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ABSTRACT
This literature review aims to investigate the feasibility of using
neural networks for node and edge prediction in semantic graph
parsing, with a focus on concept identification. The current machine
learning paradigms and their applicability to predicting concepts
for spans was examined. Dependency parsing, and the viability of
extending its algorithms to semantic graph parsing was also ex-
plored. There is evidence to suggest the pretrained encoder models,
such as BERT, can be used for graph-based parsing, but further
research is required.
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1 INTRODUCTION
Semantic parsing is a Natural Language Processing (NLP) task that
can briefly be described as the process of taking text and parsing it
into a machine interpretable structure [35]. Semantic graph parsing
is thus a kind of semantic parsing, where the text is interpreted
into a graph structure. It uses ideas and concepts from dependency
parsing in order to generate and analyse these structures. Many
parsers have been developed in order to perform this task, with the
aim of maximising accuracy, efficiency and outperforming other
state-of-the art models. [19] [23] [5] [43]. Semantic graph parsing,
like other NLP tasks - such as syntactic parsing or sentiment analy-
sis - makes use of various different kinds of machine learning (ML)
architectures [16]. Many of the previously mentioned parsers use
LSTMs, however, the newer transformer architecture (created in
2017) is slowly starting to see use in these models, particularly as
encoders in the form of BERT. However, current research on this is
limited.

This paper aims to provide a brief introduction to some of the
ML models that have been used in the field of NLP - such as re-
current neural networks and transformers; take a shallow, subject-
constrained dive into some more general NLP concepts such as
word embeddings and part-of-speech tagging, provide a somewhat
detailed explanation of dependency parsing (transition and graph-
baed) and finally elaborate on semantic parsing, and the relevant
concepts that apply to this project.

2 MACHINE LEARNING
2.1 Word Embeddings
Word embeddings refers to the process of representing words in a
format that allows them to be easily analysed by computers. Most
commonly words are represented as vectors, a form which enables
them to be used with machine learning models and algorithms [1].
Given a word,𝑤 , from some vocabulary 𝑉 and vector ®𝑤 that has

Figure 1: Simple feed-forward neural network with one hid-
den layer

a real number value R, we can say that mathematically, a word
embedding is a mapping: 𝑉 → R𝐷 : 𝑤 ↦→ ®𝑤 , in an embedding
space that has dimensionality 𝐷 [47]. Two of the more well-known
and reportedly most efficient models for word embeddings are
word2vec and GloVe (Global Vectors) [36].

2.2 Neural Networks
A neural network (NN) can be thought of as a learning model.
Modelled after neurons in the human brain, these networks consist
of small computing units. Each unit requires a vector as an input,
and outputs a single value [24]. The use of neural networks have
become quite prevalent in the field of Natural Language processing,
and have been used for a wide variety of tasks within the field.
[12][43][3] [5] show that NN’s can be used for semantic parsing,
the focus of this review. [29] [23] show that NNs can also be used
for other kinds of NLP tasks, such as POS tagging and NER.

2.3 Feed-Forward Neural Networks
A feed-forward neural network consists of an input layer, at least
one hidden layer and finally an output layer. In figure 1,𝑊 repre-
sents a matrix of weights from the input layer to the hidden layer,
and 𝑈 represents a weight matrix from the hidden to the output
layer. Quite simply put, each neuron multiplies each input by its
weight and then sums them. This result then has a non-linear activa-
tion function applied to it, which gets applied to the next layer. This
process continues until the output layer is reached. Mathematically,
the simplest neural net, the perceptron, can be represented in terms
of vector-matrix operations:

𝑁𝑁𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛 (𝑥) = 𝑥𝑊 + 𝑏 (1)
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Figure 2: A simple RNN, unfolded over time [24]

Where 𝑏 represents a bias term and𝑊 the standard weight matrix.
A Multi Layer Perceptron (MLP) can be created by adding a non-
linear hidden layer. Following on from the previous equation, the
MLP1 with one hidden layer is presented in this way:

𝑁𝑁𝑀𝐿𝑃1 (𝑥) = 𝑔(𝑥𝑊 1 + 𝑏1)𝑊 2 + 𝑏2 (2)
The first linear transformation has𝑊 1 and 𝑏1 stand for a matric

and bias term, with𝑊 2 and 𝑏2 having the same function for the
second. g is the non-linear activation function. Common non-linear
functions for g are sigmoid, hyperbolic tangent (TanH) and rectified
linear units (ReLu). Frequently, the output layers gets transformed
as well. One of the most popular transformations is the softmax
function:

