of sen-
tences and represent these meanings in various ways [28]. Our re-
search focuses on two main approaches of semantic graph parsing,
transition-based [4] and graph-based [24]. Recent implementations
[4, 24] of these approaches make use of neural networks such as
Long Short-Term Memory or general Recurrent Neural networks,
each having their own advantages and disadvantages.
Transformers [50] are a newer kind of neural network that solve
the problems faced by RNNs (vanishing gradients, limited context)
and also provide better performance as they are easily parallelizable
and require significantly less time to train. Additionally pre-training
transformers (§3.2) has shown benefits in many NLP processing
tasks [13] but have yet to be fully explored for semantic graph
parsing. Our research aims to address this gap in the literature.

2.2 Transition-Based Approach

The transition-based approach to semantic graph parsing trans-
forms the task of predicting a graph to predicting a sequence of
actions that when run on a stack-based transition system will con-
struct the graph [40]. The advantage of this approach is its efficient
implementation and linear run time [21]. Additionally, an end-to-
end sequence-to-sequence model removes the need for a complex
pipeline found in traditional models and has been found to outper-
form these models in many NLU tasks [4, 54]. As a testament to this,
with the emergence of pre-trained transformers, the current state-
of-the-art parsers for EDS and Abstract Meaning Representation
(AMR) are [44] and [3] respectively both of which are sequence-to-
sequence parsers. Furthermore [18] achieves state-of-the-art results
for AMR parsing making use of [54] which combines a sequence-
to-sequence pre-trained transformer encoder-decoder model and a
transition-based system.

2.3 Graph-Based Approach

A secondary approach to semantic graph parsing is the graph-based
approach, whereby a graph is constructed to represent the semantic
meaning of a given sentence. There are two main sections to this:
node prediction and edge prediction. The nodes either directly or
indirectly represent the words of the sentence. The edges represent
the relations between these nodes.

The process of predicting the nodes and edges can either be
integrated, as seen in [24, 25], or separated, as seen in [7, 8, 10, 53].
Our proposal aims to use the latter strategy, separating node and
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edge prediction in a pipeline format. This means that the output
of the node prediction module will serve as the input to the edge
prediction module.

2.3.1 Node Prediction. Node prediction can be formulated as as
a sequence labelling i.e. tagging problem. The labels for each of
the nodes can be encoded as tags, with the optional addition of
encoding the spans as tags too.

There is some existing literature for semantic graph parsing
which separates the task of predicting the nodes and edges [7] [10].
Both of these sources were able to predict the labels for spans and
tokens with a high degree of accuracy, using either BERT [10] or
ELMO [7] contextualized word embeddings, and BiLSTMS with
a softmax layer for classification. However, there is a gap in the
literature for using the statistical modelling method of conditional
random fields, which is a sequence labeller that takes context into
account when predicting labels [32], in combination with contextu-
alised word embeddings and pre-trained transformer models. Addi-
tionally, the existing research has not done controlled evaluations
comparing BERT, ELMO and biLSTMs.

2.3.2 Edge Prediction. Given the nodes of the graph, the second
stage of the pipeline is to understand how the nodes relate to one
another. This provides crucial understanding and context.

A variation within edge prediction modules is the choice of
training objectives. Two training objectives, which have been used
in existing studies, are outlined below.

The first type is a maximum entropy objective, whereby the
model is optimised to produce the most accurate graphs with min-
imal error (loss). This has been widely used in various areas of
natural language processing (NLP) [47]. Papers which have used
this for edge prediction modules include [30, 36, 51].

The second objective is maximum-margin. Cao et al. [7], for
example, use a maximum-margin-based objective for training their
data for their dependency identification module of their data-intensive
parser. They first solve an optimisation problem to calculate their
best graph prediction. They then analyse similarity by calculating
the loss between the “gold” (actual) graph and the parser’s most
accurate predicted graph. This loss is then optimised by updating
the model’s parameters.

