
 

 

CS/IT  Honours Project 

Final Paper 2022 
 

Title: Meaning Representation Parsing: The Edge Prediction     

          Component of a Semantic Graph Parser 

Author: Claudia Greenberg 
 

Project Abbreviation: MRP 
 

Supervisor(s): Dr Jan Buys 
 

 

 

 

Category Min  Max Chosen 

Requirement Analysis and Design 0 20 0 

Theoretical Analysis 0 25 10 

Experiment Design and Execution 0 20 15 

System Development and Implementation 0 20 10 

Results, Findings and Conclusions  10 20 10 

Aim Formulation and Background Work 10 15 15 

Quality of Paper Writing and Presentation 10 10 

Quality of Deliverables 10 10 

Overall General Project Evaluation (this section 

allowed only with motivation letter from supervisor) 

0 10 0 

Total marks 80 80 

 

DEPARTMENT OF COMPUTER SCIENCE 



Meaning Representation Parsing:
The Edge Prediction Component of a Semantic Graph Parser

Final Paper
Computer Science Honours Project 2022

Claudia Greenberg
grncla009@myuct.ac.za

Department of Computer Science
University of Cape Town

South Africa

ABSTRACT
Semantic Graph Parsing is a highly-researched and highly-demanded
field of Natural Language Processing. Its usage reaches to other
fields such as Artificial Intelligence. There have been recent devel-
opments within the area that changes how accurate and efficient a
parser can become, particularly the introduction of Transformer
Neural Networks. This research Honours Project Paper presents
additional research into the effectiveness of these Transformers in
the development of the Edge Prediction Component of a Semantic
Graph Parser. Additionally, it delves briefly into the effectiveness
of using Maximum Entropy Loss as a means of training a model.
Limited results are provided by attempting to compare pretrained
BERT Transformers, as opposed to non-trained LSTMs. Further-
more, limited results are presented comparing Maximum Entropy
Loss to Maximum Margin Loss. However, no official conclusions
may be presented. Given the paper’s limitations and scope, this
work provides a solid foundation for additional research and it cov-
ers only a finite number of subtopics, yielding potential for future
work in its areas of research.

1 INTRODUCTION
The Computer Science field of Natural Language Processing is one
that is vastly studied in more recent years, due to its wide range
of uses and due to the introduction of Deep Learning and increas-
ing computational power [30]. Its usage spans various other fields,
such as robotics and data exploration [21] and it is present within
various aspects of our everyday lives, such as language translation
and virtual assistants [17]. It is an amalgam of Linguistics and Ar-
tificial Intelligence. The overall aim of this field is for computers
or machines, of any kind, to be able to decode and understand
the syntactical structure and semantic meaning of natural human
sentences, no matter the complexity. They need to be able to un-
derstand these sentences on their own. This can be achieved by
receiving formal representations of such sentences.

Under the field of Natural Language Processing is a task called
Meaning Representation Parsing. This task aims to convert, or
encode, natural human sentences into specific formal representa-
tions (depending on the context and machine) that the machine can
understand [24]. One way that this can be done is in a graphical
representation, such as a task called Semantic Graph Parsing. This
is the focus of this paper.

A Semantic Graph Parser (SGP) creates said graphs. The parser
needs to be as accurate and efficient as possible for every possi-
ble sentence within the language(s) it is trained for. Using this

understanding, these models would be able to both predict other
sentences and fill in omitted words in a sentence. This can be done
using various techniques and components. Over recent years, many
researchers, such as [3, 4, 11, 23, 33], have published papers describ-
ing their attempts at creating accurate SGPs. Some use preexisting
approaches and components, such as [5, 26], whilst others introduce
novel ones, such as [9, 32].

Graphs consist of two components: nodes, representing the
words of the sentence, and edges, representing the relationships
between the nodes. Both components have labels attached which
depict additional information. An additional complication that is
considered in this paper is the non 1:1 correspondence between the
words (also known as tokens) and the nodes. Nodes may correspond
to one token, several tokens (known as spans) or sub-tokens. More
on this in Section 3.1.

Given the above, the two main components of a SGP are, there-
fore, the node prediction module and the edge prediction mod-
ule. Some parsers are developed using integrated node and edge
modules, such as [15, 18], while some are designed with separate
components, such as [4, 37]. This paper focuses on the latter com-
ponent which is designed to perform as a separate entity to node
prediction.

There are a variety of possible graph formations. Because ma-
chines expect a specific graph structure and specification, this
formation is determined by the computational framework. These
frameworks depict the required node and edge formation, as well
as the expected label types. The main frameworks are depicted
in a paper by Oepen et. al [27]. Our paper uses the Elementary
Dependency Structures (EDS) framework and is solely focused on
the English language.

Due to its popularity and extensive research history, the SGP
task contains more than one known strategy to create such parsers.
These parsers are developed using various techniques and they are
evaluated using consistent evaluation metrics, which are explained
in Section 4.4. They aim for the highest possible accuracy and
efficiency (known as "state-of-the-art").

One common factor between the parsers is the use of a Neural
Network to train the models. There are multiple type of Neural
Networks, many of which have been used in the design of SGPs.
Recently, a newer type of Neural Network has been developed [32],
called the Transformer, which addresses some of the issues pertain-
ing to the other preexisting types. It is often paired with pretrained
data for more accurate learning. Transformers are becoming a pop-
ular option within parser design and has yet to be fully explored



Meaning Representation Parsing: Edge Prediction C. Greenberg

within this specific field of work. Neural Networks are explained in
more detail in Section 2.2.

This paper proposes another attempt at accurately predicting
the edges between the nodes, given the correct nodes. It aims to
investigate some of the techniques that have been used to create
accurate, efficient edge prediction modules.

1.1 Research Questions
There are two research questions, which were initially proposed in
this Honours Project’s Project Proposal. As previously explained,
the main aim of the edge prediction module is to understand and
predict the edges of a semantic graph with the highest possible
accuracy. This forms the second pipelined stage of the graph-based
Semantic Parser. The following questions are thus proposed:

(1) How does the accuracy of an edge prediction module, de-
veloped using pretrained BERT, compare to parsers’ edge
prediction modules developed with non-trained LSTMs?

(2) How does the accuracy of an edge prediction module with a
Maximum Entropy training objective (loss) compare to edge
prediction modules that utilise a Maximum Margin training
objective (loss)?

We hypothesise that the BERT module using Cross Entropy Loss
(Maximum Entropy) will be the optimal module for this particular
task.

1.2 Ethical, Professional and Legal Issues
No user evaluation was necessary for this paper’s research. The
only ethical consideration taken is with the potential biases (in
terms of aspects such as race and gender) that come with the data
obtained from external sources.

The input data is sourced from the LinGo Redwoods Treebank
[28, 29]. This treebank is publicly accessible and is a composition
of differing sources such as the Wall Street Journal.

The data pretraining was conducted using a pretrained BERT
model from Hugging Face called "SpanBERT/spanbert-base-cased"
[19] 1. This model is used to amplify the predictions of spans.

It is recognised that these sources are not completely unbiased.
Therefore, the modules developed follow the same fate. This po-
tential bias has been minimised as best as possible and what is
unavoidable is thus formally declared in this paper.

1.3 Structure of the Paper
This Honours Project Final Paper investigates the topics outlined
above and aims to answer the above questions.

The paper begins with some relevant background on Semantic
Parsing and Neural Networks for context. It then proceeds with
the architectural structure of the modules developed, particularly
delving into the structure of the Biaffine Network which is the main
component of the modules. Following this is the experimental setup,
which describes how the architecture is used to create the modules.
This includes the preliminary steps before training as well as any
concluding steps. Subsequently, the findings are presented and
discussed. The paper is concluded with sections on the conclusions,
paper limitations and potential future work.

1https://huggingface.co/SpanBERT/spanbert-base-cased

2 BACKGROUND AND RELATEDWORK
2.1 Semantic Parsing
Semantic Parsing is an umbrella term for various sub-topics, such
as Semantic Dependency Parsing (SDP) and Semantic Graph Parsing.
Each sub-topic is slightly different, however they all have the same
goal: to formally represent human language so that it is under-
standable by a computer. Parsers of this nature will be provided,
as input, human sentences and will provide, as output, a formal,
computer-interpretable representation of the input. This may be in
various forms, such as a table, tree or (usually directed) graph.