𝑥 = 𝑥1, . . . , 𝑥𝑘

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑥𝑖 ) =
𝑒𝑥𝑖∑𝑘
𝑗=1 𝑒

𝑥 𝑗
(3)

[16]

2.4 Recurrent Neural Networks
While feedforward neural networks can be used for NLP, it’s great-
est limitation is that is uses limited context. A feedforward neural
network has a context window and anything that falls outside of
that window how no impact on the calculations it runs and choices
it makes. However, some NLP tasks may require one to use infor-
mation that is indiscriminately distant from the current word – and
feedforward NN’s have no mechanism to achieve this. This is where
recurrent neural networks (RNNs) can be utilised. Though there are
different kinds of RNNs, this paper will focus on Elman networks
(otherwise known as simple RNNs). For each time step, they record
an internal state, made possible by the looped connections between
lower and higher layer neurons. In short, earlier outputs form part
of the input to a unit. The hidden layer at time 𝑡 + 1 and output at
time 𝑡 are both influenced by the hidden layer at time 𝑡 . RNNs need
to be trained differently than feed-forward neural networks because
of this added temporal dimension. Backpropagation though time
is one of these learning algorithms, and it involves unfolding the
RNN through time, which results in the construction of a feedfor-
ward NN – shown in figure 2. The weight matrices 𝑈 , 𝑉 and𝑊

Figure 3: A single LSTM unit depicted graphically [24]

are shared across all time steps, but at each time step the network
layers must be recalculated. Despite its advantages over FFNN’s,
the simple RNN suffers from the problem of vanishing gradients –
a phenomenon whereby the gradient becomes lower as progress is
made through the network, which increases the difficulty of train-
ing the weights [48]. Practically, it has also proven difficult to train
RNNS for tasks where the network has to make use of information
that is very distant from the current point being processed. The
hidden states usually end up with more local encoded information
that has higher relevance to the latest parts of the input sequence –
notwithstanding the fact that the network has access to the whole
preceding sequence [49]. This is where LSTMs enter the picture.

2.5 Long Short Term Memory Neural Networks
Long Short-Term Memory neural network is an extension of the
RNN. While simple RNN’s cannot juggle both the task of giving
the current decision useful information and “remembering” infor-
mation which must be carried forward for future decisions, this
context management problem is something the LSTM can handle.
It does so by splitting the over-arching problem into two sub-parts:
taking the current context and removing unnecessary information,
as well as retaining information which has a high probability of
being needed for later decision making. Without going into too
much detail, the LSTM accomplishes this through the use of gates
– neural units which simulate logical gates. These gates control
information flow between the network layers. Moreover, the LSTM
modifies the RNN architecture through the addition of an explicit
context layer [48]. The 3 shows a single LSTM unit – where x is the
current input, ℎ𝑡−1 is the hidden state for the previous layer and
𝑐𝑡−1 is the previous context. These three components form the in-
put to this unit, which outputs ℎ𝑡 and 𝑐𝑡 are a new hidden state and
updated context, respectively.LSTMS have proven to be a popular
choice for NLP tasks, and has been used by [19][12][43][51][23] - a
more detailed explanation of the specific use cases for this model is
explained in later secions of this paper.

2.6 Transformers
A transformer is a kind of neural network that has become wide-
spread for use in various kinds of NLP tasks [52]. The transformer
model has eclipsed the previously popular recurrent and long-short
term memory neural networks, due to the fact that it takes less
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Figure 4: The Transformer Architecture [50]

time to train than these models whilst also more effectively paral-
lelizing the learning process. The transformer has an underlying
encoder-decoder structure, where an input sequence of symbol rep-
resentations (𝑥1, .., 𝑥𝑛) is mapped by the encoder to z, a sequence
of continuous representations (𝑧1, . . . , 𝑧𝑛). The decoder generates
an output sequence of symbols, (𝑦1, . . . , 𝑦𝑛), one element at a time,
given 𝑧 as input. When generating the next sequence, the model
consumes additional input in the form of the previously generated
symbols. Despite this structure, the transformer can be used for
just encoding or decoding. Figure 4 shows the general architecture
of the transformer model [50]. The transformer model consists
of transformer blocks. These blocks in turn, are composed of a
self-attention layer, feedforward layers, normalising layers and
residual connections. The residual connection allows information
to be passed from a lower to higher layer without going through
the intermediate layer. Positional embeddings are used to model the
position of each token in the input sentence. These are necessary
because transformers do not consider the position of the tokens
that are input. For this very reason, all tokens from the input can
be submitted simultaneously, which is why the model’s learning
can be parallelised so easily.