Another variation within the design of edge prediction modules
is the encoder used during the process. Our focus is on the en-
coding which occurs during the biaffine network process (an edge
prediction scoring function, explained §5.3.2).

Pre-trained BERT (introduced by Devlin et. al [13]), used by
papers such as [44], has been used as an attractive encoder choice
for both node and edge prediction modules, as opposed to other
encoders such as ELMo and LSTMs [52]. Additionally, papers such
as [38] have combined different encoders. The related gap in the
literature has been discussed in the previous section (§2.3.1).

3 RELATED WORK
3.1 Neural Networks

A neural network is modelled after neurons and their function in
the human brain. These networks are learning models that consist
of small computing units, each of which takes in a vector as an input
and provides a single value as an output [27]. Neural networks are
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used across a wide variety of Natural Language Processing tasks.
Previous research has shown they can be effectively utilized for
semantic parsing [15][46][5] [7] and other types of NLP tasks, such
as sequence labelling in the form of part-of-speech (POS) tagging
and named-entity recognition [35] [25] .

3.2 Pre-Trained Transformer

A transformer is a type of neural network [26]. Pre-training is
a technique used to increase the detail and precision of a parser.
The transformer is first trained with a text corpus using a self-
supervised approach. Following this, fine-tuning takes place using
alinear or feedforward neural network. A popular pre-trained trans-
former is the Bidirectional Encoder Representations from Trans-
formers (BERT). Pre-training allows for more detailed analyses of
the parsers’ languages as it begins the process with pre-existing
context and understanding.

3.3 Semantic Parsing

3.3.1 Semantic Dependency Parsing. Semantic graph parsing draws
a lot of inspiration, concepts and algorithms from semantic depen-
dency parsing. Dependency relations consist of a head (the word
upon which the relation depends) and the dependent - these are
also known as arguments and predicates [41]. These relations are
represented as labelled arcs from head to dependent. Semantic de-
pendency parsing tries to approximate semantic relationships by
means of these dependency relations [27]. Semantic parsers are can
be graph-based or transition based, amongst others [41].

3.3.2  Semantic Graph Parsing. Semantic graph parsing considers
the problem of semantic parsing but models it as a graph prediction
problem. While semantic dependency parsing aims to construct
trees, here, the aim is to have meaning representations in a graph
form [20].

3.3.3  Span Prediction. A span can be thought of as a series of words
that can be grouped together under one label [27]. For example,
“Cape Town” can be thought of as a span that has the label GEO
(because it is a geographical location). For English semantic parsing,
a sentence can be broken up (using the whitespaces as delimiters)
into a set of tokens, where each token corresponds to a word. Then,
a neural network can be used to predict the label for each of these
tokens [10]. However, it is also possible to split a sentence into a
set of spans, and then assigning labels to these spans rather. This is
known as span prediction and one tagging method for these spans
is BIO tagging [27]. Some research has been done to address some
of the problems that arise when trying to perform span prediction,
such as what happens when there are multiple overlapping spans
in a sentence [24]. Furthermore, there has been research that shows
that many NLP tasks can be performed with a generalised, task-
agnostic model (as opposed to a task-specific architecture) if that
task can be framed as a span-relation prediction problem [25] .

4 RESEARCH OBJECTIVES
4.1 General

The main goal of our research is to address the gap presented in
§2.1 we thus aim to answer the following research question:
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e How does the F1 score of pre-trained transformers compare
to the F1 score of RNN-based approaches to semantic graph
parsing?

4.2 Transition-Based System

Recently pre-trained transformer encoders have been widely ex-
plored in many semantic graph parsers [54]. However new research
on full pre-trained transformer encoder-decoder models has shown
state-of-the-art results in AMR parsing [3]. We aim to apply this
model to EDS parsing by making use of BART [34], a pre-trained
encoder-decoder transformer, to answer the following research
questions:

(1) How does the F1 score of modelling the output sequence as a
top-down linearisation of the graph compare to the F1 score
of modelling it as a transition sequence on the BART model?