SDP focuses on the dependency relations between tokens. A
relation is comprised of a head node and a dependency node, where
the relation points from the head to the dependent, as the dependent
node relies on the head node. This relation is called an arc, or
edge, and is labelled with the dependency relation. Semantic Graph
Parsing, however, incorporates a non-1:1 correspondence between
nodes and tokens. This is the parsing problem researched in this
paper.

Transition- and Graph-Based Parsing are two main parsing tech-
niques researched in this Honours Project, the latter of which is the
focus of this paper. Transition-Based Parsing is based off of shift-
reduce parsing whereby buffer and stack data structures are utilised.
Graph-Based Parsing, on the other hand, utilises tree and graph
data structures to depict sentences. These structures are created
using assigned scores which are used to find the most optimal final
structure [20]. The main, relevant difference between a graph and
tree structure is the presence of cycles in graphs and absence of
such in trees. In the context of Semantic Parsing, this yields the
ability to add additional edges.

As explained in Section 1, a graph consists of nodes (the words
of the sentence) and edges (relationships between the nodes). One
whole graph represents one sentence’s meaning. Figure 1 2 depicts
this using the EDS framework.

The words of the input sentence are split up (known as tokenised)
into tokens. These tokens are mapped to nodes. Often, one node
is mapped to a particular token. At other times, a node may span
multiple tokens. When using the EDS framework, nodes may come
in several forms, such as TOP (root/head node), _at_p (preposition
"at") and card (number). They may have none, one or multiple
incoming and outgoing edges. The root (top) node will never have
an incoming edge. Spans are explained in detail in Section 3.1.

When using the EDS framework, edges may come in several
forms, such as ARG1, BV, L-INDEX and R-INDEX. These edges
connect nodes together, yielding information about how they relate
to form the meaning of the sentence.

2.2 Neural Networks
The main task of a Semantic Parser is to learn how to understand
and produce human sentences. A very effective way to do this is
through the use of Neural Networks (NNs).

NNs fall under Machine Learning. Their idea and design were
inspired by the neurons in the human brain [13]. They consist of
many interconnected basic computing units, called nodes (ranging
from only a few to billions), which turn a vector of values into a

2https://repgraph.vercel.app/main

Page 2



Meaning Representation Parsing: Edge Prediction C. Greenberg

Figure 1: An Elementary Dependency Structures Graph for the Sentence: Imports were at $50.38 billion, up 19%. [7]

single-valued output. This output is then passed onto the remaining
nodes in a particular way, depending on the structural requirements
of the NN. The purpose of these nodes is to work together to com-
pute complex calculations. Each node serves a unique purpose and
these nodes are usually structured in a layered format. A NN will
consist of an input layer, output layer, and a varying number of
intermediate, hidden layers. Ordinarily, the layers are calculations,
consisting of layer-specific biases and node-specific weights. Often,
values are then put through a non-linear activation function to
restrict the values to a certain range. An example of such a function
is Sigmoid [20].

Figure 2: A Two-Layered Feedforward Neural Network [1]

Figure 2 depicts a simple NN example. The bottom layer is the
input layer, consisting of three nodes which receive the raw data.
They pass their outputs to the four nodes in the intermediate, hidden
layer (which, in this case, is the only hidden layer). These four nodes
pass their outputs to the output layer, which outputs the final values
of the NN.

There are various different kinds of NNs, each of which serve
different purposes. Some kinds are better suited for certain tasks
than others. It is up to the researcher to choose which NN(s) suit(s)
their models’ components best.

The task presented in this paper is commonly designed using
three distinct types.

The first type is the most straightforward: a Feedforward NN
(FFNN).Within each layer of the network, every node receives input
from every node in the previous layer, and feeds its output directly
into every node in the following layer. This type is often suited for
more basic calculations and is an appropriate introductory example
for students. It fits into the Biaffine Network architecture, explained
in Section 3.2.

The second type is the Recurrent NN (RNN). This type of network
considers previously-processed nodes. This provides historical con-
text (memory) so that the model can gain additional knowledge on
the semantic meaning of the inputted sentence. Context refers to
the understanding that words at the beginning of the sentence play
a role in what the rest of the sentence may mean. For its input, a
node of this type of NN relies both on the previous layers’ outputs
as well as the node’s own output. This results in cycles, as nodes are
not considered to be "independent units" [31], like they are in the
FFNN. Papers, such as [3, 31, 34], support the use of RNNs within
the design of Semantic Parsers.

A popular extension of the RNN, used as a baseline comparison
in this paper’s task, is a Long Short-Term Memory (LSTM) and its
variation, a Bidirectional LSTM (BiLSTM), as used by [3, 22, 37].
The LSTM is designed to retain relevant context and remove what
is irrelevant. The BiLSTM is a concatenation of two LSTMs which
carry information in both directions [20].

Page 3



Meaning Representation Parsing: Edge Prediction C. Greenberg

There are certain disadvantages of the RNN, two of which are
highlighted. Firstly, the longer the sentence, the less the NN re-
members, resulting in a lower accuracy score. Secondly, due to the
nature of its calculation process, the process must be completed
sequentially, which can be very inefficient.

The final and most recent type is the Transformer NN. This
was proposed by Vaswani et al. [32] in 2017. The main identifying
feature is its ability to use positional encodings which are combined
with additional embeddings. The structure is made up of blocks,
whereby each block contains a combination of FFNNs, linear layers
and self-attention layers. It takes, as input, a sequence of vectors
and returns, as output, a sequence of vectors of the same size. More
information on the design and architecture is described in Vaswani
et. al’s paper [32].

Despite how recent this Transformer NN is, it has been receiving
a rapidly increasing amount of attention. Papers, such as [12, 32],
have published papers proving the effectiveness of using Trans-
formers as a means to train Semantic Parsers’ components.

The Transformer’s design combats some of the drawbacks of
other NNs. The encoding is not completed sequentially. This allows
for a greater retention of relevant contextual information. This also
allows for parallelisation because each unit is treated independently
of one another. This is an even more advantageous feature, given
the expansion of computer architectures into using multiple cores.

A popular example of Transformers is the Bidirectional Encoder
Representations from Transformers (BERT). This was developed
by Devlin et. al in 2019 [8]. BERT is often used as a pretraining
technique in Semantic Parsers and has been used in papers such as
[16, 37].

3 ARCHITECTURAL STRUCTURE
Given an English sentence and its corresponding nodes, we want
to be able to predict the edges that connect the nodes together, in
order to form a complete representation of the sentence. We do
this by training an edge prediction module of a SGP into learning a
human language so that it may find a way to know which edges
belong where. The module can do this, first, by assigning a score
to every single possible edge (in other words, an edge from every
node to every other node), whereby the higher the score, the more
likely that the edge is correct. Subsequently, the module must then
choose a combination of such edges to yield the highest-scoring
graph. This will complete the entire formalism for the sentence at
hand.

There are three main components to this edge prediction module,
all of which are outlined in detail below.

3.1 Data Encoding
After the raw dataset is obtained from a treebank, it must be sent
through an encoding layer, which prepares the data for the subse-
quent layer.

If required, the raw data must first be sent through a preprocess-
ing stage which formats it into a more readable and extractable
format, such as the CoNLL-U or CoNLL-X format [2]. This format-
ting is sent through the preprocessing encoding layer.

Preprocessing is conducted differently, depending on whether
spans are required. Working with spans is an additional step within

the process that frees the 1:1 token-node requirement. For example,
it would be inappropriate to split up the term South Africa into
two separate tokens, because they are not treated as two separate
entities in human languages. This would be more appropriate as
a single node, depicting the country it represents. In Figure 1, the
second card node spans the tokens billion and , (comma). Al-
lowing spans in the structure frees up many restrictions placed on
the sentence, which allows the structure to encompass more of the
intricacies and exceptions of the language. Spans may consist of
one token, multiple tokens, or even sub-tokens. Additionally, they
may overlap. Whilst span prediction opens up the opportunity to
capture more of the leniency and complexities of human language,
they result in a more complicated development process and yield
additional problems.