What differentiates the transformer from the other kinds of
networks is this self-attention mechanism. One of the key concepts
of the attention-based approach is that, given a collection of items
and some item of interest, these two things can be compared, such
that their relevance in the current context is revealed. The current
input uses the result of these comparisons to create output. This
concept can be applied to self-attention, where, given a particular
input sequence, comparisons are made between the elements of that
sequence. Comparing elements in a self-attention layer can be done
with a dot-product - a softmax is then used to normalise these scores.
This results in a vector of weights which specifies proportional
relevance of each of the inputs to the current component that is

the focus of the attention. This mechanism allows the model to
capture dependencies between words at any distance, with great
efficiency [50]. The self-attention takes input in the form of matrices
that represent queries, keys of dimension 𝑑𝑘 and values, that are
mapped to their representations 𝑄 , 𝐾 and 𝑉 . The attention is then
computed on these representations:

Attention(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾
𝑇√︁
𝑑𝐾

)𝑉 (4)

[29]
The transformer can be used to successfully perform, with a high

degree of accuracy, POS tagging [29] and Named Entity Recognition
[52]. BERT (Bidirectional Encoder Representations from Transform-
ers) is a relatively recent language representation model, which
has become quite prevalent in the literature. A deep bidirectional
transformer is trained by being given unlabeled text and using both
the left and right context in all layers [11]. A pre-trained BERT
model can be fine tuned through the addition of an output layer to
the architecture – and this allows for a highly accurate model which
can be applied to a diverse number of natural language problems
[26]. [18] has shown that for part-of-speech tagging tasks, as well
as syntactic and semantic parsing, BERT can be successfully used
for token-level embeddings.

3 NATURAL LANGUAGE PROCESSING
Natural language Processing can be considered to be a field under
the discipline of artificial intelligence. It utilizes numerous com-
putational techniques in order to perform linguistic analysis on
different kinds of texts. The over-arching goal is to achieve human-
like language processing over a variety of tasks and applications
[31].

3.1 Part of Speech Tagging and Named Entity
Recognition

Natural Language processing have various tasks which are used
to analyse aspects of human language. A subset of these tasks are
semantic and syntactic parsing of various texts. Part-of-speech
tagging and Named Entity Recognition are two such tools which
aid these parsing processes [23].

3.1.1 Part of Speech (POS) Tagging. For many languages, we use
the part of speech (POS) system to categorise words in a sentence.
For example, English would generally label “smoking” as a verb,
though this can change depending on the context and other words
in the sentence. For example – “he was smoking outside” vs “that’s
a no-smoking sign”. Part of speech tagging is thus the process of
assigning labels to words, based on their contextual information
[46]. Furthermore, there are a variety of schemes used for tagging,
such as Universal POS and Penn Treebank. The following example
sentence has been annotated using the UD tagset.

Example: There/PRO/ are/VERB/ 2/NUM/ children/NOUN/
there/ABV/./PUNC/ .

3.1.2 Named Entity Recognition (NER). Proper nouns, like “Cape
Town” or “Takealot”, are semantically viewed as different kinds of
entities. Cape Town is a geographical location (LOC) and Takealot
is an organisation (ORG). We refer to these generally as named
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entities, with there being different labels for the different kinds.
Named entities are not strictly proper nouns and include other
attributes like currency, dates, times – and these can be extended to
incorporate field-specific types like proteins, chemicals, etc. Named
entity recognition (NER) can therefore be defined as the process of
identifying spans of text that can be classified as named entities,
and then tagging them [24]. As with POS tagging, there are also
taggingmethods for entities, but one of themain ones is BIO tagging
[45]. BIO tagging does NER by treating it like as a word-by-word
sequence labelling tasks, using tags that capture the boundaries
of the span, as well as it’s type. A token that begins with the span
of interest is labelled with a “B”. Any tokens that occur inside the
span are labelled with an “I”, and any tokens outside the span are
labelled with “O”.

