UNIVERSITY OF CAPE TOWN é
= -

DEPARTMENT OF COMPUTER SCIENCE

CS/IT Honours Project
Final Paper 2022

Title: Node Prediction in Meaning Representation Parsing

Author: Imrie, Jane (IMRJANOO1)
Project Abbreviation: MRP

Supervisor(s): Buys, Jan (jbuys@cs.uct.ac.za)

Category Min | Max | Chosen
Requirement Analysis and Design 0]20 |0
Theoretical Analysis 0|25 |5
Experiment Design and Execution 0]20 |20
System Development and Implementation 0/20 |0
Results, Findings and Conclusions 10120 |20
Aim Formulation and Background Work 10|15 |15
Quality of Paper Writing and Presentation 10 10
Quality of Deliverables 10 10
Overall General Project Evaluation (this section 0110

allowed only with motivation letter from supervisor)

Total marks 80

Node Prediction in Meaning Representation Parsing

Jane Imrie
IMRJANO001@myuct.ac.za
University of Cape Town

ABSTRACT

Semantic Graph Parsing involves parsing the semantic meaning
of a sentence and representing it in graph form. The process is
comprised of concept identification, otherwise known as node pre-
diction, and relation identification. In the paper we investigate the
use of pre-trained transformers, namely SpanBERT, on concept
identification. We also compare these models to the combination of
BiLSTM and regular Glove embeddings. Furthermore, we explore
whether an additional and costly Conditional Random Fields “layer”
is worth including in a model i.e. how the layer affects the metrics of
tag accuracy, node prediction precision, recall and the F1 score. Our
research shows that SpanBERT was able to substantially outpeform
Glove across all categories. We also show that a CRF layer does not
have a significant effect on model accuracy.

KEYWORDS

Semantic Graph Parsing, Natural Language Processing, Semantic
Parsing

1 INTRODUCTION

Natural language Processing uses many different types of computa-
tional techniques in order to perform linguistic analysis on a variety
of texts across languages, with the broad goal of trying to achieve
human-like language processing over a variety of applications[34].
One way this can be achieved is through syntactic and semantic
parsing of sentences into various representations. These represen-
tations can then be used to perform a number of downstream NLP
tasks, such as machine translation, question-answering and senti-
ment classification.

Given the state of technology and how it as advancing, it has be-
come feasible to leverage deep learning technologies and techniques
for tasks within the field of NLP. Semantic meaning representa-
tion parsing, that is, the process of converting some form of input
sentence into a semantic meaning representation, has especially
benefited from the use of BILSTMS, as seen in [10] and [7], amongst
others. Two of the most popular parsing systems in the literature
is transition-based and semantic graph-based parsing [36]. In the
latter, the parser outputs a graph structure - a form which is most
advantageous due to how flexibly it allows for these representations
to be made [39]. This process can be split into two parts (1) node
prediction (otherwise known as concept identification) and (2) edge
prediction.

A number of frameworks exist which provide rules for the pars-
ing process, such as Dependency-based Minimal Recursion Seman-
tics [13], Elementary Dependency Structures [38], Prague Semantic
Dependencies, Universal Conceptual Cognitive Annotation [1] and
Abstract Meaning Representations [4].

Presented with the above, this research attempts to pivot off the
work done by [7].Their work focused on comparing different kinds
of semantic parsers - chiefly, they created a new factorisation-based

parser which created conceptual graphs for sentences. This parser
used pre-trained embeddings and operated in a pipeline fashion.
The first stage, concept identification, was optimised and the best
predictions were selected for the following phase, dependency de-
tection (edge prediction). This parser was then pitted against more
conventional, knowledge intensive parsers.

In this paper, we investigate and compare the use of the BILSTMs
and pre-trained transformer model on node prediction accuracy
(the first part of [7]’s work), which is measured in terms of precision,
recall and the F1 score. Furthermore, we determine to the effect the
addition of a probabilistic Condition Random Fields layer has on
model accuracy [33] and assess if it would thus be worth including
given its cost. This report is comprised of a background information
section, a brief section on work relevant to our research, followed
by details of the experiments, their results, the conclusions drawn
from them, limitations and a small mention of future work.

2 BACKGROUND

2.1 Natural Language Processing and
Computational Linguistics

2.1.1 Sequence Labelling. Natural Language processing contains
various tasks which are used to analyse aspects of human language.
A subset of these tasks are semantic and syntactic parsing of vari-
ous texts. Part-of-speech tagging and Named Entity Recognition
are two such tools which aid these parsing processes [27]. Many
languages use the part of speech (POS) system to categorise words
in a sentence. For example, English would generally label “smoking”
as a verb, though this can change depending on the context and
other words in the sentence. E.g — “she’s busy smoking” vs “that’s a
no-smoking sign”. Part of speech tagging is the process of assigning
labels to words, based on their contextual information [44].

Proper nouns, like “Cape Town” are semantically viewed as dif-
ferent types of entities, referred to as named entities. These are not
strictly proper nouns and include other attributes like currency,
dates, field-specific types like chemicals, etc. Named entity recogni-
tion (NER) can therefore be defined as the process of identifying and
tagging spans of text that can be classified as named entities[29].
BIO tagging is one of the NER tagging methods[43]. BIO tagging
performs NER by treating it as a word-by-word sequence labelling
task, using tags that capture the boundaries of the span, as well as
it’s type. A token that begins with the span is labelled with a “B”.
Any tokens that occur inside the span are labelled with an “I”, and
any tokens outside the span are labelled with “O”. An illustrative
example:

Cyril/B-PER/ Ramaphosa/I-PER/ is/O/ the/O/ president/O/ of/O/
South/B-GEO/ Africa/I-GEO/.

https://orcid.org/

"Sequence labelling” can thus be thought of in the general sense
as a pattern recognition task. Given a sequence of values, an algo-
rithm is used to assign a categorical label to each value. It includes
POS tagging and NER.

2.1.2 Conditional Random Fields. Two of the most popular se-
quence labelling algorithms are the Hidden Markov Model (HMM)
and Conditional Random Fields (CRFs). HMM uses Markov chains -
it assumes a word is conditioned on its tag, and seeks to maximise
the joint probability of a paired observation and a label sequence
[42]. E.g. finding the probability of “high” coming after the word
“jump” i.e. P(adverb |verb), and the probability of “jump” being a
verb i.e. P(jumpl|oerb) [29].

X is a sequence of input words (xi,...,xp), and the aim is to
compute Y a sequence of output tags (y1,...,yn). Bayes’ rules and
the likelihood P(X|Y) is used by HMMs in order to compute the
tag sequence that maximises P(Y|X). POS tagging uses Bayes’, as
shown in the next equation. Given wy...wp, a sequence of n words,
the goal is to find the most probable tag sequence ti...ty:

P(wi..wplt1...ty) (t1...tn)
P(wi...wp)

Fin =1, (1)

Conversely, CRFS directly calculates the posterior p(Y|X). It
computes log-linear functions at each time step, over a set of ap-
plicable features. Given X,a probability is assigned to Y, out of (all
possible output sequences), %. X and Y is mapped by F, a function,
to a feature vector. Assuming K features, with each feature labelled
Fy., and being assigned a weight wy, p(Y|X) can be computed using
this method [29]:

exp(Ze_, wiFe(X,Y))
Syrew exp(Sp_ wiFi(X,Y"))

The Viterbi algorithm is used for inference and training the
CRF and HMMs [29] and uses dynamic programming to find the
optimal sequence of tags. [35] and [29] provides a more in-depth
explanation for implementing the algorithm, and the mathematics
underpinning it.