If no spans are required, the layer reads in the tokens from
the data and encodes each token into a format readable by the
subsequent layer.

However, if spans are required, the data is formatted in such
a way that tokens and nodes are separate. The layer must read
in each node’s span information, dictating which tokens it spans.
Each node now encompasses all token information of those which
it spans.

3.2 Biaffine Network for Individual Edge
Scoring

In 2016, Dozat and Manning [9] published a paper introducing an
architecture, called the Biaffine Network, that can assign a score
to every possible edge. This has received a lot of attention since
publication due to its effectiveness, as papers such as [6, 22, 26]
have used this in their design of a Semantic Parser.

There are several parts to this architecture, which are outlined
below. Figure 3 depicts the overall architecture, which consists of
four main layers. The BERT encoder of the left diagram replaces the
Embedding-BiLSTM layers of the right diagram, as they perform
the same task of creating embeddings to be fed into the subsequent
layer. Most of the basic information described below can be found
in Jurafsky and Martin [20].

The first layer (or stage) is the BERT encoder (or Embedding-
BiLSTM encoder). BERT is a Transformer NN (explained briefly
in Section 2.2) used to create contextual embeddings of the nodes.
The weights used in the BERT model are usually fine-tuned during
training to improve accuracy. BERT first encodes the sentence’s
tokens, creating a contextual embedding per token. These are then
mapped to nodes based on the nodes’ span information. This is
done in the steps outlined below.

The tokens of the inputted sentence are first split into sub-tokens
(see Section 4.1 for the example finishing).

Because the subsequent layer requires a single embedding per
node, the token embeddings per node must be concatenated into
a single embedding. He and Choi [14] explain two concatenation
methods:

• Last Embedding: The node’s embedding is its last sub-token.
• Average Embedding: The node’s embedding is the average
of all of its tokens.

A variation of the Average Embedding method is to subtract the
first and last sub-token embeddings.

Page 4



Meaning Representation Parsing: Edge Prediction C. Greenberg

Figure 3: A Biaffine Network using BERT (left) [20] and using BiLSTM (right) [10, 35]

The node embeddings, r𝑖 for node i, are sent to two FFNNs. These
FFNNs consist of a linear, activation and - if required - dropout
layer. The outputs of these two modules are representations for
the head and dependent nodes and their corresponding labels. For
context, an edge’s representation is in the form: hℎ𝑒𝑎𝑑

𝑖
→ h𝑑𝑒𝑝

𝑖
,

where i and j are nodes.
The representations are presented as follows:

h(edge−head)
𝑖

= FFNN(edge−head) (r𝑖 ) (1)

h(edge−dep)
𝑖

= FFNN(edge−dep) (r𝑖 ) (2)

h(label−head)
𝑖

= FFNN(label−head) (r𝑖 ) (3)

h(label−dep)
𝑖

= FFNN(label−dep) (r𝑖 ) (4)

where hℎ𝑒𝑎𝑑
𝑖

is the head node’s embedding representation and
h𝑑𝑒𝑝
𝑖

is the dependent node’s embedding representation.
These representations are sent to the third, main layer: the Bi-

affine scoring function. This is a classifier network that uses trained
weights and biases to assign a score to the edge between the in-
putted nodes. It uses the following equations:

s(edge)
𝑖 𝑗

= Biaff (edge) (h(edge−head)
𝑖

, h(edge−dep)
𝑗

) (5)

s(label)
𝑖 𝑗

= Biaff (label) (h(label−head)
𝑖

, h(label−dep)
𝑗

) (6)
where Biaff is the Biaffine scoring function, s𝑖 𝑗 is the score, and

Biaff (x, y) = xTUy +W(x
⊕

y) + 𝑏 (7)
where x, y are the representations, U and W are the weight

matrices, and b is the bias term.
A score is only valid when placed relative to other scores. For

example, a lone score of 2 does not clarify whether it is high or not.
It will hold a high ranking if the other scores range between -2 and
3, and it will hold a low ranking if the other scores range between
1 and 5.

When using Cross (Maximum) Entropy Loss, once the Biaffine
layer has calculated a score for an edge, the score is converted into a
probability using a softmax function. This converts the score into a

probability (between 0 and 1). The higher the probability score, the
more likely the edge is correct and should be included in the final
graph. This is necessary for the Cross Entropy Loss calculation, as
it is based on probabilities. This calculation is as follows:

𝑃 (𝑦 (edge)
𝑖 𝑗

|w) = softmax(s(edge)
𝑖 𝑗

) (8)

𝑃 (𝑦 (label)
𝑖 𝑗

|w) = softmax(s(label)
𝑖 𝑗

) (9)

where 𝑃 (𝑦𝑖 𝑗 |w) is the new score in the form of a probability.
This concludes the Biaffine Network. The module now has a

large number of edges and their corresponding scores. It must now
find a way to choose the best combination to construct the semantic
graph.

3.2.1 Loss Function. The loss function is an essential aspect of any
trained model. This is calculated after every step (epoch) of training
and is optimised in order to produce the most accurate model. The
predicted probabilities of the edges are compared against the ex-
pected edges. The loss results then helpwith fine-tuning themodel’s
parameters, as a lower loss results in a higher model accuracy score.
It updates the model’s weights by using a backpropagation algo-
rithm [20].

There are different types of loss functions. One type of loss
function is Cross Entropy. Entropy is loosely defined as the amount
of knowledge a model has and Cross Entropy uses the principle
of Maximum Entropy. This loss function aims to produce high-
quality graphs by minimising the loss (error) [20]. It receives per-
edge scores as input and compares them against which edges are
expected.

Another type is Maximum Margin. This aims to optimise a spe-
cific loss value, which compares the expected (gold) graph and the
current predicted graph [4]. Maximum Margin receives the highest-
predicted graph as input. A value is calculated by comparing this
to the expected graph. The term "margin" is based on maximising
the margin between the graph’s scores, by increasing the score of
correct parts of the predicted graph and decreasing the score of the
incorrect parts.

Page 5



Meaning Representation Parsing: Edge Prediction C. Greenberg

Figure 4: The Chu-Liu Edmonds Algorithm for Finding the
Maximum Spanning Tree [20]

3.3 Maximum Spanning Tree Algorithm for
Graph Scoring

Following the Biaffine Network component is an algorithmic com-
ponent that takes all of the edges’ scores, as input, and computes the
highest-scoring combination of edges to create the final Semantic
Graph.

An intuitive first algorithm is the greedy algorithm. This simply
takes the highest-scoring incoming edge for each node. However,
the greedy algorithm is not ideal for all cases for two main reasons.
Firstly, the chosen edges may not create a fully-connected graph.
Secondly, whenwhile keeping the fully-connected graph restriction,
the score may not be the highest-possible score. This happens
because, if insisting on including the highest-scoring edges, the
effect on the rest of graph may yield a lower combined score [20].
However, the greedy algorithm is an effective starting point for a
more effective approach.

One of these more effective approaches is called the Chu-Liu
Edmonds Algorithm for finding the Maximum Spanning Tree. A
spanning tree is a tree-based data structure (an acyclic graph),
consisting of nodes connecting with directed edges, where every
single node is (not necessarily directly) connected to every other
node. A maximum spanning tree is a spanning tree in which its
chosen edges yield the highest combined score possible, given all
possible edges.

Whilst ultimately aiming for a graph structure, beginning with
this tree algorithm ensures that the final graph consists of a com-
bination of edges that link together in a way that makes sense.
Ensuring that a tree structure is present within the graph guaran-
tees that all nodes are connected.

Figure 4 depicts this recursive algorithm. The algorithm’s expla-
nation can be found in Jurafsky andMartin [20]. Once themaximum
spanning tree is found, additional non-tree edges are added which
add to the semantic meaning of the sentence. This creates the SGP’s
fully-predicted Semantic Graph.

4 EXPERIMENTAL SETUP
As previously explained, the overall aim of this SGP is to learn the
English language well enough to be able to formally represent its
sentences in a graphical representation, dictated by the EDS frame-
work. The edge prediction module is the parser which represents
the relationships between the words (tokens) of the sentence. There
are four main stages to this.