Example: Cyril/B-PER/ Ramaphosa/I-PER/ is/O/ the/O/ presi-
dent/O/ of/O/ South/B-GEO/ Africa/I-GEO/.

3.2 Sequence Labelling
Both NER and POS tagging fall under the category of “sequence
labelling”. There are a number of sequence labelling algorithms
available, but two of themost popular are the HiddenMarkovModel
(HMM) and Conditional Random Fields (CRFs). HMM is based on
Markov chains and assumes that a word is conditioned on its tag. It
aims to maximise the joint probability of a paired observation and
a label sequence [44]. For example: what is the probability of “run”
coming after the word “will” i.e. 𝑃 (𝑣𝑒𝑟𝑏 𝑖𝑛 𝑏𝑎𝑠𝑒 𝑓 𝑜𝑟𝑚 |𝑚𝑜𝑑𝑎𝑙 𝑣𝑒𝑟𝑏),
and what is the probability of “will” being a modal verb i.e.
𝑃 (𝑤𝑖𝑙𝑙 |𝑚𝑜𝑑𝑎𝑙 𝑣𝑒𝑟𝑏) [24]. HMMS, through their Markov chains

for POS tags, are able to (in quite a limited sense) indirectly consider
the context of a word. However, CRFS are far more flexible are how
it can use a word’s context. But,frequently the context of a word
can play a significant role in what it’s correct label is i.e. knowing
a lot about the preceding or following words for the one under
consideration is a feature that would be needed to achieve high
accuracy for tagging tasks [24].Because of their flexibility, CRFS
have been shown to outperform HMMs for POS tagging [28].

Given a sequence of input words (𝑥1, . . . , 𝑥𝑛), labelled 𝑋 – the
aim is to compute a sequence of output tags (𝑦1, . . . , 𝑦𝑛), labelled
Y. HMMs use Bayes’ rule and the likelihood 𝑃 (𝑋 |𝑌 ) in order to
compute the tag sequence that maximises 𝑃 (𝑌 |𝑋 ). The following
equation shows how Bayes’ rule is used for POS tagging - given
𝑤1 ...𝑤𝑛 , i.e. a sequence of 𝑛 words, the aim is to find the most
probable tag sequence 𝑡1 ...𝑡𝑛 :

ˆ𝑡1:𝑛 =𝑡1 ...𝑡𝑛
𝑃 (𝑤1 ...𝑤𝑛 |𝑡1 ...𝑡𝑛) (𝑡1 ...𝑡𝑛)

𝑃 (𝑤1 ...𝑤𝑛)
(5)

Conversely, CRFS compute the posterior 𝑝 (𝑌 |𝑋 ) directly.The
CRF computes log-linear functions at each time step, over a set
of applicable features. These are known as local features, and will
be aggregated and normalized, resulting in a global probability
for the whole sequence. It assigns a probability to 𝑌 , out of Y
(all possible output sequences), given 𝑋 . A function 𝐹 maps the
entirety of 𝑋 and 𝑌 to a feature vector. Assuming 𝐾 features, with
each feature labelled 𝐹𝑘 , and being assigned a weight𝑤𝑘 , 𝑝 (𝑌 |𝑋 )
can be computed in the following way [24]:

Figure 5: Dependency relations for an English sentence [24]

𝑝 (𝑌 |𝑋 ) =
𝑒𝑥𝑝 (∑𝐾

𝑘=1𝑤𝑘𝐹𝑘 (𝑋,𝑌 ))∑
𝑌 ′∈Y 𝑒𝑥𝑝 (∑𝐾

𝑘=1𝑤𝑘𝐹𝑘 (𝑋,𝑌 ′))
(6)

As with HMMS, we can use the Viterbi algorithm for inference
and training the CRF [24]. The Viterbi algorithm uses the principles
of dynamic programming to find the optimal sequence of tags. [32]
and [24] provides a more in-depth explanation for implementing
the algorithm, as well as some of the mathematics underpinning it.

3.2.1 Evaluation of NER. Taggers for NER can be evaluated using
the metrics of precision, recall and the F1 measure, which is the
harmonic mean between precision and recall [17].