HMMs, are able to (in quite a limited sense) indirectly consider
the context of a word. However, CRFs are comparatively far more
flexible in how it can use a word’s context. This is favourable, as
often a word’s context can play an important role in what it’s correct
label is. That is, knowing a lot about the preceding or following
words for the one under consideration is a feature that would be
needed to achieve high accuracy for tagging tasks [29]. CRFS have
been shown to outperform HMMs for POS tagging because of their
flexibility [32].

p(Y|X) = (2

2.1.3 Meaning Representation Frameworks. The meaning of a sen-
tence can be depicted using a semantic representation. This rep-
resentation can be in the form of a tree or graph structure. In the
case of the latter, there are a number of formalisms which allow
for effective encoding of rich semantic information for given lan-
guage inputs [9]. These meaning representation frameworks act
as blueprint, defining how these semantic graph structures can be
generated, as well as enforcing general assumptions about sentence-
node relationships in the context of the graph itself. Two of these,

e ~
(parg d<3:4>) (Cinpea:s) (proper_q<6:7>) (compaumics D)

¢ Y
/ (proper q<&:7>
ARGI ARG2 BY ARGI ARG \PTopeT 4 _/

NSNS T

- ;
(“the.q<0:1>) arc2 (Lintroduce.v to<3:4>) (named<6:7>) (named<s:6>)

(_year n_1<8:9>)
BY ARG ARG1 ~

ARG2 BY
('_,drugm,mq:z)_}
o The ; drug ; was 3 introduced 4 in 5 West 4 Germany 7 this g 9.10

{ 193 .
.\10:,n0n5p<7.9>j (-this.q.dem<7:8>)

Figure 1: An EDS graph with labelled nodes and edges. Both
surface and abstract nodes are present. compound is an ex-
ample for an abstract node and _introduce_v_1 is the label
for a surface node [7].

which are pertinent to this research, are DELPHI-IN MRS (DM) and
Elementary Dependency Structures (EDM) [38]:

(1) DM: a bi-lexical dependency describes asymmetric lexical
relations between heads and dependents [25]. Under DM,
the edges largely signify semantic argument positions e.g.
ARG2. Node labels consist of the lemmatized word, a POS
label and a frame identifier. [26]

(2) EDS: based on DM and creates a semantic dependency graph
that (unlike DM), isn’t restricted to bi-lexical dependencies.
Logical predications form the nodes of the graph and labelled
argument positions form the edges. There is no assumption
of a one-to-one correspondence between words in the sen-
tence i.e. the tokens, and nodes in the graph. Nodes are rather
anchored on spans, which can overlap with other nodes in
the graph [38].

2.1.4 Semantic Parsing. In the context of NLP, a parser is tasked
with analysing a natural language utterance, such as a sentence,
and breaking it up into components based on some criterion. These
may be semantic or syntactic, for example. A factorisation-based
parser, such as seen in [10], has a score function, which it uses to
evaluate candidate graphs that are derived from the input sentence.
Since a sentence can have any number of possible graphs, the parser
is also tasked with retrieving graphs with the highest scores from
the set of all possible graphs for the given input. This type of parser
essentially needs to model the expected elements for the target
semantic structure. These elements are (1) labelled nodes, (2) node
edges and (3) node characteristics. Sometimes, a label for a given
node has a conceptual meaning and thus a node can then be called
a "concept". These concepts can be divided into two classes [10]:

(1) Surface: these are derived from the words themselves - their
orthography provides the crucial part of the label

(2) Abstract: these are used to symbolise more specialised labels
or the influence of grammatical constructions

Concept identification is thus the process of receiving tokenised
input and establishing under which class (if any) each token falls.
However, it should be noted that a surjection exists between the
input and surface nodes. Furthermore, the connection between
some abstract concepts and all surface concepts to nodes in the
candidate graph is usually straightforward and easy to determine.

In the literature, these are known as lexicalised concepts and the
task of their identification can be formalised as a tagging problem
on the token level.

The identification of the other abstract concepts is far less triv-
ial and there are differing approaches on how to achieve it. [10]
proposed using a word-level tagger and some heuristics rules, and
was able to achieve F1 scores of between 95 and 96 for their non-
lexicalised concept identification.

2.1.5 Semantic Graph Parsing. Semantic graph parsing is the pro-
cedure of determining the semantic meaning of a sentence and
converting it to a graph - therefore, it can be modelled as a graph
prediction problem [18]. Many dependency parsing concepts and
algorithms, which have tree structures, can be extended to graphs.
Graph-based dependency parsing involves finding a global opti-
mum - that is, the highest scoring spanning tree, from a complete
graph. This stands in stark contrast to transition-based parsing,
which relies on a greedy algorithm that tries to find the local opti-
mum i.e. highest scoring transition [11]. Analogously, for a semantic
graph-based parser, the aim is to find the maximum subgraph i.e. a
subgraph where the sum of the scores of the semantic structures is
highest. SMATCH is a metric that can perform this, as it assesses
whole-sentence semantic structures. These structures are the out-
put of semantic parsers, which attempt to produce all semantic
relationships present in a given input. SMATCH takes two seman-
tic feature structures and calculates the degree of overlap between
them [6].

2.2 Machine Learning

"Words" as they are understood in language, need to be represented
in a numerical form in order to be used for machine learning. This
representation is known as word embeddings, commonly calculated
as vectors [3].

A neural network consists of computing units that require vec-
tors as input and outputs a single value. The most basic neural
network is the feed-forward (FF) single layer perceptron, which
consists of an input layer, at least one hidden layer, a non-linear
layer and an output layer. This can be represented mathematically
in terms of vector-matrix operation, where b represents a bias term
and W the standard weight matrix:

NNperceptron (x) =xW+b 3)

However, these kinds of networks cannot use sequential context
effectively when making predictions. This can be problematic, as
some NLP tasks may require the use of information that is indiscrim-
inately distant from the current word being processed. Recurrent
Neural Networks (RNNs), however, do possess this mechanism. This
added temporal dimension means Simple RNNs (a type of recurrent
network) use earlier outputs from previous timesteps to form part
of the input to a neuron (computing unit) [29].

Despite their advantanges, RNNs suffer from the phenomenon of
vanishing gradients - the gradient becomes lower as the network is
trained on long sequences. This increases the difficulty of training
the weights [47]. Furthermore, if the information is very distant
from where the current point is being processed, in practice it
makes training the network very challenging. The local encoded
information is more relevant to the newer parts of the the input

series, even though the network has access to the entire preceding
series [48].