The first stage of the process is for the module to be built. The
module parameters are set (such as the learning rate and number
of epochs) and the data is preprocessed to be fed into the module.

Subsequent to successful building, the second stage is for the
module to be trained by providing it with a large number of sen-
tences and their correctly-mapped nodes, edges and labels. This
data can be obtained through a Treebank (see Section 1.2 for in-
formation about this paper’s data acquisition). The more data it is
provided with, the more accurate the module can become and it
must study the data repeatedly (dictated by the number of epochs).
However, there is a risk of overfitting, whereby the module starts
to "overstudy" the training data and is unable to understand new
sentences.

After training is validation (or development). This is used on the
module, after training, to tune the module so that its loss function
is optimised. In other words, it is used to "validate" or "develop" the
module. This can be used to both prevent and identify overfitting,
as the accuracy results of the validation set would be significantly
lower than that of the training set if overfitting was occurring.

The final stage of this process is testing. This, intuitively, is a
dataset used to "test" the module’s performance. It is expected to
perform slightly worse than the other sets. Overfitting has occurred
during training if the test set performsmuchworse than the training
set.

The development process consisted of a heavy code aspect and
all coding was developed using Python. The main package used
was PyTorch.

Implementing a high-quality Biaffine Network is not a straight-
forward task with built-in functions. It requires a number of com-
plex tasks integrated to produce a functioning network. Imple-
menting this from scratch is out of scope for this paper. It requires
additional experience and knowledge, both on the Biaffine Network
and on the programming language chosen.

Due to this constraint, a Python codebase was chosen on the rec-
ommendation of this paper’s supervisor, Dr Jan Buys. This codebase,
called SuPar was created by Yu Zhang, a first-year PhD student
from Soochow University in Taipei 3. It is publicly accessible on
GitHub 4 [36]. It is a program which encompasses different types
of state-of-the-art Semantic Parsers for over nineteen languages.

It proved challenging to navigate through, and adapt, this code.
Zhang has more experience both in this field and in the Python
language. He designed the codebase using a modular, yet complex,
structure and utilised Python’s many complex functions. Only rel-
evant parts of the code were used in this paper’s implementation.
This implementation is based, specifically, off of the project’s Bi-
affine Semantic Dependency Parser. While all classes were left in

3https://yzhang.site/
4https://github.com/yzhangcs/parser

Page 6



Meaning Representation Parsing: Edge Prediction C. Greenberg

the submitted code, we only adapted what was required for our
implementation. See Appendix A for the list of classes.

The training process is computationally-expensive, requiring a
lot of time and computational power. Due to this heavy demand,
the modules were sent to be trained on the Centre for High Perfor-
mance Computing (CHPC). The modules were trained on the CHPC
using at least ten central processing units (CPUs) and one graphics
processing unit (GPU), which is significantly more computational
power than the average dual-core laptop can provide. Even with
this increased power, each module took hours to train.

The following subsections of this section outlines the detailed
steps of the research implementation (development) process. It be-
gins with the data preprocessing, followed by how the Biaffine
Network and greedy algorithm were used. It continues with a de-
scription of how the slightly different modules were developed and
ends off with a description of the evaluation process and additional
hyperparameter tuning.

4.1 Parser Building and Data Preprocessing
As explained above, the first stage of the code is to build the
SGP. Whilst the original codebase provides three different types of
parsers to be developed, only the relevant type (sdp.py) was utilised
and adapted for our SGP.

The code first requires an array of parameters dictating various
aspects. For example, it requires information on where to find the
train, validation and test data, where to store the model, which
encoder to use and which features to include. We added several
additional parameters which were required for our development.

The parser is then built by adjusting the structure, according to
the inputted parameters, and reading in the data.

As explained in Section 1.2, the data source for this particular
paper is from the (publicly-accessible) LinGo Redwoods Treebank
[29]. We use 38,893 data units in total, each unit consisting of
a sentence and its corresponding tokens, nodes and edges. This
information is appropriately distributed into a training (91.53%),
evaluation (4.66%) and test (3.81%) set.

We were provided a program (from supervisor, Dr Jan Buys) that
receives, as input, the original raw data and produces, as output,
eds files. These files are consistent with json files. These files place
the data into a more readable and more easily-accessible format.

We then placed these files, as input, into a self-written data
conversion Python file (𝑑𝑎𝑡𝑎_𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛.𝑝𝑦). Our file constructed
the data in a way that is consistent with what the edge prediction
implementation expects. Initially, the data was formatted into a
CoNLL-U/X format [2]. We first minimally adapted the format to
suit this parser’s requirement. We then adapted it to accommodate
for the spans.

During the initial implementation of the Biaffine Network, to-
kens were inputted. Subsequently, when the code was adapted
for spans, the tokens and nodes were to be kept separately. This
required the tokens to be placed as an additional layer on the ini-
tial CoNLL-U format and the format, itself, had to be completely
re-designed.

The original codebase used objects CoNLLs to represent the
tokens and the CoNLLs of each sentence were placed in an object
CoNLLSentence. A CoNLL object (representing a token) consists of:

• ID
• FORM (word)
• LEMMA
• CPOS (coarse-grained part-of-speech tag)
• POS (fine-grained part-of-speech tag)
• FEATS (features)
• HEAD (token head)
• DEPREL (dependency relations to the HEAD)
• PHEAD (projective heads of the token)
• PDEPREL (dependency relations to the PHEAD)

During the first implementation, we only required the ID, FORM
and PHEAD (which contained the edges in the form <source node
1>:<label 1>|<source node 2>:<label 2>...).

The second step, involving spans, required us to conduct a heavy
adaptation of the code. The structure of the sentence objects proved
difficult to adapt in order to allow for both tokens and nodes to be
inputted as separate entities. The adaptation involved us adjust-
ing the format required and the data structures used to store the
data. This code adaptation was required until the embeddings were
calculated and replaced the raw data input.

The new CoNLL object was adapted to the following form:
• ID
• TAG
• START (the span’s start token)
• END (the span’s end token)
• EDGES (in the form: <source node 1>:<label 1>|<source
node 2>:<label 2>...)

The CoNLLSentence object still holds these CoNLL objects with
an additional attribute called FORM. This takes the form of a tu-
ple (WORD, CHAR, ELMO, BERT), whereby WORD stores the
tokens, CHAR stores the Character embeddings, and ELMO and
BERT hold space for those appropriate features. We ensured that
the FORM attribute was used in place of what was used in the
original codebase.

Once the data had been successfully loaded into the code, we sent
them to a BERT layer. The BERT model used is called
SpanBERT/spanbert-base-cased from Hugging Face, developed by
Joshi et. al [19]. This model is designed to be better-suited for span
implementations. The tokens were first sent to a BERT tokeniser.
This tokeniser splits each token into sub-tokens (for example, fin-
ishing is split up into finish and its suffix ##ing). These sub-tokens
are then converted into IDs, which correspond to the BERT model’s
fixed vocabulary (consisting of 28,996 words and their correspond-
ing ID values).

These IDs are sent through the pretrained BERT model’s many
layers. Their corresponding embeddings are then outputted. These
embeddings are what is sent to the subsequent Biaffine Network
Layer. There were two implementations of this.

During the first implementation, where spans are not taken into
account, we sent the sub-token IDs through the model without any
intermediate steps.

Figure 5 depicts the second implementation. The data input in-
cludes span information whereby, for each node, the start and end
tokens are documented (Step 1). To reduce complication for when a
node only encompasses one token, we depict the end token as the
first token after the span ends. We create two data structures, called

Page 7



Meaning Representation Parsing: Edge Prediction C. Greenberg

Figure 5: BERT Embeddings with Span Adaptation

tensors, storing the nodes’ start token IDs and their end token IDs
(Step 2). These tensors then go through the same process that calcu-
lates their embeddings. We then then subtract the embeddings from
one another [(end token embedding) - (start token embedding)]
(Step 3). This creates the final node embeddings. After dropout is
conducted, they are sent through to the next layer.