Recall =
number of correctly labelled items

total number of items that should have been labelled
(7)

Precision =
number of correctly labelled items

total number of correctly labelled items
(8)

Finally, the F1 score can be computed as

F1 =
(2 ∗ Precision ∗ Recall)
(Precision + Recall) (9)

4 DEPENDENCY PARSING
Dependency parsing is a type of syntactic parsing based on the con-
cept of the dependency grammar. There are four main approaches
to dependency parsing: a transition based, a graph based, constraint
dependency parsing and context-free dependency parsing [39]. The
transition and graph based approaches are covered in later sections.

4.1 Dependency relations
One of the fundamental ideas that underpins the dependency gram-
mar is the notion of a dependency relation, shown by figure 5. A
dependency relation consists of a dependant and a head – the word
upon which it depends. The syntactic structure is thus comprised
of words linked by these asymmetric, binary relations [39]. These
relations are drawn as labelled arcs from head to dependent. The
labels represent the grammatical function that the dependent has
in relation to it’s head e.g. passive subject or direct object [24].

A dependency-based approach to parsing has many advantages:
it abstracts word order information away – the only information
that is kept is the information that’s necessary for the parse. Sec-
ondly, for semantic parsing, the semantic relationship between
arguments and predicates can be approximated by the dependency
relation – which allows for the dependency parsing approach to
be useful for tasks such as information extraction and question
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answering [24]. For syntactic parsing, it is able to efficiently extract
low-level relationships between words in an input sequence [12].

4.2 Dependency structure
A directed, acyclic graph can be used to embody this structure.
The edges/arcs represent the dependency relation, and the nodes
represent the words in a given sentence [37]. There are certain
constraints, which should be noted:

(1) There is only one root node and it must not have incoming
arcs.

(2) Each node has exactly one incoming arc, except for the root.
(3) There is a unique path from the root to each node in the

graph.
A directed graph that satisfies these constraints is known as a

dependency tree, which is the structure that is compatible with the
graph-based and transition-based approaches [24]. This restriction
to a tree structure only applies to syntactic analysis, and therefore
a graph construction can be used for semantic analysis [12].

4.3 Transition Based Parsing
Transition-based parsing draws from the concept of shift-reduce
parsing, a technique used in compilers. There is a buffer of words
which need to be parsed, a stack on which the parse is built [39],
a predictor, called an oracle and finally, a parser which uses the
oracle. Supervised training is used for the parser, and the oracle
generates the transition sequence used in training [40]. The input
for the parser is some sequence of words, which it operates on
from left to right. Items are shifted from the buffer onto the stack –
and the top two elements are selected. The oracle is then consulted
about what the optimal transition is to apply to these two items.
While there are a number of different transition systems, here are
three possible transitions for one of these systems[38]:

(1) Left arc: the word at the top of the stack is assigned as the
head and the second word is assigned as the dependent. The
dependent gets removed from the stack

(2) Right arc: the word at the top of the stack is assigned as the
“dependent” and the second word is assigned as the head.
Remove the dependent from the stack.

(3) Shift: remove the front word from the buffer and place it on
the stack

Left and right arc can be thought of as reduce operations. Train-
ing the parser involves creating a training set and having the oracle
predict an optimal transition sequence for each dependency tree.
The oracle can be approximated by using a neural network that
acts as a classifier [40].

Beam search and global learning have been applied to this arc
standard approach to transition-based parsing, leading to perfor-
mance that is comparable to graph-based methods [53].

4.4 Graph-Based Parsing
Graph-based parsing involves finding a global optimum – that is,
the highest scoring spanning tree, from a complete graph. This
stands in stark contrast to transition-based parsing, which relies on
a greedy algorithm that tries to find the local optimum i.e. highest
scoring transition [7]. Given a sentence S, we can construct a graph

Figure 6: Directed graph for English sentence - maximum
spanning tree labelled with purple [24]

G by using the words from S as input and the edges represent all
possible head-dependent relations. This would thus be a weighted,
directed graph, with a root node inserted that has an edge to every
other node in the graph. The spanning tree of G is thus a subset
of G that qualifies as a tree and contains all the nodes within G. A
valid parse of S could therefore be defined as a spanning tree that
starts at the root node [24].