Long Short Term Memory (LSTM) neural networks address the
aforementioned problem and serve as an extension to the simple
RNN. The "context management problem" characterised in the RNN,
that is, the inability to provide helpful information to the current
decision whilst also "remembering" information which needs to be
brought forward for future decisions, is not present in the LSTMs.
LSTMs prevent this by: (1) removing unessential information from
the current context and (2), keeping possession of only the infor-
mation with a high likelihood of being required in future decision
making [47]. An in-depth explanation of how the network realises
this is beyond the scope of this paper. However, LSTMs, due to
this useful characteristic, have proven to be a favoured choice for
various NLP tasks, and are used in [23], [16],[39], [50] and [27].
More details of the specific use cases for some of these can be found
in later sections of this paper.

The next advancement in neural networks which has proved
applicable to NLP tasks are transformers. Their use has become
somewhat widespread across various types of NLP activities [52].
Having an underlying encoder-decoder structure, a transformer
accepts an input sequence, (xi, .., x»). This gets mapped to con-
tinuous representations by the encoder labelled z: (z1, ..., z,) and
an output sequence, (y1,...,Yn), is generated element-wise by the
decoder. However, due to its modular nature, the transformer can
be used as either an encoder or decoder.

The model is composed of blocks, which are themselves made
up of feed-forward layers, normalising layers, a self-attention layer
and residual connections. What differentiates and elevates the trans-
former above other kinds of neural networks is the "self-attention"
mechanism. Under the attention-based approach, given both an
item and collection of items of interest, they are compared in order
to determine their relevance within the current context. Current
input utilises the results of these comparisons to generate output.
This notion allows for the model to efficiently capture dependen-
cies of words, regardless of distance between them. Additionally,
input tokens can be processed simultaneously, allowing the trans-
former to parallelise learning far more efficiently then other kinds
of networks [49].

2.2.1 Deep contextualised word representations. The same word
can mean different things in different contexts - “I eat an apple
everyday” vs “Apple is a tech company” shows how the word “apple”
drastically differs in meaning between the two contexts. Despite
this, for static embeddings, the vectors in both cases for “apple” are
the same. Contextualised word representations do not have this
limitation - the vectors are sensitive to the contexts in which they
appear [17].

Deep contextualised word representations are a step above this.
A neural network is composed of many layers, and deep contextu-
alised representations able to capture these contextualised repre-
sentations over several layers. Additionally, they have the added
advantage of being pre-trained on much larger corpora than the
standard treebank [31]. BERT (Bidirectional Encoder Representa-
tions from Transformer) is a language model used for deep contex-
tualised word representations that is becoming more widespread
in its use throughout the literature. It is a bidirectional transformer

that uses left and right context in all its layers and unlabelled text
is used to train it. A pre-trained BERT model can be placed into an
existing pipeline, and through the addition of an output layer to
the model’s architecture it can be further fine-tuned to the specific
task. BERT’s versatility can be seen in[22], where it was used for
POS tagging, semantic and syntactic parsing.

3 RELATED WORK

3.1 Comparing Knowledge-Intensive and
Data-Intensive Models for English Resource
Semantic Parsing

One of the key papers that influenced this experiment is [7]. In that
paper, the researchers created two parsers for English Resource
Semantics (ERS) graphs- one of which is a data-intensive model,
the focus for this research. ERS is an extensive framework used for
linguistic analysis [19].

This parser operated as a pipeline, whereby node and edge predic-
tion was performed sequentially. Other research, such as [23] and
[27], predict nodes and edges jointly. However this is not mandatory
and others, such as [53], [8] and [10] have separated the process. [7]
used Word2Vec, a basic type of word embedding as their baseline
and pre-trained ELMo models for comparison.

ELMO (Embeddings from Language Models) is a type contextu-
alised word representation model, like BERT. It is composed of a 2
layer BiLSTM that is trained on a bidirectional language modelling
task. The concatenated internal states of the BiLSTM is used to
generate a contextualised representation of each token. However,
this concatenation can operate to the detriment of the model, as
it hinders the ability of the representation to take advantage of
both contexts simultaneously[41]. BERT builds upon some of the
ideas put forward by ELMo, using transformers. It uses a masked-
language objective, which essentially means that it masks words
at random and replaces these with a mask. The unmasked words
to the left and right are used to predict the encapsulated masked
words. [15].

Their work showed that ELMo* was able to outperform all other
models in terms of concept identification and tag accuracy. Though
this research aims to employ similar techniques and heuristics, [7]
endeavoured to compare knowledge-intensive and data-intensive
parsers, rather than just focusing solely on data-intensive models.
Knowledge-intensive parsers utilise lexical and syntactico-semantic
rules, usually governed by a grammar, in order to derive semantic
graphs. Conversely, data-intensive parsing involves modeling the
target graph - each part of the graph may be associated with a
score and the aim is to find the graph with the highest sum of these
partial scores.

Additionally, the research does not examine the affects of adding
a Conditional Random Fields layer on concept identification accu-
racy.

3.2 Generalizing Natural Language Analysis
through Span-relation Representations

The current standard for many NLP activities is to build a task-
specific architecture for the charge. [27] thus investigated if (1) a
task-independent model could be created and used across various

different types of NLP tasks and (2), could that model provide com-
parable or increased accuracy than the task-specific architectures.
The result of this was the task-agnostic SpanRel - which merely re-
quired that the task be framed as a span-relation prediction problem.
SpanRel was able to compete with more task-specialised models for
the same NLP tasks. The relevance of SpanRel to this research is
that, SpanRel’s architecture scores spans directly, instead of using
BIO or tree2label to encode spans as tags.

3.3 Jointly Predicting Predicates and Arguments
in Neural Semantic Role Labeling

This research has focused on predicting labelled spans. BIO-tagging
based semantic parsers have some problems, one of which is that
they can’t integrate span-level features. [23] also notes that BIO-
tagging models for semantic role labelling have some shortcomings
- they cannot model overlapping spans that form part of multiple
predicates within the same sentence [23]. Thus, these researchers
set about to create an end-to-end model to tackle these limita-
tions. The model they developed was able to incorporate span-level
features and perform joint predicate identification. Their model
produced state-of-the art results, beating the previous best system
(at the time) for SRL created by [24].

3.4 Factorization- and Composition-Based
Parsing for Elementary Dependency
Structures

[10] created and contrasted factorisation-based and composition-
based approaches to semantic parsing for EDS. They created a
four stage pipeline, starting from tokenisation (at the word-level
in their case), and continuing to concept identification, relation
detection and property prediction (such as spans/anchors). Their
factorisation parser out-performed their composition-based one
across categories, including anchor, edge and label. Concept iden-
tification was performed using a multi-layer BiLSTM, as well as
ELMo and BERT contextualised representation models.

4 RESEARCH QUESTIONS AND PROBLEM
DEFINITION

4.0.1 RQ1. How does a fine-tuned BERT encoder compare to an
BiLSTM with a standard word-embedding layer in terms of accuracy
of node prediction?

Accuracy in this context, can be defined using the metrics of
precision and recall and F1. Here, were are trying to determine the
effect of using BERT when compared to the more popular BiLSTM,
on the values of these metrics. In essence, we are trying to assess
if the transformer, with its many useful characteristics, is a viable
successor to the BiLSTM in the case of concept identification in
semantic graph parsing. We hypothesise, due to the transformer’s
unique attention mechanism and the promise showed by BERT in
other literature for other NLP tasks [22], that models that use BERT
will outperform those that utilise Glove [40].