(2) How does the F1 score of the BART model compare to the
F1 score of RNN based encoder-decoder models?

4.3 Graph-Based: Node Prediction

Graph-based semantic parsing can be split up into two parts: node
prediction, and edge prediction. When predicting nodes, one can
either include or elect not to encode the span information in the tags.
For this research, we will attempt to include the span information in
the tags - this approach can then be compared to previous attempts
which do not do this. This notion can be further qualified by means
of the following research questions:

(1) How does a BERT encoder with an added CRF layer compare
to an LSTM with a standard word-embedding layer in terms
of accuracy of node prediction i.e. how does BERT affect the
precision, recall and SMATCH scores of the model?

(2) How does encoded span information for each node compare
against no span information in terms of accuracy of the
predicted labels for a set of tokens?

4.4 Graph-Based: Edge Prediction

Given the nodes of the semantic graph, and their corresponding
labels, the parser must now predict the edges by scoring them
individually and then choosing the most suitable combination to
complete the graph. There have been various attempts at this. We
aim to produce an accurate edge prediction module to form the
second pipelined stage of our graph-based semantic parser. We aim
to answer the following questions:

(1) How does the accuracy of an edge prediction module with a
maximum entropy training objective compare to pre-existing
edge prediction modules that utilise a maximum margin
training objective?

(2) How does the accuracy of this edge prediction module, de-
veloped using the pre-trained BERT, compare to the pre-
existing parsers’ edge prediction modules developed with
non-trained LSTMs?

5 PROCEDURES AND METHODS

5.1 Text Corpus

Data will be sourced from the LinGo Redwoods corpus [43]. This
corpus contains English sentences that have been annotated for

C. Ting Chong, C. Greenberg, J. Imrie

use in both syntactic and semantic parsing. This data will be pre-
processed using the PyDelphin library in order to get it into the
correct form for use with the parser. PyDelphin is a Python module
that can be used for modelling Minimal Recursion Semantics [23]
and will extract the EDS graphs from the data. Each team member
may then further process the data into a form that is compatible
with their parser.

5.2 Transition-Based Approach

In this approach we will build on the work of [4] by replacing the
RNN encoder-decoder with BART [34] and fine tuning it to meet
our needs.

5.2.1 Architecture. We will use the Hugging Face implementation
of the pre-trained transformer encoder-decoder model BART as
a base for a top-down graph linearisation approach as well as a
transition-based system approach.

For the top-down approach the graph data from the corpus will
be linearised using PyDelphin. PyDelphin has a built-in algorithm to
convert EDS graphs into PENMAN notation. This notation will then
be pre-processed, similar to the work of [4], to remove unnecessary
data and be used as a linear sequence to train the transformer model.

For the transition-based approach an oracle based on [4] will be
used to derive the gold transition sequence from the corpus data
and used to train the transformer. However unlike in [4] the parser
state will not be directly encoded into the model but will be learned
implicitly from the gold sequence.

To predict the alignments, we will follow the method used by [4]
in their top-down approach, a token corresponding to the alignment
will be generated in the output sequence. This should be compatible
with transformers as they use positional embeddings.

5.3 Graph-Based Approach

5.3.1 Concept Identification. The methods and procedures for this
project are drawn strongly from [7], although there are some dif-
ferences in terms of the use of BERT (as opposed to ELMO) and
the employment of a controlled evaluation of the contextualised
embeddings against standard embeddings (which act as a baseline
in this research).

If a node’s label has a conceptual meaning, then a node can be
referred to as a concept [10] and the concept identification problem
can be framed as a word tagging problem. Thus, given an input sen-
tence that has been split into tokens or spans, node prediction can be
seen as predicting the labels that correspond to these tokens/spans.
This process can then be formulated as a tagging problem - each
token derived from the sentence can be associated with a tag.