In essence for a given sentence, a search is performed through
some search space, which is comprised of directed graphs, for a
spanning tree that maximises some score. An assumption is made
that the score of a dependency tree can be derived as the sum of
the scores for each edge that the tree is composed of. The parser
has to assign scores to each edge and find the maximum spanning
tree [34]. The Chu-Liu-Edmonds algorithm can be used to compute
this tree [? ]. The algorithm has a series of phases. The first phase
involves iterating over each node in the graph and choosing the
incoming arc with the highest score – this is a greedy selection.
Then a check is performed to see if the resulting edges produces
a spanning tree. If that is the case, then the process is finished.
Otherwise, if the tree has any cycles in it then the edge weights
need to be scaled and a recursive cleanup phases, which involves
collapsing certain nodes, finishes off the process [8]. Figure 6 shows
a maximum spanning tree for the sentence "Book that flight".

The edge score can also be computed using a weighted sum of
the features that can be extracted from it. In this case, the rele-
vant features must be identified and the weights then trained [51].
These features can include (but are not limited to): word embed-
dings, the dependency relation, parts of speech of the head word
and its dependents [24]. Graph-based dependency parsers need to
be evaluated by using finer-grained metrices: labelled attachment
accuracy (LAS), unlabelled attachment accuracy (UAS) and label
accuracy score (LS). LAS examines the appropriate assignment of a
word to its head and checks that the dependency relation is correct.
UAS ignores the dependency relation and checks the accuracy of
the assigned head. Finally, LS is concerned with the percentage of
tokens with the correct labels (and ignores the relations) [24].

5 SEMANTIC PARSING
Semantic parsing is concerned with the task of mapping natural
language utterances into a semantic representation [35]. These rep-
resentations can be referred to as meaning representations (MR),
which can be more easily understood and processed by computers.
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Minimal recursion semantics [10], abstract meaning representa-
tions [2] and dependency-based compositional semantics [30] are a
subset of the possible formalisms that can be used to express these
meaning representations. [25]. Semantic dependency parsing aims
to capture the between words relationships, in order to determine
the meaning of a sentence. This is done using a graph structured (as
opposed to tree) representation, which allows for more linguistic
information about a sentence to be captured [9].

5.1 Corpora
A number of corpora are available for use with neural networks.
These corpora contain annotated semantic and syntactic text. Some
examples of widely used corpora include DeepBank, PropBank and
Penn treebank. These corpora need to be large, as the dataset will
be split up into a training set, test set and evaluation set for the
model.

5.2 Tokenisation and Lemmatisation
Once a corpus has been selected, the data has to be preprocessed
before it can be fed into a neural network. The words are divided
into units – a process known as tokenization [27] . For English,
this is usually a straightforward process – spaces are the main
mechanism used to split sentences [6]. These tokens can then be
lemmatized. This is when a word and all its inflected forms are
grouped together and viewed “as one” i.e. they can be analysed as
a single word form. [27]

5.3 Meaning Representation Frameworks
Meaning Representation frameworks are distinct from the afore-
mentioned corpora. Corpora simply provides annotations for syn-
tactic and semantic structure. Meaning representation frameworks,
however, provide a blueprint for how these graphs structures can
be created and rendered - they each have assumptions about the re-
lationships between a sentence and the nodes that form part of the
graph. There are five main frameworks for meaning representation
parsing.

(1) DELPHI-IN MRS (DM): Asymmetric lexical relations be-
tween heads and dependents is what describes a bi-lexical
dependency [21]. DM, like these other frameworks, can be
used to generate graphs and under this framework, the edges
largely signify semantic argument positions e.g. ARG1. Node
labels consist of the lemmatized word, a POS label and a
frame identifier [22].

(2) Elementary Dependency Structures: This framework is based
on DM and creates a semantic dependency graph that (unlike
DM, for example), is not restricted to bi-lexical dependen-
cies. In this paradigm, logical predications form the nodes of
the graph and labelled argument positions form the edges.
EDS does not have a one-to-one correspondence between
words in the sentence i.e. the tokens, and nodes in the graph.
Nodes are rather anchored on spans, which can overlap with
other nodes in the graph [42]. Figure 7 shows an EDS graph
generated from an English sentence.