4.0.2 RQ2. To what extent does the addition of a CRF layer affect
model accuracy, measured in terms of precision, recall and F1 score?

In a similar vein to the previous question, we are trying to inves-
tigate what effect the use of a CRF layer has on the metrics used to

evaluate accuracy. The CRF has a quadratic cost, and it therefore
becomes necessary to ascertain if it has any substantial affect on
these values, or whether it is better to exclude it from the models,
which would reduce computational costs to some extent. Given
how effectively the CRF is able to use context, we speculate that
models that contain this additional layer will produce higher scores
and therefore the inclusion is worthwhile.

4.1 Problem Definition

We cast concept identification as a sequence labelling problem of
two parts, given that we are separately predicting surface/lexicalised
and abstract/non-lexicalised concepts. The first is the lexicalised
concept prediction. In the context of this research we are trying
to predict nodes, which are composed of spans. Surface span pre-
diction can thus be seen as being most similar to an NER problem.
Second, given that we transformed the abstract node labels into a
set of tags who structure itself encodes the span information, the
prediction of these tags is somewhat analogous to a POS tagging
problem.

5 EXPERIMENT METHODOLOGY

5.1 Evaluation Metrics

Generally speaking, sequence taggers can be evaluated using the
metrics of precision, recall and the F1 measure, which is the har-
monic mean between precision and recall [21].

number of correctly labelled items

Recall =
eca total number of items that should have been labelled

number of correctly labelled items

Precision =

®)

total number of labelled items
Finally, the F1 score can be computed as:

(2 * Precision * Recall)
Fp = — (6)
(Precision + Recall)

In the case of this research, the micro-averaged precision, recall
and F1 score was used to calculate the node label accuracy. The
micro-average treats the entire dataset as an aggregate, rather than
averaging the metric of k classes. The gold and predicted tags were
converted into a scalar corresponding to the index of the tag in the
list of all possible tags, placed into a pytorch tensor and fed to
the Torch Metrics [14] package for the final calculations. This
general-purpose metrics package allows for easy replication for
this part of the results given the appropriate data.

For concept identification, the gold (i.e. target) spans are ex-
tracted from the data. A labelled item in this context consists of a
node label and span information. For both the gold and predicted
spans, any unlabelled token is removed from the set before the
above metrics are calculated, as per the method used in [7]. The
evl_edm.py script used in [5] was modified in order to perform
the evaluation.

5.2 Data Pre-Processing

Sourced from the Redwoods corpus [37], the data was extracted
and split into training, development and test sets by means of a

pre-made script !. The Deepbank EDS semantic annotations with
span-level normalisations were selected. The script provides the
tokenised input sentences, node labels, as well as edge labels, of
which only the former two were needed for this research.

This resulted in a split of 35598 train, 1813 dev and 1482 test
sentence sets. Some inspection was performed to check the tag
distribution and this showed that most of the tags appeared in each
set. If the distribution was too skewed i.e. a significant proportion
of tag types only appeared in either the test or dev sets, this would
be problematic. However, this was not the case for this corpus.

It should be noted that not all tokens were labelled - these were
allocated a label of "None" for the purposes of prediction with the
neural networks. Table 1 shows a labelled sentence extracted from
the corpus. Note that “60%-held”, which is viewed as "one-word",
has been split into two tokens according rules found in the EDS
framework.

5.2.1 Tag Processing. The combination of surface and abstract
labels resulted in a label set size of over 8000 items. This would
prove infeasible in terms of memory requirements in order to train
and thus it was decided that the surface and abstract labels would be
predicted separately. This would also allow for a more finer-grained
control over the parameters for each model, which we surmised
would lead to better results.

Surface node labels may contain the lexical part of the token
that aligns to it, for example in 1, the tag for “The” is _the_g. The
can lead to a data-sparseness problem when training.[5] suggests
delexicalising these predicates by replacing the lemma with a “*”
The labels for this corpus simply removed the lemmas.

We needed to establish what the labet set sizes for the different
types of nodes would be. The expectation was that there would
be minimal overlap between the spans for surface node labels and
thus a smaller label set size. Some exploratory data analysis was
performed and this assumption did hold. This can be seen visually in
figure 2.Following that, BIO tags [29] were assigned to each token,
in the form “B/1/O-surface label”. “B” was assigned to the beginning
of a span for a surface concept, and an “I” for any following concepts
that had the same tag. This can be seen in table 1, where “American
Express” has the tags [B-named, I-named], indicating a span.“O”
was assigned to tokens that had the “None” label, as is the case for
“is” in that table. Some surface nodes had multiple labels (due to
having membership in overlapping spans) and in those instances
those labels were concatenated, using a “;
processing, the surface tag set size was 989 items, much smaller
than the abstract set due to the small amount of overlapping (which
led to less “unique” labels). Adding the BIO tags conflicted with
some internal features of some of the python libraries used in the
experiments and therefore we changed the letters to A/X/D before
piping the data into the model.

Conversely, the abstract node labels had significant overlap. See
figure 2 for an example of the typical amount of overlap. This
lead to a substantially larger label set size, approximately 7100 -
making running experiments infeasible without a sizeable increase
in amount of resources allocated. Thus, some strategies were em-
ployed to reduce the label set size. Following the technique used by
[20], an encoding function was used to transform an abstract label

> as a delimiter. After

Uhttps://gitlab.cs.uct.ac.za/jbuys/mrs-processing

https://gitlab.cs.uct.ac.za/jbuys/mrs-processing

ARG1

Figure 2: A visual representation of a sentence from the corpus - "Shearson is about 60%-held by American Express Co". This
visualisation was created using RepGraph, a tool for visualising meaning representation graphs [12]. Abstract nodes are blue
and surface nodes are yellow. Note how "by" is part of multiple spans - compound, proper_q and named. This overlap and
multi-membership is typical for abstract nodes. Again, attention is drawn to the lack of overlap for surface nodes.

NP
PP
NP

PRP NN VBD DET JJ NN IN DET NN
My daughter broke the red toy with a hammer

Linearized tree (absolute scale):
2NP 1S 2VP 4NP 4NP 3NP 4PP 5NP 1S
Linearized tree (relative scale):
2NP .18 1VP 2ZNP ONP -INP 1PP INP -4S

Figure 3: A sentence with labels is mapped to a tree format
and then encoded to produce a set of labels [20]

for a given span into a function of the number of shared ancestors
between it and another token. The input is transformed into a tree,
then linearised into a sequence of labels. There were two types of
possible encodings and we chose the relative scale as it allowed us
to drastically reduce the label set size. Figure 3 shows how an input
sentence with a set of non-EDS labels is encoded using both types
of scales.

Though the authors of that paper created this approach for con-
stituency parsing, it is still applicable in this use case. This allowed
for the span information to be encoded into the tag itself. These

labels are referred to as “tree2label” in table 1. This transformation
resulted in a much smaller label set size, 3225 items.

5.3 Machine Learning Pipeline

A pipeline was implemented in order to facilitate the running and
rerunning of experiments. Models were created and then trained,
and checkpoints were implemented to ensure that model training
could be paused and resumed if necessary. Once a model was trained
with a minimum of 20 epochs, training vs validation loss plots were
drawn up to determine if more epochs were necessary. These can
be seen in the appendix. Once the loss plateaued, training was
stopped. Thereafter, hyper-parameter tuning was conducted and
the optimal learning rate was determined. Models with an additional
CREF layer often required 5-8x as much time to train compared to
their counterparts.