In practice for this project, once a sentence has been split up
into tokens, the transformer model will receive this as input and
predict which tokens correspond to a node, as well as what tag that
token should receive. Nodes can correspond to sub-tokens, multiple
tokens or single tokens. In order to achieve all of this, the span
information for each token must be encoded. The Flair library [1]
will be used to produce the tags.

For neural networks, both the words and the tags need to be
represented as continuous and dense features. Thus, a pre-trained
BERT encoder will be used, together with a CRF layer and a softmax
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layer for classification, resulting in the output of a node. A condi-
tional random field (CRF) is a sequence labeller which uses posterior
probabilities in order to compute the probability of an entire se-
quence of tags, i.e. given X = (x1,...,xp) and Y = (y1,...,yn),
where X is the set of input words and Y the set of output tags, a
CRF computes p(Y|X), which can be computed as [27]:

S(YIX) = exp(R_, wkFi(X, Y)) .
Syrey exp(LR_ wiF(X,Y"))
The softmax classification layer will take input from all the other
layers and output a vector of probabilities. Mathematically, this can
be formulated as :

Z2=21,...,2
e~i
softmax(z;) = —— (2)
2?:1 %

Where z represents the output from each node in the final hidden
layer, which is passed to the output layer and transformed using
the softmax function to obtain a discrete probability distribution
over all possible outcomes [22].

Architecture: A machine learning pipeline will be created to
perform the node prediction, otherwise viewed as concept iden-
tification. This pipeline will consist of several stages, namely — a
data preprocessing stage, a traini datang stage, evaluation stage,
an testing stage and finally an output stage, which will be used to
create output data that can then be fed into the edge prediction
component of the parser. A predefined split will be used to separate
the data into three subsets for the training, test and evaluation
stages. PyTorch will be used to create the neural network [45].

Since this is a supervised learning problem, the model will first
be given labelled training data. During training, the cross-entropy
loss function will be used. For the baseline, this loss is indepen-
dently computed for each of the tags, but for the CREF, the joint
probability of the entire tag sequence is first computed and then the
cross-entropy loss is calculated on that. Once it has been trained,
this model will then be evaluated. During this stage, some hyperpa-
rameter tuning will be done to ensure that the optimal parameters
for the model have been chosen. Finally, the testing set will be fed
to the model. This stage is needed to check that the model can
perform well on unseen data and is somewhat generalisable.

5.3.2  Relation Identification. In order to train the module, we will
obtain the nodes of the graph from the text corpus. We will need
to ensure that they are in the appropriate form, identical to what
would be produced by our node prediction module (which will be
developed in parallel to this module).

Two main tasks need to be completed to create an accurate edge
prediction module for the graph-based parser: how to predict the
individual edges (relations) and, subsequently, how to predict the
overall graph.

An edge is represented in the form: hf‘md - h?eﬁ

A common, effective approach to scoring the individual edges
is a biaffine network architecture [14], used by papers including
[30, 38, 52, 53]. Figure 1 depicts the network’s structure and is
explained below.
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Figure 1: A Biaffine Network [26]

The inputted nodes are first sent through a BERT encoder. The
start and end tokens of the nodes(’ spans) are encoded and these
are concatenated with the node label embeddings. As the model is
trained, the BERT’s weights can be fine-tuned to improve overall
accuracy.

These representations are then sent through two feedforward
neural networks (FFN), one to calculate the heads (edge and label),
and the other to calculate the dependents (dep) (edge and label):

p{edgeThead) _ ppy(edge-head) () 3)
hgedge—dep) _ FFN(edge—dep) (ri) (4)

h(label—head) _ FFN(label—head) (r7) (5)
i

h;label—dep) _ FFN(labelfdep) (r7) (6)

where h?e“d is the embedding representation of the head token

r; and h?eP is the embedding representation of the dependent token
T.