Figure 7: EDS graph for sentence: A similar technique is al-
most impossible to apply to other crops, such as cotton, soy-
beans and rice [41]

The Prague Semantic Dependencies, Universal Conceptual Cog-
nitive Annotation and Abstract Meaning Representation frame-
works will only be explained in brief, as they are not the focus of
the project:

• Prague Semantic Dependencies (PSD): As with DM, PSD
uses bi-lexical dependencies. However, edges labels with this
framework are not usually functional i.e. multiple outgoing
edges from one node with the same label is not permitted.

• Universal Conceptual Cognitive Annotation (UCCA): This
framework was derived using cognitive linguistic and typo-
logical theories, and proposes the notion of unlabelled nodes
called units and one or more labels per edge.

• Abstract Meaning Representation (AMR): Finally, this frame-
work provides no explicit rules for how the words in the
sentence must relate to the graph nodes. Thus, these nodes
might be far more “abstracted” than the tokens that were
given as input [41].

5.4 Semantic Role Labelling
Semantic role labelling is a particular kind of semantic parsing.
Here, given a statement, we are trying to identify which groups of
words can be linked as arguments to a given predicate. We also try
to determine what an argument’s role (with respect to the predicate)
is [9]. The output of this will be a tree structure. Figure 8 shows an
example of arguments, linked to predicates according to the DM
framework.

Semantic role labelling can be performed using CRFs [9] or a
BiLSTM [19].

5.5 Semantic Dependency Parsing
These semantic trees can be generated by means of taking tok-
enized input and producing semantic dependency schemes in the
form of directed acyclic graphs. [12] concatenated word and POS
embeddings, fed these through a multilayer bidirectional LSTM
and finally used biaffine classifiers in order to predict arcs and la-
bels. Biaffine classifiers are a method of modelling binary relations
by using an attention mechanism [33], [43] uses concepts from
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Figure 8: Semantic role labels for an English sentence, show-
ing the arcs from head to dependents [43]

graph-based dependency parsing to create a semantic dependency
parser for parsing sentences into three semantic dependency graph
formalisms – namely DELPHI-IN MRS (DM), Predicate-Argument
Structures (PAS) and Prague Semantic Dependencies (PSD). This
was achieved again through using a biLSTM composed with a multi-
layer perceptron that scored arcs and predicates, for each of the
formalisms.

6 SEMANTIC GRAPH PARSING
Semantic graph parsing is the process of determining the semantic
meaning of a sentence and converting it to a graph representation.
Semantic graph parsing can thus be modelled as a graph prediction
problem [15]. Many of the parsing concepts and algorithms used
for tree structures can be extended to graphs. [13] showed that a
semantic graph could be converted to a tree, which could be used
as input to a graph-based tree parser. The output of the parser was
then converted back into a graph. [3] used the arc-eager transition
system to create a semantic graph parser for the minimal recursion
semantics formalism. This parser achieved a high SMATCH score
of 86.69 and had a higher accuracy compared to the MRS baselines
(attention-based).

[5] provides a thorough, detailed dissection of two approaches
to semantic graph parsing: the knowledge-intensive, grammar rule
driven approach and a data-intensive, maximum-score for a whole
graph approach. This review focuses on the latter approach.

6.1 Evaluation
Parsing accuracy i.e. correct graph identification can be evaluated
by themetric of SMATCH. It can be used to evaluate whole-sentence
semantic structures. These whole-sentence semantic structures are
the output of semantic parsing processes, which, given some input,
attempt to produce all semantic relationships present in that input.
SMATCH takes two semantic feature structures and calculates the
degree of overlap between them [4].

6.2 Node Prediction
As mentioned earlier, an input sentence must be tokenised before it
gets parsed. Following that, a sequence labeller, such as a CRF, may
be used to predict the various concepts for each of the tokens[5]. If a
node’s label has a conceptual meaning, then a node can be referred
to as a concept. There are two classes of node labels: surface and
abstract [6]. Furthermore, there is no assumption that there is a
one-to-one relationship between the tokens and the nodes in the

Figure 9: Span-Graph for Semantic Role Labelling [19]

graph. Nodes may in fact correspond to a sub-token, or multiple
tokens. The sequence labeller would thus need to align the tags
and concepts based on a word’s span information – and a set of
heuristic rules may also be necessary [5]. Should data sparseness
become an issue, lexical predicates would need to be delexicalised
[3]. This word tagging problem can be formulated mathematically
as follows: ∑︁