5.4 Data Post-Processing

Node prediction accuracy was tested using the development data
set and a final evaluation was performed with the test set. The pre-
dictions of the model needed to be converted in order to determine
what the predicted nodes were, as well as the predicted tags. For
the predicted nodes, the tokens which were labelled "None" were
removed from the set, however, they were retained in the predicted
tag set.

In the case of the abstract models, the predicted node labels had
to be converted into trees, and then back into a collection of spans
with anchor (start and end) values and labels. A similar approach
was used for the surface nodes, as the BIO tags were used to convert
the model output and then removed before evaluation.Table 2 shows

Token Surface BIO Surface Abstract tree2label

Shearson | named B-named proper_q 1_S_proper_q

is None O-None None 0S

about _x_deg B-_x_deg None 0S

60%- n_unknown | B-n_unknown | udef g;compound 1_compound_udef_q

held v.1 B- v 1 parg_d;compound -1_S_parg_d

by p B-_p None 0_S

American | named B-named proper_g;compound;proper_q 2_compound_proper_q
Express named I-named compound;proper_q -1_proper_q

Co _n_1 O-_n_1 udef_qg;compound;proper_q NONE_udef_g;compound

Table 1: A table showing how the sentence “Shearson is about 60%-held by American Express Co” is tokenised, as well as the
surface and abstract node labels. Furthermore, it shows how those labels are transformed before they are fed into the neural

network

Input Consumers may want to move their telephones a little
closer to the TV set.

[0,0,’_n_of”, ’Consumers’], [1, 1, ’_~modal’, 'may’],
[2,2,’_v_1’,’want’], [4, 4, ’_v_cause’, ‘'move’],
[6,6,°_n_1’, telephones’],

(7, 8, _x_deg’, ’alittle’), [9, 9, °_a_to’, *closer’],
[11,11,°_q, ’the’], [12,12,”_n_1", "TV’]

Output

Table 2: Formatted I/O for a given input sentence. The first
two digits represent the predicted start and end of a span,
and the third element of the tuple is the label for the surface
node.

an example of some formatted I/O from the Surface + BERT + No
CRF model.

5.5 Experimental Setup

The Flair NLP [2] library SequenceTagger type was used to create
all models. Initially, 8 models were envisioned:

(1) Abstract + Glove + No CRF
(2) Abstract + Glove + CRF

(3) Abstract + BERT + No CRF
(4) Abstract + BERT + CRF

(5) Surface + Glove + No CRF
(6) Surface + Glove + CRF

(7) Surface + BERT + No CRF
(8) Surface + BERT + CRF

All models were initially run with a nominal 5 epochs to deter-
mine basic parameters, such as batch size, batch chunk size (were
necessary). Despite trialling various configurations, both Abstract
models that included the CRF layer required more memory than
was possible to provide. Thus, they were dropped from the experi-
ment. All models employed a cross-entropy loss function and those
that included a CRF used the Viterbi algorithm for decoding.

5.5.1 Baseline. The baseline for this experiment are the models
with the standard Glove embeddings. Glove is an unsupervised
learning algorithm used to produce vector representations of words
[40]. Each node label is fed one at a time into this embedding layer
before being passed to the BILSTM layer. From there, it is passed

through a softmax function and a predicted label is returned. When
training the models with Glove, the embeddings were small enough
to allow them to be stored on the GPU i.e. in CUDA memory. This
made training with Glove substantially faster than BERT.

5.5.2 Computing Resources. All model training and hyper-parameter
tuning was performed on the South African Department of Science
and Innovations’s Centre for High Performance Computing cluster.
1x Nvidia V100 16GB GPU and 20 CPUs were used for each model.
Each node had 128 GiB of memory available.

5.5.3 Transformer Models. SpanBERT was the transformer selected
for the models. This is the appropriate choice, as the method spe-
cialises in identifying relationships between two or multiple spans
of text and out-performed BERT in terms of F1 scores [28]. The
transformer was being fine-tuned during training - and due to this,
the embeddings could not be stored. Instead, they were created
on-the-fly in each mini-batch during training. This did keep the
memory requirements lower but did increase training time.

Many transformers used subword tokenisation - for example
“let’s” would be split into [let,”,s]. This standards in contrast to
typical tokenisation for English, which usually splits a character
string based on whitespaces. To get a final token representation,
there are a number of different pooling operations which are used
on these subwords. For this experiment, first_last was chosen, which
concatenates the embedding of the first and last subwords. Other
options, such as first, last or mean are available and can potentially
be explored in future work.

5.5.4 Hyper-Parameter Tuning. Hyper-parameter tuning was per-
formed in order to find the optimal learning rate and dropout for
each model. For the learning rate, the technique of cyclical learning
rates, developed by [45] was employed. The learning rate is varied
cyclically between an interval of values, using any optimiser of
choice. In this research, AdamW [30] was chosen as it generally
leads to faster convergence for models. The method is advantageous
as it removes the requirement of “serially” tuning the learning rate
by trialing a set of discrete values. A table with the final parameters,
as well as learning rate curves for each model can be found in the
appendix of this paper.

Dropout is a method used to prevent neural networks from over-
fitting[46]. Tuning for the optimal dropout is somewhat necessary

for this research, as it involves transformers, which are particularly
prone to overfitting due to their over-parameterisation [51]. How-
ever, memory constraints prevented this from being performed. To
counteract this, early stopping was employed once the loss became
too small.

6 RESULTS AND DISCUSSION

A final evaluation was done using the test set of sentences and the
results of the experiments are shown in tables 3 and 4. We begin by
examining the metrics for each individual model, shown in table 3.
The BERT surface models scored the highest across all categories,
substantially outperforming the best Glove surface model by over
10% for the F1 score. Additionally, we note that the Glove surface
model without the CRF layer performed marginally better than
the model that did have it. The converse is true for the surface
transformer models - BERT with a CRF only scored slightly higher
across all categories.

The abstract models performed far worse than the surface ones.
As can be seen in table 5, these two models required 3 to 4x the
number of epochs to train. This may be due to the label set size
being approximately 3x larger for the abstract nodes (compared
to the surface nodes). Despite the extra number of epochs, their
performance is lower for the concept identification metrics and tag
accuracy. Glove’s scores were far lower than BERT, particularly
for concept identification. We postulate that BERT’s better perfor-
mance is due to it’s ability to use context far better than the static
embedding, and that it was able to fine-tune as it was training.

Finally, we move to the combined scores of the models, table
4. We note that again, both the BERT models outperform Glove
by a substantial gap. BERT + CRF performed best overall, but the
margin between it and the second best model is minimal at 0.21.
Moreover, precision scores were slightly higher for all models.

We use the above results in order to answer our initial research
questions:

(1) How does a fine-tuned BERT encoder compare to an BiLSTM

with a standard word-embedding layer in terms of accuracy
of node prediction?
Using the aforementioned tables, we see that BERT models
scored much higher across these 3 metrics, with precision
being slightly higher than recall. The F1 scores show a sub-
stantial gain with transformer embeddings.