After the successful training of the main module (using spans,
a Biaffine Network, Cross Entropy [Maximum Entropy] Loss and
BERT pretraining), the non-trained LSTMmodule was created using
the same codebase. The module required the same data preprocess-
ing as the BERT module. However, the BiLSTM NN replaces the
BERT NN. GloVe 5 and Character embeddings are calculated and
concatenated to create the final token embeddings which are sent
to the BiLSTM. The output of the BiLSTM is the appropriate equiv-
alent to the BERT token embeddings. The same subtraction process
is then conducted. This required us to utilise and adapt additional
classes and functions.

4.2 Biaffine Network: Individual Edge Scoring
Once the data is understood and is converted into embeddings, the
embeddings are sent through four Multilayer Perceptrons (which
are the FFNNs described in Section 3.2): two create the head and
dependent representations for the edge and two create the head
and dependent representations for the labels.

These representations are sent through two Biaffine layers, out-
putting scores for both the edges and the labels.

The loss is subsequently calculated when given the scored edges
and labels, as well as the gold edges and labels.

Fortunately, the original code required very little adaptation
after the embeddings were calculated. At this layer, we only needed
to ensure that the required attributes, separated during the span
adaptation, are not lost during the process.

5https://nlp.stanford.edu/projects/glove/

4.3 Maximum Spanning Tree Algorithm for
Graph Scoring

Given the edge and label scores, the edges are first investigated. Ini-
tially, the greedy algorithm was used (using the function argmax).

Using the greedy approach, the edges are first chosen. The design
of this codebase’s Biaffine Network resulted in two values being
outputted per score entry, whereby one value is the negative of the
other. If the second value is the positive, it is chosen to be included.
A mask is created to depict which edges are chosen to be included
or excluded.

The labels are also sent through the argmax function. While each
edge score entry held two values, each label score entry held as
many values as there are label types (such as ARG1, BV, etc.). The
maximum score of each entry is chosen such that if that edge is
chosen, this label would be attached to that edge.

The edge mask is mapped to the maximum label scores. The
result of this is the predicted labels for each included edge. This is
in the form of a tensor. This is sent to be decoded and printed out
in the same format as the input. See the format in Section 4.6.

Due to time limitations, the Maximum Spanning Tree algorithm
could not be integrated in time. The code remains in the submitted
codebase and the place of integration is noted in the code. However,
its successful integration is left as future work.

4.3.1 Loss Function. The Cross Entropy Function
(torch.nn.CrossEntropyLoss) was used as the criterion to be opti-
mised in the module. We appended an additional parameter which
allows the user to choose between Cross Entropy and Maximum
Margin (torch.nn.MarginRankingLoss) as the chosen loss function.
Due to time limitations, the Maximum Margin adaptation was not
completed. However, the code allows for the addition if future work
is conducted.

4.4 Evaluation
In order to answer the research objectives posed, an evaluation
process needs to take place. This evaluation calculates how accu-
rate the parser module is by comparing the predicted edges of an
inputted sentence to the gold (expected) edges of that sentence. The
test sentences are obtained from the same corpus used to train the
module. None of the sentences inputted for testing have been seen
before by the module within the training or validation sets.

There are three common, main metrics used to evaluate this
module: Precision, Recall and F1 Score. The F1 score is commonly
used as an evaluation metric in the field of Semantic Parsing. All of
these are used on both the edges themselves (which relationships
exist between nodes) and the edges’ labels (what type of relationship
exists). The calculations are as followed [20]:

• Precision: the ratio of correct edges/labels to total predicted
edges/labels.

• Recall: the ratio of correct edges/labels to total expected
edges/labels.

• F1 Score: the "harmonic mean" between Precision and Re-
call.

A zero (0) score indicates that the module has failed to predict
any correct edges or labels. A one (1) score indicates that the module
has successfully predicted all of the correct edges and labels, and has

Page 8



Meaning Representation Parsing: Edge Prediction C. Greenberg

not predicted anything extra. The goal of any parser is to achieve
an F1 score of as close to one as possible.

We developed an evaluation program in Python, lightly based
off of a program developed by our fellow Honours Project partner,
Chase Ting Chong. This reads in the predicted and gold graphs,
calculates the three metrics, and writes this to a file. The results are
depicted in the subsequent section, Section 5.

4.5 Hyperparameter Tuning
After the BERT and BiLSTM modules successfully trained using
this specific dataset and with the code’s span adaptation, we at-
tempted to calculate the number of epochs that would maximise
their training potentials.

Appendix B, includes a depiction of the Cross Entropy Loss
results in a tabular (Table 4 and 5) and graphical (Figure 7 and 8)
formation.

This depicts interesting results for the BERT module. All but one
set of data follow the expected trend (whereby the loss decreases
rapidly and then flattens out). The "Dev Label Loss" (validation)
reaches a minimum much earlier than the other loss sets, increases,
and then converges higher than the rest. Due to the paper’s scope,
this calls for additional research in a follow-up paper.

In addition to the above graph, F1 scores were calculated using
the validation sets for the main module (BERT). Table 6 and Figure
9 are depicted in Appendix B. Taking the loss and evaluation score
data into consideration, the BERT module with twenty (20) epochs
is chosen, mainly because the additional epochs do not yield much
benefit for the accuracy.

Our adapted codebase’s implementation of BERT yielded high
evaluation scores without any hyperparameter tuning. However,
this is not the case for the BiLSTM module. Additional hyperpa-
rameter tuning could not be completed due to time limitations and
this is highly recommended as future work. Due to this limitation,
the module did not yield satisfactory preliminary results and this
has caused limited results to be presented in this paper.

Table 5 and Figure 8 depict the experimentation completed on the
BiLSTMmodule with fifteen epochs. Loss does decrease, however it
is very minimal. Twenty (20) epochs are chosen as the final BiLSTM
module, however, to use for the results but we emphasise that this
is no way an optimal module to use. The codebase sets the initial
epoch size to five thousand (5000), which indicates that the default
parameters may not be optimal for such a low number of epochs.
Training the module at such a high number of epochs would have
been too high for our resources.

The final module parameters are depicted in Appendix C.

4.6 Final Edge Prediction Module Overview
Figure 6 depicts the typical input and output of our developed
module’s prediction. The input consists of the tokens (words) of
the sentence, preceded by an exclamation mark indicator, and the
nodes presented in the CoNLL object format (see Section 4.1).

The end token depicted is the first token after the end of the
span. This is explained in Section 4.1. If the end token of a span
is the final token in the sentence, we choose to use the automatic
end-of-sentence (EOS) token for BERT (102) and the pad (PAD)
token for the BiLSTM (0).

Figure 6: The Expected Input (Top) and Output (Bottom) of
the Developed Edge Prediction Module

The output is presented very similarly to the input. The only
difference is the omission of the tokens in the first row, as those
are solely used to process the data.

5 RESULTS AND DISCUSSION
A working edge prediction module was developed successfully
during the paper’s implementation. Initially, the module used pre-
trained BERT and assumed that tokens corresponded to nodes in a
1:1 fashion. After this module trained and predicted successfully,
we adapted the code to separate the nodes and tokens in order to
allow for a non-1:1 correspondence. Subsequent to the success of
this stage was the BiLSTM adaptation of the span module, which is
used to answer both of the research objectives below.

A noteworthy comparison to make, before demonstrating the
research objective results, is between the module with and without
spans. Without the span adaptation, several nodes correspond to
one token. This results in a rapid increase in predicted edges. Table
8 in Appendix D depicts the accuracy score comparison. The F1
scores are significantly different. While precision is considerably
different, recall is surprisingly less so. To reiterate, precision is the
ratio of correct edges to total predicted edges, while recall is the
the ratio of correct edges to total expected edges. This is a envi-
sioned observation because the correct edges are predicted within
the bundle of additional edges that are outputted. The additional
edges are incorrect, called false positives, therefore bringing down
precision more than recall.

As stated in Section 1.1, our research questions relate to two
main comparisons: (1) Pretrained BERT versus Non-Trained LSTM
and (2) Maximum Entropy versus Maximum Margin Loss.

Due to the time limitations, only the BERT and BiLSTM Biaffine
modules (both using Maximum Entropy Loss) were successfully

Page 9



Meaning Representation Parsing: Edge Prediction C. Greenberg

developed before the paper’s deadline. However, despite the suc-
cessful training, the BiLSTM module failed to provide satisfactory
results. Therefore, no valid evaluation scores could be outputted
to answer this paper’s research questions below. These results, al-
though impractical to answer the questions, are depicted in Tables
9 and 10 in Appendix D.