These units are then sent to a biaffine scoring function, which
will calculate the edges’ and edge labels’ scores:

S;;dge) _ Biaﬁ(edge) (hgedge—head)’ hﬁedge—dep)) @)
s g}abel) — Biaff(l2beD (hlﬁlabel*head), hjlabel—dep)) ®)

where s;; is the score, Biaff is the biaffine scoring function, and

Biaff(x,y) = xTUy + W(x @ y)+b 9)
where x, y are the representations, U and W are weight matrices,
and b is the calculated bias term.
The edges’ scores are then converted into a binary classification
because an edge is either included or excluded.
If an edge is included, a softmax function is used to calculate
which edge label is most likely [51].

P( (label) |W) _ soﬂmax(s(label))

(10)
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where P( yi(]l.abel) |w)

is the probability score.

To train the above biaffine network, we will need to calculate
the cross-entropy loss [26]. This measures the performance of the
network by reviewing the network-assigned probability given to
each edge in comparison to the correct edges. This training method
can be used for various tasks, not just for edge prediction [36, 44, 51].

Subsequently, to find the most suitable graph for the inputted
sentence, a common approach for utilising these individual edge
scores is to find the maximum spanning tree, which can be found
using an algorithm such as the Chu-Li Edmonds Algorithm [26]. A
maximum spanning tree is a graph with a tree that includes all nodes
and the edges connecting them yield the highest possible score. This
recursive algorithm is shown in Figure 2. In this algorithm, a greedy
approach is first taken by finding the best incoming edge for each
node. If this combination is a spanning tree, the algorithm stops.
Else, a cycle must be occurring. This cycle is deleted by recursively
contracting the graph, finding the maximum spanning tree of this
graph, and expanding it back while deleting the cycle-causing edge.
Without cycles, the maximum spanning tree can be found.

function MAXSPANNINGTREE(G=(V,E). root, score) returns spanning tree

F+I]
"+l
score’+|]
for each v € Vdo
bestinEdge < argmax,_,,)c g score[e]
F+« F U bestInEdge
for each e=(u,v) € E do
score’[e] +—score[e] — score[bestinEdge]

if T=(V,F) is a spanning tree then return it
else
C+—acyclein F
G’ CONTRACT(G, C)
T+~ MAXSPANNINGTREE(G . root, score”)
T+ ExXPAND(T’,C)
return T

function CONTRACT(G, C) returns coentracted graph

function EXPAND(T, C) returns expanded graph

Figure 2: The Chu-Li Edmonds Algorithm [26]

Once the maximum spanning tree is found, additional edges are
added by greedily predicting non-tree edges. This completes the
full predicted semantic graph.

We aim to handle our edge prediction with a trained biaffine
network for individual edges and finding the maximum spanning
tree for the overall graph.

5.4 Evaluation

We require a careful evaluation of our parsers in order to deem its
viability and accuracy levels. We conduct these evaluations during
the training and testing phases. The overall aim is to compare our
parsers’ predictions to what is correct.

The above approaches (both transition-based and both stages
of graph-based) will be evaluated using four main metrics: preci-
sion (ratio of correct to total labels), recall (ratio of correct to total
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expected labels), F1 score (the “harmonic mean of precision and
recall)[26] and SMATCH [6].

Elementary Dependency Matching (EDM) [16] will be used to
calculate the precision, recall and F1 score. EDM converts the gold
and parser-generated graphs into node and edge tuples. A node
tuple consists of the node label and character span whereas an edge
tuple consists of the character spans of the head and dependant
node, as well as the edge label. The tuples from the respective graphs
can then be matched to compute the aforementioned metrics for
the nodes, edges and overall graph. The node prediction will use
the node EDM, the edge prediction the edge EDM and overall EDM,
and the transition-based approach will use all three.

SMATCH compares the degree of overlap for whole sentence
semantic structures in our case the output graph. The SMATCH
score is calculated by performing a one-to-one mapping between
the nodes of the output graph and gold graph to estimate a maxi-
mum obtainable F1 score. Since SMATCH requires the full graph it
will only be applicable to the transition-based approach and edge
prediction section of the graph-based approach.