(2) To what extent does the addition of a CRF layer affect model
accuracy, measured in terms of precision, recall and F1 score?
We note that we were unable to train all 4 models that were
slated to have a CRF. However, of the 2 that were able to
be trained for surface concept identification, the additional
CREF layer did not have a sizeable effect on node prediction
accuracy. Thus, we conclude that having a CRF layer is not
worth the extra computational costs.

6.0.1 Comparison To Other Work. Some of our results are analo-
gous to that of [7]. In both cases, the models that utilised the trans-
former embeddings outperformed the static embeddings. Whilst
[7]’s concept identification F1 score was slightly higher than their
tagging accuracy score, the opposite was observed in our experi-
ments. This may be due to an insufficient number of training epochs
or sub-optimal hyper parameters. Moreover, [7] had marginally

Type Model Tag Concept

Accuracy Prec. Recall F1

Surface Glove + No CRF 0.85 0.83 0.83 82.93
Glove + CRF 0.85 0.83 0.83 82.83

BERT + No CRF 0.95 0.93 0.93 93.29

BERT + CRF 0.95 0.94 0.94 93.63

Abstract Glove + No CRF 0.70 0.71 0.68 69.37
BERT + No CRF 0.88 0.88 0.87 87.83

Table 3: Table cataloguing separate metrics for each type of
model. These provide a more in-depth look into how the
different types of neural networks handle the different types
of concept classes

Concept
Embedding CRF? Precision Recall F1
Glove No 0.78 0.77 77.65
Glove Yes 0.78 0.76 77.04
BERT No 0.91 0.91 91.13
BERT Yes 0.92 0.91 91.34

Table 4: Results for the node prediction of the full graph. The
CREF column refers to the use of a CRF layer in the prediction
of surface nodes

higher F1 scores for each model, 94 or greater, whereas our highest
was 91.34. This may be due to our abstract models, which overall
had lower scores compared to the surface models.

6.1 Limitations and Future Work

As mentioned in previous sections, this experiment leaves scope for
future work. The abstract models performed comparatively worse to
the surface ones. We propose that in-depth hyper-parameter tuning
is necessary. These can include different hidden layer sizes, dropout,
mini-batch size or number of RNN layers, for example. Additional
epochs for training are also a possibility. Furthermore, Flair allows
for embeddings to be combined - these stacked embeddings allow
for contextualised and traditional embeddings to be used together.
These are especially useful for sequence labelling problems, which
proves relevant, given that concept identification can be framed as
sequence labelling problem.

Additionally, concept prediction is one of two phases in the se-
mantic graph-based parsing process. The models from this research
have the potential to become parser of a larger pipeline that incor-
porates edge prediction models and whole-graph evaluation, which
could lead to the development of a full data-intensive parser.

Some limitations of this work is that there is no guarantee of 100%
accuracy with the use of the code created by [20]. The trees created
using their code are not fully accurate in terms of representing
the abstract nodes. More work needs to be done on this codebase
to ensure that the parsing from a sentence with labels to a tree is
precise and representative.

7 CONCLUSION

These experiments have demonstrated that BERT, a contextualised
word representation model and transformers, surpasses the more
“standard” Glove embeddings. CRF layers add additional model
complexity and require more computational resources but are not
worthwhile, given the minimal effect they had on node prediction
accuracy. There is a lot of scope for future work with these ex-
periments - including additional hyper-parameter tuning and the
integration of these models into a large pipeline for a factorisation-
based data-drive parser.

REFERENCES

[1] Omri Abend and Ari Rappoport. 2013. Universal Conceptual Cognitive Anno-
tation (UCCA). In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, Sofia, Bulgaria, 228-238. https://aclanthology.org/P13-1023

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan Schweter, and

Roland Vollgraf. 2019. FLAIR: An easy-to-use framework for state-of-the-art

NLP. In NAACL 2019, 2019 Annual Conference of the North American Chapter of

the Association for Computational Linguistics (Demonstrations). 54-59.

Felipe Almeida and Geraldo Xexéo. 2019. Word embeddings: A survey. arXiv

preprint arXiv:1901.09069 (2019).

[4] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider.
2013. Abstract Meaning Representation for Sembanking. In Proceedings of the 7th
Linguistic Annotation Workshop and Interoperability with Discourse. Association
for Computational Linguistics, Sofia, Bulgaria, 178-186. https://aclanthology.
org/W13-2322

[5] Jan Buys and Phil Blunsom. 2017. Robust Incremental Neural Semantic Graph
Parsing. In Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, Vancouver, Canada, 1215-1226. https://doi.org/10.18653/v1/P17-1112

[6] Shu Cai and Kevin Knight. 2013. Smatch: an evaluation metric for semantic
feature structures. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). 748-752.

[7] Junjie Cao, Zi Lin, Weiwei Sun, and Xiaojun Wan. 2021. Comparing Knowledge-
Intensive and Data-Intensive Models for English Resource Semantic Parsing.
Computational Linguistics 47, 1 (2021), 43-68.

[8] Jie Cao, Yi Zhang, Adel Youssef, and Vivek Srikumar. 2019. Amazon at MRP

2019: Parsing Meaning Representations with Lexical and Phrasal Anchoring.

In Proceedings of the Shared Task on Cross-Framework Meaning Representation

Parsing at the 2019 Conference on Natural Language Learning. Association for

Computational Linguistics, Hong Kong, 138-148. https://doi.org/10.18653/v1/

K19-2013

Yufei Chen, Weiwei Sun, and Xiaojun Wan. 2018. Accurate SHRG-Based Se-

mantic Parsing. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). Association for Computational

Linguistics, Melbourne, Australia, 408-418. https://doi.org/10.18653/v1/P18-1038

[10] Yufei Chen, Yajie Ye, and Weiwei Sun. 2019. Peking at MRP 2019: Factorization-
and Composition-Based Parsing for Elementary Dependency Structures. In Pro-
ceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at
the 2019 Conference on Natural Language Learning. Association for Computational
Linguistics, Hong Kong, 166-176. https://doi.org/10.18653/v1/K19-2016

[11] Jinho D Choi and Martha Palmer. 2011. Getting the most out of transition-based
dependency parsing. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies. 687-692.