The BERT module results are depicted as followed:

5.1 Pretrained BERT vs. Non-Trained LSTM
Accuracy Scores (%) Precision Recall F1 Score
Pretrained BERT 97.36 95.63 96.42

Table 1: F1 Results on Test Data for BERT (20 Epochs)

This module yielded very high accuracy scores, with both high
precision and recall. This result was yielded without hyperparame-
ter tuning.

5.2 Maximum Entropy Loss vs. Maximum
Margin Loss

Because the BiLSTM module could not produce results, no compar-
ison can be made. However, the Maximum Margin results used are
presented:

Accuracy Scores (%) Precision Recall F1 Score
Maximum Margin (Random) 94.25 95.57 94.98
Maximum Margin (W2V) 94.72 96.12 95.42
Maximum Margin (ELMo) 88.44 92.40 90.38
Maximum Margin (ELMo*) 95.80 96.79 96.29

Table 2: F1 Results on Validation Data for Max. Margin Loss

The Maximum Margin results shown are impressive, ranging
from a F1 score of 90.38% to 96.29%. These results are extracted
from Cao et. al’s paper on Knowledge-Intensive and Data-Intensive
Models [4]. The models depicted are:

• Random: BiLSTM and random embedding initialisation
• W2V: BiLSTM and word2vec features [25]
• ELMo: ELMo features and softmax layer for classification
• ELMo*: BiLSTM and ELMo features

These models were chosen because they align with the BiLSTM
module developed. A model using BERT had not been found. Be-
cause the above results for the baseline Maximum Margin parser
are extracted from the cited sources, this hinders the ability to form
confident conclusions based on the comparison between that of our
developed parser and that of the baseline results. This is because
they do not share the same development environment and module
parameters are likely to be different.

Due to the sub-optimal results presented in our developed BiL-
STM module, no official conclusions can be made.

The results presented are severely limited. This paper provides
a solid foundation for future work to be conducted and, with addi-
tional module tuning, the results can be updated and validated.

6 CONCLUSIONS
In this paper, we produced additional research within the topic of
Semantic Graph Parsing. We attempted to develop and compare
two edge prediction modules, one using BERT embeddings and one

using a BiLSTM with Character and GloVe embeddings. Addition-
ally, we briefly delve into the effectiveness of the Maximum Entropy
Loss Principle, as a means to measure a model’s loss, as opposed to
Maximum Margin Loss. Using the results above, we cannot provide
confident conclusions to answer our research questions. However,
we have provided evidence that the modules developed are viable
and, given additional time, additional hyperparameter tuning can
improve the BiLSTM module. We believe that this paper provides a
solid foundation for future work, which will aid the research and
evolution of Semantic Graph Parsing techniques.

7 LIMITATIONS AND FUTUREWORK
7.1 Limitations
Three main limitations of this paper are outlined below. Firstly,
the codebase developed is based off of a preexisting codebase. This
codebase is designed at a level more advanced than we can fully
understand at our level of knowledge on the topic and on the Python
language. A deeper understanding of the codebase’s functions and
structure would have enabled a better adaptation and redesign
of the necessary aspects. Secondly, due to time limitations, not
everything that was initially planned could be achieved within
the given time frame. Besides the main module, which utilised
BERT and Maximum Entropy, only the non-trained LSTM module
could also be successfully built and briefly analysed by the deadline.
Therefore, the module using Maximum Margin was not able to
be built within the time frame given. Finally, another limitation
(explained in Section 4.5) is the lack of hyperparameter tuning of
the BiLSTM module, which yielded poor evaluation scores. These
limitations have restricted the validity of the results and conclusions.
Future work is highly-recommended to improve these modules.

7.2 Future Work
This paper is based on a fast-paced, highly-demanded field with
many uses. Therefore, there are many future paths this paper’s
work can take. Some, amongst many others, are outlined. Firstly,
Section 4.5 explains how hyperparamter tuning was not conducted
due to time limitations. This is highly recommended in a follow-up
paper, as this will yield valid conclusions. Maximum Margin should
be used to build a module, based off of this preexisting code, in
order to provide additional validity (once the BiLSTM module is
viable) to the above accuracy results between Maximum Entropy
and Maximum Margin. SpanBERT/spanbert-base-cased was used
as the BERT encoder. However, this is one of many other BERT
models which could be used and a comparison between different
BERT encoders could be a noteworthy comparison. Section 4.5 also
explains a surprising loss result. This should be further investigated
for a better understanding of its cause. A final future recommenda-
tion is to integrate the Maximum Spanning Tree algorithm, which
could not be integrated due to time limitations, despite most of the
code already being included in the codebase.

ACKNOWLEDGMENTS
I would like to acknowledge my project supervisor, Dr Jan Buys,
for his continuous support and guidance.

Page 10



Meaning Representation Parsing: Edge Prediction C. Greenberg

REFERENCES
[1] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria

Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad. 2018. State-of-the-art
in artificial neural network applications: A survey. Heliyon 4, 11 (2018), e00938.

[2] Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X shared task on multilingual
dependency parsing. In Proceedings of the tenth conference on computational
natural language learning (CoNLL-X). 149–164.

[3] Jan Buys and Phil Blunsom. 2017. Robust Incremental Neural Semantic Graph
Parsing. In Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, Vancouver, Canada, 1215–1226. https://doi.org/10.18653/v1/P17-1112

[4] Junjie Cao, Zi Lin, Weiwei Sun, and Xiaojun Wan. 2021. Comparing Knowledge-
Intensive and Data-Intensive Models for English Resource Semantic Parsing.
Computational Linguistics 47, 1 (2021), 43–68.

[5] Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang, Yijia Liu, and Ting Liu.
2019. HIT-SCIR at MRP 2019: A Unified Pipeline for Meaning Representation
Parsing via Efficient Training and Effective Encoding. In Proceedings of the Shared
Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference
on Natural Language Learning. Association for Computational Linguistics, Hong
Kong, 76–85. https://doi.org/10.18653/v1/K19-2007

[6] Yufei Chen, Yajie Ye, and Weiwei Sun. 2019. Peking at MRP 2019: Factorization-
and composition-based parsing for elementary dependency structures. In Pro-
ceedings of the Shared Task on Cross-Framework Meaning Representation Parsing
at the 2019 Conference on Natural Language Learning. 166–176.

[7] Jaron Cohen, Roy Cohen, Edan Toledo, and Jan Buys. 2021. RepGraph: Visualising
and Analysing Meaning Representation Graphs. (2021).

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[9] Timothy Dozat and Christopher D Manning. 2016. Deep biaffine attention for
neural dependency parsing. arXiv preprint arXiv:1611.01734 (2016).

[10] Timothy Dozat and Christopher D Manning. 2018. Simpler but more accurate
semantic dependency parsing. arXiv preprint arXiv:1807.01396 (2018).

[11] Yantao Du, Fan Zhang, Weiwei Sun, and Xiaojun Wan. 2014. Peking: Profiling
syntactic tree parsing techniques for semantic graph parsing. In Proceedings of
the 8th international workshop on semantic evaluation (semeval 2014). 459–464.

[12] Gabriela Ferraro and Hanna Suominen. 2020. Transformer semantic parsing.
In Proceedings of the The 18th Annual Workshop of the Australasian Language
Technology Association. 121–126.

[13] Yoav Goldberg. 2016. A primer on neural network models for natural language
processing. Journal of Artificial Intelligence Research 57 (2016), 345–420.

[14] Han He and Jinho Choi. 2020. Establishing strong baselines for the new decade:
Sequence tagging, syntactic and semantic parsing with BERT. In The Thirty-Third
International Flairs Conference.