6 ANTICIPATED OUTCOMES

We expect two semantic parsers to be fully designed, developed
(predominantly using PyTorch) and analysed, one transition-based
and one graph-based with node prediction and edge prediction
treated as separate components. We expect both parsers to per-
form well in comparison to pre-existing models, outperforming the
baseline models, in terms of precision, recall and F1 scores.

We expect that our research questions be answered to the best
of our knowledge given the experience of building the parsers and
performance results of such models. We also expect to make an
impact within the meaning representation parsing research field
by producing another two well-performing parsers using a unique
combination of design factors.

6.1 Key Success Factors

To judge the success of the project, we need to consider the follow-
ing conditions:

o We must successfully create both a transition-based and a
graph-based semantic parser, the latter of which must be
able to predict the nodes and edges of the graph.

o Both parsers must have a high degree of accuracy - measured
in terms of various metrices, namely: precision, recall, F1
score and SMATCH.

e We must be able to generate results from these parsers that
can be used to evaluate our models and compare them to
pre-existing models.

e We must be able to answer the research questions posed and
address the original problem statement.

7 ETHICAL, PROFESSIONAL AND LEGAL
ISSUES

This project will not involve any user evaluation - thus there is
no need to receive ethics clearance. The data that will be used is
sourced from the LinGo Redwoods Treebank and is in the public
domain. However, it should be noted that the parser may not be
accurate across all domains, as the data is not sourced from one
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particular place, but is rather a composition from various sources,
including the Wall Street Journal. Care should also be taken not to
encode any potential biases into the neural networks themselves.
While some small bias is unavoidable — steps should be taken to
reduce this as much as possible.

8 PROJECT PLAN

8.1 Risks
Please see Appendix A.

8.2 Timeline and Milestones
Please see Appendix B.

8.3 Deliverables

Deliverable Due Date

Proposal 27-05-2022

Proposal Presentation 24 to 25-05-2022
Revised Proposal submission 15-07-2022

Initial Software Feasibility Demonstration | 25 to 29-07-2022

Draft of Final paper 23-8-2022
Project Paper final submission 02-09-2022
Project Code final submission 05-09-2022

Final Project Demo 19 to 23-09-2022

Project Poster 03-10-2022
Project Website 10-10-2022
School of IT showcase TBC

8.4 Required Resources

The data used for this project will be sourced from the LinGo Red-
woods corpus [43]. This corpus was chosen due to the fact that
it has rich and deep semantic and syntactic representations for
English sentences [49].

In terms of the software required for this project, a number of
Python libraries will be used. Python will be the primary program-
ming language used to create the neural networks and a number of
python libraries will be used. PyTorch is an open-source machine
learning framework that contains many functions necessary for
building deep neural networks [45] and will be used for both parsers.
PyDelphin is another library that will be utilised - it can build se-
mantic representations according to a number of frameworks [23],
and this project will use the EDS framework. The data sourced from
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the corpus will be fed into PyDelphin in order to build the semantic
graphs which will be evaluated against the one’s created by the
parsers. Futhermore, the Flair library will be needed in order to per-
form the tagging of the tokens and spans. Flair is a framework that
can be used to perform various NLP tasks such as part-of-speech
tagging [1]. As the project progresses, some more supplementary
libraries may be needed in order to perform experiments and format
the resulting data, but these are the aforementioned main libraries
that have been identified as being essential to the project.

Secondly, there are some hardware requirements. Training neu-
ral networks will require access to powerful hardware, and thus
access will be needed to some GPUs. The University of Cape Town’s
High Performance Computing cluster represents a suitable candi-
date for this.