[12] Jaron Cohen, Roy Cohen, Edan Toledo, and Jan Buys. 2021. RepGraph: Visualising
and Analysing Meaning Representation Graphs. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Processing: System Demonstrations.
Association for Computational Linguistics, Online and Punta Cana, Dominican
Republic, 79-86. https://doi.org/10.18653/v1/2021.emnlp-demo.10

[13] Ann Copestake. 2009. Invited Talk: Slacker Semantics: Why Superficiality,
Dependency and Avoidance of Commitment can be the Right Way to Go. In
Proceedings of the 12th Conference of the European Chapter of the ACL (EACL
2009). Association for Computational Linguistics, Athens, Greece, 1-9. https:
//aclanthology.org/E09-1001

[14] Nicki Detlefsen, Jifi Borovec, Justus Schock, Ananya Jha, Teddy Koker, Luca
Di Liello, Daniel Stancl, Quan Changsheng, Maxim Grechkin, and William Falcon.
2022. TorchMetrics -Measuring Reproducibility in PyTorch. The Journal of Open
Source Software 7 (02 2022). https://doi.org/10.21105/j0ss.04101

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association

[2

=

E

=

[9

=

[16

(17

(18

[19]

[21]

[22

[23]

[25

[26

[27]

[28

[29

[30

[31

(32]

(33]

for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171-4186. https://doi.org/10.18653/v1/N19-1423

Timothy Dozat and Christopher D. Manning. 2018. Simpler but More Accurate
Semantic Dependency Parsing. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers). Association
for Computational Linguistics, Melbourne, Australia, 484-490. https://doi.org/
10.18653/v1/P18-2077

Kawin Ethayarajh. 2019. How Contextual are Contextualized Word Represen-
tations? Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Association for Computational Linguistics, Hong Kong, China,
55-65. https://doi.org/10.18653/v1/D19-1006

Federico Fancellu, Sorcha Gilroy, Adam Lopez, and Mirella Lapata. 2019. Semantic
graph parsing with recurrent neural network DAG grammars. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Association for Computational Linguistics, Hong Kong, China, 2769—
2778. https://doi.org/10.18653/v1/D19-1278

Dan Flickinger, Emily M. Bender, and Stephan Oepen. 2014. Towards an
Encyclopedia of Compositional Semantics: Documenting the Interface of the
English Resource Grammar. In Proceedings of the Ninth International Confer-
ence on Language Resources and Evaluation (LREC’14). European Language Re-
sources Association (ELRA), Reykjavik, Iceland, 875-881. http://www.Irec-
conf.org/proceedings/lrec2014/pdf/562_Paper.pdf

Carlos Gémez-Rodriguez and David Vilares. 2018. Constituent Parsing as Se-
quence Labeling. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, Brussels,
Belgium, 1314-1324. https://doi.org/10.18653/v1/D18-1162

James Hammerton. 2003. Named entity recognition with long short-term memory.
In Proceedings of the seventh conference on Natural language learning at HLT-
NAACL 2003. 172-175.

Han He and Jinho Choi. 2020. Establishing strong baselines for the new decade:
Sequence tagging, syntactic and semantic parsing with BERT. In The Thirty-Third
International Flairs Conference.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettlemoyer. 2018. Jointly Predict-
ing Predicates and Arguments in Neural Semantic Role Labeling. In Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers). Association for Computational Linguistics, Melbourne, Australia,
364-369. https://doi.org/10.18653/v1/P18-2058

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2017. Deep semantic
role labeling: What works and what’s next. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
473-483.

Angelina Ivanova. 2015. Bilexical Dependencies as an Intermedium for Data-
Driven and HPSG-Based Parsing. (2015).

Angelina Ivanova, Stephan Oepen, Lilja @vrelid, and Dan Flickinger. 2012. Who
did what to whom? A contrastive study of syntacto-semantic dependencies. In
Proceedings of the sixth linguistic annotation workshop. 2-11.

Zhengbao Jiang, Wei Xu, Jun Araki, and Graham Neubig. 2020. Generaliz-
ing Natural Language Analysis through Span-relation Representations. In Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics, Online, 2120-2133. https:
//doi.org/10.18653/v1/2020.acl-main.192

Mandar Joshi, Dangi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and
Omer Levy. 2020. SpanBERT: Improving Pre-training by Representing and
Predicting Spans. Transactions of the Association for Computational Linguistics 8
(2020), 64-77. https://doi.org/10.1162/tacl_a_00300

Daniel Jurafsky and James H. Martin. 2021. Speech and Language Processing:
An Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition (3rd ed.). Prentice Hall PTR, USA.

Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimiza-
tion. International Conference on Learning Representations (12 2014).

Artur Kulmizev, Miryam de Lhoneux, Johannes Gontrum, Elena Fano, and Joakim
Nivre. 2019. Deep Contextualized Word Embeddings in Transition-Based and
Graph-Based Dependency Parsing - A Tale of Two Parsers Revisited. In Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-TJCNLP). Association for Computational Linguistics, Hong Kong, China,
2755-2768. https://doi.org/10.18653/v1/D19-1277

John Lafferty, Andrew McCallum, and Fernando CN Pereira. 2001. Conditional
random fields: Probabilistic models for segmenting and labeling sequence data.
(2001).

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Con-
ditional Random Fields: Probabilistic Models for Segmenting and Labeling Se-
quence Data. In Proceedings of the Eighteenth International Conference on Machine
Learning (ICML ’01). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

https://aclanthology.org/P13-1023
https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://doi.org/10.18653/v1/P17-1112
https://doi.org/10.18653/v1/K19-2013
https://doi.org/10.18653/v1/K19-2013
https://doi.org/10.18653/v1/P18-1038
https://doi.org/10.18653/v1/K19-2016
https://doi.org/10.18653/v1/2021.emnlp-demo.10
https://aclanthology.org/E09-1001
https://aclanthology.org/E09-1001
https://doi.org/10.21105/joss.04101
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1278
http://www.lrec-conf.org/proceedings/lrec2014/pdf/562_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/562_Paper.pdf
https://doi.org/10.18653/v1/D18-1162
https://doi.org/10.18653/v1/P18-2058
https://doi.org/10.18653/v1/2020.acl-main.192
https://doi.org/10.18653/v1/2020.acl-main.192
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/D19-1277

[34]
[35]

[36

[37]

[38

[39]

[40]

[41

[42]

[43]

[44

[45]

[46

[47

[48]

[49]

[50]

[51]

[52]

[53

282-289.

Elizabeth D Liddy. 2001. Natural language processing. (2001).

H.-L. Lou. 1995. Implementing the Viterbi algorithm. IEEE Signal Processing
Magazine 12, 5 (1995), 42-52. https://doi.org/10.1109/79.410439

Stephan Oepen, Omri Abend, Jan Hajic, Daniel Hershcovich, Marco Kuhlmann,
Tim O’Gorman, Nianwen Xue, Jayeol Chun, Milan Straka, and Zdenka Uresova.
2019. MRP 2019: Cross-Framework Meaning Representation Parsing. In Proceed-
ings of the Shared Task on Cross-Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning. Association for Computational
Linguistics, Hong Kong, 1-27. https://doi.org/10.18653/v1/K19-2001

Stephan Oepen, Dan Flickinger, Kristina Toutanova, and Christopher D Manning.
2004. Lingo redwoods. Research on Language and Computation 2, 4 (2004),
575-596.

Stephan Oepen and Jan Tore Lenning. 2006. Discriminant-based MRS banking..
In LREC. Citeseer, 1250—1255.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017. Deep Multitask Learning for
Semantic Dependency Parsing. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Vancouver, Canada, 2037-2048. https://doi.org/
10.18653/v1/P17-1186

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532-1543. http://www.aclweb.org/anthology/D14-
1162

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans,
Louisiana, 2227-2237. https://doi.org/10.18653/v1/N18-1202

Natalia Ponomareva, Paolo Rosso, Ferran Pla, and Antonio Molina. 2007. Con-
ditional random fields vs. hidden markov models in a biomedical named entity
recognition task. In Proc. of Int. Conf. Recent Advances in Natural Language Pro-
cessing, RANLP. 479-483.