𝑛∈NODE(𝐺)
SC𝑛 (𝑠, 𝑛) ≈

∑︁
1≦𝑖≦𝑚

max
𝑠𝑡𝑖 ∈𝑆𝑇

𝑆𝐶𝑠𝑡 (𝑠, 𝑖, 𝑠𝑡𝑖 ) (10)

[5] used a BiLSTM with a softmax layer for classification. In the
above equation,𝐺 represents a graph and 𝑆𝐶𝑠𝑡 (𝑠, 𝑖, 𝑠𝑡𝑖 ) is computed
by using softmax on the output of the BiLSTM. They used character-
based and word-based word-embeddings for their model. ELMo,
a contextualized representation model similar to BERT, was used
in place of static word embeddings [14]. Their ELMO* model was
able to achieve a tag accuracy of 95.38% (compared to 94.51% for
Word2Vec), and an F1 score of 97.04 (compared to 94.87% for W2V)
[5].

6.3 Edge Prediction
Edge prediction forms the second stage of the data-intensive parser.
Though predicting nodes and edges can be done at the same time,
as seen with [19]. Output from the previous stage i.e. the predicted
nodes, are used for this one. Identifying these dependencies can be
framed as an optimization problem, represented mathematically as:

𝐺 = 𝑎𝑟𝑔 max
𝐺 ∈G (N )

∑︁
(𝑝,𝑎) ∈ARC(𝐺)

SC𝑎 (𝑠, 𝑁 , 𝑝, 𝑎) (11)

G = the set of all possible graphs that accept 𝑁 as their node
set. By employing a factorization-based approach, a graph can be
measured using the scores of local subgraphs and summing them
to find some maximum. A score is calculated for all directional arcs
between two node in a graph. A multi-layer perceptron is used
to get each arc’s scores for all possible labels and the max one is
selected as the final label. Dependency graphs can be measured
using labelled and unlabelled, precision/recall as well as an 𝐹1 score
[5].

6.4 Span Prediction
Rather than predicting labels for single tokens as the papers men-
tioned in the previous section have done, some of the research
has instead focused on predicting labelled spans. One of the prob-
lems with BIO-tagging based neural semantic parsers is that they
can’t integrate span-level features. Additionally, [19] notes that
BIO-tagging and Markov based models for semantic role labelling
have some limitations, in that they cannot model overlapping spans
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that form part of multiple predicates within the same sentence
[19]. This research aimed to create an end-to-end model that could
address these aforementioned issues. They were able to develop
a model that was able to incorporate span-level features and per-
form joint predicate identification with a high degree of accuracy
- outperforming the previous best system (at the time) for SRL
created by [20]. Figure 9 shows a graphical representation of the
labelled spans and arcs that their model predicted. [23] examined
the need for building task-specific architectures for 10 different
NLP tasks. Some of these tasks included NER, POS tagging, SRL and
dependency parsing. The main problem the research was trying
to address was: rather than creating task-specific architectures to
perform these NLP tasks, is it possible to devise a task-independent
model that can be used across these NLP and provide a comparable,
if not higher degree of accuracy compared to these task-specific
architectures. They were able to formulate a model, called SpanRel,
which is largely task agnostic. The one requirement was that a task
needed to be formulated as a span-relation prediction problem in
order for the model to operate on it. SpanRel was able to perform
competitively with the more task specialized models.

7 MOTIVATION
There are several motivations for this project. Firstly, this project
aims to use the newer approach of having pretrained transformers
form the basis of the model. Much of the literature has used word
embeddings and LSTSMs . Furthermore, for the graph-based parsing
part, the prediction of nodes and edges will be done separately, as
opposed to much of the literature, where this is done jointly [19]
[23] [43]

8 CONCLUSION
Advances in machine learning, such as the development of the
transformer model, have had a significant impact on the field of
NLP. Small, initial research has shown that as an encoder in the form
of BERT, it can be applied to a wide variety of NLP tasks. But, more
research needs to be done to determine whether the transfomer can
supersede the BiLSTM that is widely used in semantic and syntactic
parsing, and whether contextualised representations models, such
as BERT, can replace traditional, static word embeddings. Semantic
parsing is applicable to question answering, machine translation,
code generation and many other use cases. As demand for better
systems increase, new parsers that are efficient and accurate will
need to be developed. Therefore, there is a great need to take new
ML techniques, such as transformers and test to see if and how it
may improve semantic graph parsing.
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