[15] Luheng He, Kenton Lee, Omer Levy, and Luke Zettlemoyer. 2018. Jointly Predict-
ing Predicates and Arguments in Neural Semantic Role Labeling. In Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers). Association for Computational Linguistics, Melbourne, Australia,
364–369. https://doi.org/10.18653/v1/P18-2058

[16] Daniel Hershcovich and Ofir Arviv. 2019. TUPA at MRP 2019: A Multi-Task
Baseline System. In Proceedings of the Shared Task on Cross-Framework Meaning
Representation Parsing at the 2019 Conference on Natural Language Learning.
Association for Computational Linguistics, Hong Kong, 28–39. https://doi.org/
10.18653/v1/K19-2002

[17] Julia Hirschberg and Christopher DManning. 2015. Advances in natural language
processing. Science 349, 6245 (2015), 261–266.

[18] Zhengbao Jiang, Wei Xu, Jun Araki, and Graham Neubig. 2020. Generaliz-
ing Natural Language Analysis through Span-relation Representations. In Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics, Online, 2120–2133. https:
//doi.org/10.18653/v1/2020.acl-main.192

[19] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and
Omer Levy. 2020. Spanbert: Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Computational Linguistics 8 (2020),
64–77.

[20] Daniel Jurafsky and JamesH.Martin. 2021. Speech & Language Processing. Pearson
Education India.

[21] Aishwarya Kamath and Rajarshi Das. 2018. A survey on semantic parsing. arXiv
preprint arXiv:1812.00978 (2018).

[22] Yuta Koreeda, Gaku Morio, Terufumi Morishita, Hiroaki Ozaki, and Kohsuke
Yanai. 2019. Hitachi at MRP 2019: Unified Encoder-to-Biaffine Network for Cross-
Framework Meaning Representation Parsing. In Proceedings of the Shared Task
on Cross-Framework Meaning Representation Parsing at the 2019 Conference on
Natural Language Learning. Association for Computational Linguistics, Hong

Kong, 114–126. https://doi.org/10.18653/v1/K19-2011
[23] Sunny Lai, Chun Hei Lo, Kwong Sak Leung, and Yee Leung. 2019. CUHK at MRP

2019: Transition-Based Parser with Cross-Framework Variable-Arity Resolve Ac-
tion. In Proceedings of the Shared Task on Cross-Framework Meaning Representation
Parsing at the 2019 Conference on Natural Language Learning. Association for Com-
putational Linguistics, Hong Kong, 104–113. https://doi.org/10.18653/v1/K19-
2010

[24] Zi Li and Nianwen Xue. 2019. Parsing meaning representations: Is easier always
better?. In Proceedings of the first international workshop on designing meaning
representations.

[25] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems 26 (2013).

[26] Seung-Hoon Na, Jinwoon Min, Kwanghyeon Park, Jong-Hun Shin, and Young-
Kil Kim. 2019. JBNU at MRP 2019: Multi-level Biaffine Attention for Semantic
Dependency Parsing. In Proceedings of the Shared Task on Cross-Framework Mean-
ing Representation Parsing at the 2019 Conference on Natural Language Learn-
ing. Association for Computational Linguistics, Hong Kong, 95–103. https:
//doi.org/10.18653/v1/K19-2009

[27] Stephan Oepen, Omri Abend, Jan Hajic, Daniel Hershcovich, Marco Kuhlmann,
Tim O’Gorman, Nianwen Xue, Jayeol Chun, Milan Straka, and Zdenka Uresova.
2019. MRP 2019: Cross-Framework Meaning Representation Parsing. In Proceed-
ings of the Shared Task on Cross-Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning. Association for Computational
Linguistics, Hong Kong, 1–27. https://doi.org/10.18653/v1/K19-2001

[28] Stephan Oepen and Dan Flickinger. 2019. The ERG at MRP 2019: Radically
compositional semantic dependencies. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the 2019 Conference on Natural
Language Learning. 40–44.

[29] Stephan Oepen, Dan Flickinger, Kristina Toutanova, and Christopher D Manning.
2004. Lingo redwoods. Research on Language and Computation 2, 4 (2004),
575–596.

[30] Daniel W Otter, Julian R Medina, and Jugal K Kalita. 2020. A survey of the usages
of deep learning for natural language processing. IEEE transactions on neural
networks and learning systems 32, 2 (2020), 604–624.

[31] Kanchan M Tarwani and Swathi Edem. 2017. Survey on recurrent neural network
in natural language processing. Int. J. Eng. Trends Technol 48 (2017), 301–304.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[33] Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019. Second-Order Semantic
Dependency Parsing with End-to-End Neural Networks. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics. 4609–4618.

[34] Jiudong Yang and Jianping Li. 2017. Application of deep convolution neural
network. In 2017 14th International Computer Conference on Wavelet Active Media
Technology and Information Processing (ICCWAMTIP). IEEE, 229–232.

[35] Yuxiao Ye and Simone Teufel. 2021. End-to-end argument mining as biaffine
dependency parsing. In Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume. 669–678.

[36] Yu Zhang. 2020. SuPar. https://github.com/yzhangcs/parser
[37] Yue Zhang, Wei Jiang, Qingrong Xia, Junjie Cao, Rui Wang, Zhenghua Li, and

Min Zhang. 2019. SUDA-Alibaba at MRP 2019: Graph-Based Models with BERT.
In Proceedings of the Shared Task on Cross-Framework Meaning Representation
Parsing at the 2019 Conference on Natural Language Learning. Association for
Computational Linguistics, Hong Kong, 149–157. https://doi.org/10.18653/v1/
K19-2014

Page 11

https://doi.org/10.18653/v1/P17-1112
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-2058
https://doi.org/10.18653/v1/K19-2002
https://doi.org/10.18653/v1/K19-2002
https://doi.org/10.18653/v1/2020.acl-main.192
https://doi.org/10.18653/v1/2020.acl-main.192
https://doi.org/10.18653/v1/K19-2011
https://doi.org/10.18653/v1/K19-2010
https://doi.org/10.18653/v1/K19-2010
https://doi.org/10.18653/v1/K19-2009
https://doi.org/10.18653/v1/K19-2009
https://doi.org/10.18653/v1/K19-2001
https://github.com/yzhangcs/parser
https://doi.org/10.18653/v1/K19-2014
https://doi.org/10.18653/v1/K19-2014


Meaning Representation Parsing: Edge Prediction C. Greenberg

A SUPPLEMENTARY INFORMATION FOR SYSTEM DEVELOPMENT AND IMPLEMENTATION : A LIST
OF DEVELOPED CLASSES

See Section 4 for accompanying text.
This list depicts the codebase structure. The original codebase documentation can be found here 6. Unused classes are retained in the

codebase. Those marked with:
• * (asterisk): Original code, heavily adapted for our parser implementation.
• ** (double asterisk): Our developed files.
• *** (triple asterisk): Code provided by our supervisor.
• Those not marked are either unused or used but unedited.

General Classes cmds models modules parsers structs utils
__𝑖𝑛𝑖𝑡__.𝑝𝑦 __𝑖𝑛𝑖𝑡__.𝑝𝑦 __𝑖𝑛𝑖𝑡__.𝑝𝑦 __𝑖𝑛𝑖𝑡__.𝑝𝑦 __𝑖𝑛𝑖𝑡__.𝑝𝑦 __𝑖𝑛𝑖𝑡__.𝑝𝑦 __𝑖𝑛𝑖𝑡__.𝑝𝑦

𝑏𝑖𝑎𝑓 𝑓 𝑖𝑛𝑒_𝑠𝑑𝑝.𝑝𝑦* 𝑎 𝑗_𝑐𝑜𝑛.𝑝𝑦 𝑐𝑜𝑛𝑠𝑡 .𝑝𝑦 𝑎𝑓 𝑓 𝑖𝑛𝑒.𝑝𝑦 𝑐𝑜𝑛𝑠𝑡 .𝑝𝑦 𝑐ℎ𝑎𝑖𝑛.𝑝𝑦 𝑐𝑜𝑚𝑚𝑜𝑛.𝑝𝑦

𝑑𝑎𝑡𝑎_𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛.𝑝𝑦** 𝑏𝑖𝑎𝑓 𝑓 𝑖𝑛𝑒_𝑑𝑒𝑝.𝑝𝑦 𝑑𝑒𝑝.𝑝𝑦 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 .𝑝𝑦 𝑑𝑒𝑝.𝑝𝑦 𝑑𝑖𝑠𝑡 .𝑝𝑦 𝑐𝑜𝑛𝑓 𝑖𝑔.𝑝𝑦