Lance A Ramshaw and Mitchell P Marcus. 1999. Text chunking using
transformation-based learning. In Natural language processing using very large
corpora. Springer, 157-176.

Helmut Schmid. 1994. Part-of-Speech Tagging With Neural Networks. In COLING
1994 Volume 1: The 15th International Conference on Computational Linguistics.
Kyoto, Japan. https://aclanthology.org/C94-1027

Leslie N. Smith. 2017. Cyclical Learning Rates for Training Neural Networks. In
2017 IEEE Winter Conference on Applications of Computer Vision (WACV). 464-472.
https://doi.org/10.1109/WACV.2017.58

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929-1958.
Ralf C Staudemeyer and Eric Rothstein Morris. 2019. Understanding LSTM-a
tutorial into long short-term memory recurrent neural networks. arXiv preprint
arXiv:1909.09586 (2019).

Kanchan M Tarwani and Swathi Edem. 2017. Survey on recurrent neural network
in natural language processing. Int. J. Eng. Trends Technol 48 (2017), 301-304.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

Wenhui Wang and Baobao Chang. 2016. Graph-based dependency parsing with
bidirectional LSTM. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). 2306-2315.

Zhen Wu, Lijun Wu, Qi Meng, Yingce Xia, Shufang Xie, Tao Qin, Xinyu Dai,
and Tie-Yan Liu. 2021. UniDrop: A Simple yet Effective Technique to Improve
Transformer without Extra Cost. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. Association for Computational Linguistics, Online, 3865—
3878. https://doi.org/10.18653/v1/2021.naacl-main.302

Hang Yan, Bocao Deng, Xiaonan Li, and Xipeng Qiu. 2019. TENER: adapting
transformer encoder for named entity recognition. arXiv preprint arXiv:1911.04474
(2019).

Yue Zhang, Wei Jiang, Qingrong Xia, Junjie Cao, Rui Wang, Zhenghua Li, and
Min Zhang. 2019. SUDA-Alibaba at MRP 2019: Graph-Based Models with BERT.
In Proceedings of the Shared Task on Cross-Framework Meaning Representation
Parsing at the 2019 Conference on Natural Language Learning. Association for
Computational Linguistics, Hong Kong, 149-157. https://doi.org/10.18653/v1/
K19-2014

https://doi.org/10.1109/79.410439
https://doi.org/10.18653/v1/K19-2001
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.18653/v1/P17-1186
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://aclanthology.org/C94-1027
https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.18653/v1/2021.naacl-main.302
https://doi.org/10.18653/v1/K19-2014
https://doi.org/10.18653/v1/K19-2014

A LEARNING RATE CURVES

240 A

220 A

200 ~

180 A

160 ~

Loss

140 A

120 A

100 A

80

le-06 le-05 le-04 le-03 le-02 le-01
Learning Rate

Figure 4: Abstract + Glove

60

50 1

Loss

30 4

204

le-05 le-04 le-03
Learning Rate

Figure 5: Abstract + BERT

12

130

120 ~

110 4

100 ~

Loss

90 -

80 -

70 -

le-06 le-05 le-04 le-03 le-02
Learning Rate

Figure 6: Surface + Glove

le-01

180 A

160 ~

140 A

60 -

40 1

le-06 le-05 le-04 le-03 le-02
Learning Rate

Figure 7: Surface + Glove + CRF

13

le-01

50 4

40

Loss

30 1

201

le-05 le-04 le-03
Learning Rate

Figure 8: Surface + BERT

175 A

150 A

125 ~

100 A

Loss

751

50

25 A

le-06 le-05 le-04 le-03 le-02
Learning Rate

Figure 9: Surface + BERT + CRF

14

TRAINING VS VALIDATION LOSS

3.01

251

loss

2.01

154

0.70 4

0.65 q

F1

0.55 1

0.50 1

0.45

o4

20

40 60 80 100
epochs

o

20

40 60 80 100
epochs

Figure 10: Abstract + Glove

15

—— training loss
—— validation loss

—— validation F1

F1

o4

10

30

40
epochs

50

60

70

80

0.9

0.8

0.7

0.6

0.54

0.4

0.3

o

30

40
epochs

Figure 11: Abstract + BERT

50

60

70

80

—— training loss
—— validation loss

—— validation F1

164

1.4

124

loss

F1

1.04

0.8

0.6 4

0.0 2.5 5.0 7.5

100
epochs

125

15.0

17.5

0.86

0.84 1

0.82 1

0.80 1

0.78 4

0.76 4

0.74 1

0.0 2.5 5.0 7.5

100
epochs

125

Figure 12: Surface + Glove

15.0

17.5

—— training loss
—— validation loss

—— validation F1

1.4+

124

1.04

loss

0.8

0.6 1

0.4 4

0.0 25 5.0 7.5

100
epochs

125

15.0

17.5

0.84

0.82 1

—
% 0.80

0.78 1

0.76 1

0.0 2.5 5.0 7.5

Figure 13: Surface + Glove + CRF

100
epochs

125

15.0

17.5

—— training loss
—— validation loss

—— validation F1

loss

0.9
0.8
0.7
—
- 0.6
0.5
0.4

0.3

0.0 25 5.0 75 100

125

17.5

15.0
epochs

0.0 25 50 75 100 125 15.0 175
epochs

Figure 14: Surface + BERT

—— training loss
—— validation loss

—— validation F1

C MODEL PARAMETERS

Model Parameters Value
Surface + Glove + No CRF Optimiser AdamW
Epochs 20
Learning Rate ~ 6e — 06
Word Dropout 0.05
Surface + Glove + CRF Optimiser AdamW
Epochs 20
Learning Rate 6e — 06
Word Dropout 0.05
Surface + BERT + No CRF Optimiser AdamW
Epochs 20
Learning Rate 6e — 06
Word Dropout 0.05
Surface + BERT + CRF Optimiser AdamW
Epochs
Learning Rate ~ 6e — 06
Word Dropout 0.05
Abstract + Glove + No CRF Optimiser AdamW
Epochs 100
Learning Rate 6e — 06
Word Dropout 0.05
Abstract + BERT + No CRF Optimiser AdamW
Epochs 80
Learning Rate 6e — 06
Word Dropout 0.05

Table 5: Final Model Parameters

20

	Abstract
	1 Introduction
	2 Background
	2.1 Natural Language Processing and Computational Linguistics
	2.2 Machine Learning

	3 Related Work
	3.1 Comparing Knowledge-Intensive and Data-Intensive Models for English Resource Semantic Parsing
	3.2 Generalizing Natural Language Analysis through Span-relation Representations
	3.3 Jointly Predicting Predicates and Arguments in Neural Semantic Role Labeling
	3.4 Factorization- and Composition-Based Parsing for Elementary Dependency Structures

	4 Research Questions and Problem Definition
	4.1 Problem Definition

	5 Experiment Methodology
	5.1 Evaluation Metrics
	5.2 Data Pre-Processing
	5.3 Machine Learning Pipeline
	5.4 Data Post-Processing
	5.5 Experimental Setup

	6 Results and Discussion
	6.1 Limitations and Future Work

	7 Conclusion
	References
	A Learning Rate Curves
	B Training vs Validation Loss
	C Model Parameters