8.5 Work Allocation

The team members will all collaborate on shared deliverables —
such as the project proposal and project poster. Chase Ting Chong
will design and implement a transition-based semantic parser. Jane
Imrie will create one half of a graph-based parser that utilises
transformers, which is responsible for node prediction. Claudia
Greenberg will create the second half of the parser, which will
perform the edge prediction.
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A RISKS AND RISK MANAGEMENT STRATEGIES

Scale is 1 to 5 where 1 represents low impact or probability and 5 represents high impact or probability.
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Risk Condition Consequence Category Probability Impact Mitigation Monitoring Management
Project exceeds Final project does Time Track  project Use project plan- If necessary,
allocated time not complete all progress  with ning software to speaking to
requirements, project planning monitor progress supervisor to see
loss of marks software, such as of project. Cre- where the scope
Planner on MS ating weekly can be redefined
Teams. Enforce deadlines for or narrowed.
a weekly meet- team members.
ing with team
members  and
supervisor.
Code and/or Delayed progress, Resources Enforcing  fre- Setup a system Prioritise re-
project data less time to com- quent use of whereby a team coding critical
lost due to load- plete other fea- various backup member has to features and
shedding tures and aspects services  such notify the team trying to recover
of the project as GitHub and when they have lost data.
Google  Drive, made changes to
for all team the existing code-
members. base. Monitor to
ensure changes
were made suc-
cessfully.
Lack of knowl- Project may not Skills Discuss with Project manage- If team feels over-
edge needed to be  completed, supervisor ment software whelmed trying
use frameworks with leads to to determine can be used to to find resources,
and software lower marks what technical govern whenthe then liase with
achieved and skills each team necessary skills supervisor to de-
supervisor dissat- member needs. are required. termine what re-
isfaction Making it manda- Team members sources are useful
tory for members will be required and accessible.
to take online to gain these
courses or use skills by the
online resources stated dates.
to upskill.
Problems with Time lost as Resources Testing CHPC Communicating If model training

training models
using CHPC

cluster (e.g.
unexpected
downtime)  or
loadshedding

disrupts model
training

models will need
to be retrained,

progress on
project  slows
down

Page 9

cluster to ensure
that it is work-

ing correctly.
Also  checking
loadshedding

schedule to en-
sure that we do
not start training
the models near
a time when
blackouts could
potentially hap-
pen.

with the super-
visors of the
CHPC cluster to
ensure that it’s in
a stable state.

gets interrupted,
then  training
will be restarted
when the cluster
has low traffic
and can thus
provide us with
more processing
power.
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Poor Communi-
cation between
stakeholders and
project team

Decrease in Team
motivation and
morale

Misunderstanding
the brief and pur-
pose of the
project.

Project will lack
a well-defined di-
rection and end
deliverable may
not meet all re-
quirements

Project not be-
ing completed be-
cause it ran over

schedule

Creating models
that are not
able to correctly
perform semantic
parsing and thus
misrepresent sen-
tence meaning
representations.

Communications

Quality, Human
Resources

Scope

3

2
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Have meetings as
often as possible
between team
and supervi-
sor. Make use
of  designated
communication
platform ie.
Slack to ask
for clarification
when necessary.

Set realistic work-
load and SMART
goal setting for
team members

Ensure that
the team has
an accurate
understanding
of the project’s
requirements

and scope by
having regular
meetings  with
the supervisor.
Additionally,

making sure
the team builds
modular  code
that can easily be
re-used should
we decide to
pursue a different
direction  with
the research.

Present progress
to supervisor at
weekly meetings.
Ensure that the
tasks are being
done using the
correct methodol-

ogy.

Have weekly
check-ins with
team members to
ensure that every-
one is not feeling
overwhelmed or
overburdened.

Elicit feedback
from supervisor
during and at
the end of every
iteration of the
system  design,
in order to en-
sure we have
understood and
implemented
requirements as
intended.

Keep  backups
or logs of all
communication
between
members, as
well as between
the team and
supervisor.  Re-
evaluate current
communication
chain and adjust
if necessary.

team

Taking each
member’s

workload  and
adjusting when

and if necessary.

Remove the
code  modules
that are not
appropriate  to
the new research
goal and reusing
those that are
still applicable.
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