𝑒𝑝𝑜𝑐ℎ_𝑒𝑣𝑎𝑙 .𝑝𝑦** 𝑐𝑚𝑑.𝑝𝑦* 𝑚𝑜𝑑𝑒𝑙 .𝑝𝑦* 𝑔𝑛𝑛.𝑝𝑦 𝑝𝑎𝑟𝑠𝑒𝑟 .𝑝𝑦* 𝑓 𝑛.𝑝𝑦 𝑑𝑎𝑡𝑎.𝑝𝑦*
𝑒𝑣𝑎𝑙 .𝑝𝑦** 𝑐𝑟 𝑓 _𝑐𝑜𝑛.𝑝𝑦 𝑠𝑑𝑝.𝑝𝑦* 𝑙𝑠𝑡𝑚.𝑝𝑦 𝑠𝑑𝑝.𝑝𝑦* 𝑠𝑒𝑚𝑖𝑟𝑖𝑛𝑔.𝑝𝑦 𝑒𝑚𝑏𝑒𝑑.𝑝𝑦

𝑒𝑥𝑡𝑟𝑎𝑐𝑡 − 𝑐𝑜𝑛𝑣𝑒𝑟𝑡 −𝑚𝑟𝑠.𝑝𝑦*** 𝑐𝑟 𝑓 _𝑑𝑒𝑝.𝑝𝑦 𝑚𝑙𝑝.𝑝𝑦 𝑡𝑟𝑒𝑒.𝑝𝑦 𝑓 𝑖𝑒𝑙𝑑.𝑝𝑦*
𝑚𝑎𝑖𝑛_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 .𝑝𝑦** 𝑐𝑟 𝑓 2𝑜_𝑑𝑒𝑝.𝑝𝑦 𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑.𝑝𝑦* 𝑣𝑖 .𝑝𝑦 𝑓 𝑛.𝑝𝑦

𝑝𝑎𝑟𝑠𝑒 − 𝑐𝑜𝑛𝑣𝑒𝑟𝑡 −𝑚𝑟𝑠.𝑝𝑦*** 𝑣𝑖_𝑐𝑜𝑛.𝑝𝑦 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 .𝑝𝑦 𝑙𝑜𝑔𝑔𝑖𝑛𝑔.𝑝𝑦

𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑠.𝑝𝑦*** 𝑣𝑖_𝑑𝑒𝑝.𝑝𝑦 𝑚𝑎𝑥𝑡𝑟𝑒𝑒.𝑝𝑦**
𝑠𝑒𝑡𝑢𝑝.𝑝𝑦 𝑣𝑖_𝑠𝑑𝑝.𝑝𝑦 𝑚𝑒𝑡𝑟𝑖𝑐 .𝑝𝑦

𝑠𝑦𝑛𝑡𝑎𝑥 .𝑝𝑦*** 𝑜𝑝𝑡𝑖𝑚.𝑝𝑦

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 .𝑝𝑦

𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑟 .𝑝𝑦

𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚.𝑝𝑦*
𝑣𝑜𝑐𝑎𝑏.𝑝𝑦

Table 3: List of Classes

6https://parser.yzhang.site/en/latest/index.html

Page 12



Meaning Representation Parsing: Edge Prediction C. Greenberg

B SUPPLEMENTARY INFORMATION FOR EXPERIMENT DESIGN AND EXECUTION :
EXPERIMENTATION RESULTS

See Section 4.5 for accompanying text.

Epochs 2 3 4 5 10 15 20 25 30 35 40
Training Edge Loss 0.0395 0.0183 0.0132 0.0105 0.0050 0.0030 0.0018 0.0011 0.0007 0.0004 0.0002
Validation Edge Loss 0.2229 0.0799 0.0508 0.0356 0.0120 0.0065 0.0035 0.0020 0.0010 0.0004 0.0002
Training Label Loss 0.0172 0.0110 0.0093 0.0085 0.0078 0.0079 0.0083 0.0090 0.0104 0.0111 0.0124
Validation Edge Loss 0.0857 0.0578 0.0593 0.0533 0.0544 0.0606 0.0596 0.0680 0.0720 0.0716 0.0737

Table 4: Cross Entropy Loss Results for the BERT Module

Figure 7: Loss vs. Number of Epochs for the BERT Module (BERT, Biaffine, Maximum Entropy Loss)

Page 13



Meaning Representation Parsing: Edge Prediction C. Greenberg

Epochs 2 3 4 5 10 15
Training Edge Loss 0.2432 0.2173 0.2155 0.2164 0.2172 0.2151
Validation Edge Loss 1.7840 1.7694 1.7689 1.7645 1.7705 1.7670
Training Label Loss 0.1717 0.1717 0.1717 0.1717 0.1717 0.1717
Validation Edge Loss 1.6194 1.6194 1.6194 1.6194 1.6194 1.6194

Table 5: Cross Entropy Loss Results for the BiLSTM Module

Figure 8: Loss vs. Number of Epochs for the BiLSTMModule (GloVe Embeddings, Character Embeddings, BiLSTM, Biaffine,
Maximum Entropy Loss)

Page 14



Meaning Representation Parsing: Edge Prediction C. Greenberg

Epochs 2 3 4 5 10 15 20 25 30 35 40
Precision (%) 93.54 94.80 95.69 95.98 96.67 97.22 97.47 0.0057 97.45 97.56 97.76
Recall (%) 91.64 93.12 94.21 94.57 95.12 95.73 95.90 0.0206 96.03 95.99 96.16
F1 Score (%) 92.39 93.80 92.39 93.80 94.81 95.16 95.81 96.42 96.62 96.72 96.91

Table 6: F1 Scores on Validation Data for BERT Module per Number of Epochs

Figure 9: F1 Score vs. Number of Epochs for the BERT Module (BERT, Biaffine, Maximum Entropy Loss)

Page 15



Meaning Representation Parsing: Edge Prediction C. Greenberg

C SUPPLEMENTARY INFORMATION FOR SYSTEM DEVELOPMENT AND IMPLEMENTATION:
MODULE PARAMETERS

See Section 4.5 for accompanying text.

Parameter Value Additional Parameters Value
mode train n_words 28996 (BERT) ; 9060 (BiLSTM)
path ./bert_model_20 (BERT) ; ./lstm_model_20 (BiLSTM) n_tags None
device -1 n_chars None (BERT) ; 87 (BiLSTM)
seed 1 n_lemmas None

threads 16 n_embed 100
workers 0 n_pretrained 125
cache False n_feat_embed 100
binarize False n_char_embed 50
amp False n_char_hidden 400
lr 5e-05 (BERT) ; 5e-03 (BiLSTM) char_pad_index None (BERT) ; 0 (BiLSTM)

lr_rate 20 char_dropout 0.33
warmup 0 elmo_bos_eos (True, False)

warmup_steps 1 elmo_dropout 0.5
mu 0.9 n_bert_layers 4
nu 0.999 mix_dropout 0.0
eps 1e-08 bert_pooling mean

weight_decay 0 bert_pad_index None
decay 0.95 finetune False

decay_steps 1 n_plm_0 0
num_epochs 20 embed_dropout 0.2
loss_type entropy encoder_dropout 0.33

feat None (BERT) ; [’char’] (BiLSTM) pad_index 0
build True n_labels 10

checkpoint False elmo original_5b
encoder bert (BERT) ; lstm (BiLSTM) n_encoder_hidden 768 (BERT) ; 1200 (BiLSTM)
max_len None n_encoder_layers 3
buckets 32 n_edge_mlp 600
train lustre/data/train.conllu n_label_mlp 600
dev lustre/data/dev.conllu edge_mlp_dropout 0.25
test lustre/data/test.conllu label_mlp_dropout 0.33

embed glove-6b-100 interpolation 0.1
n_embed_proj 125 unk_index 100 (BERT) ; 1 (BiLSTM)

bert SpanBERT/spanbert-base-cased min_freq 7
fix_len 20

local_rank 0
bos_index 101 (BERT) ; 2 (BiLSTM)

form *
reload False
src github

batch_size 5000
update_steps 1

clip 5.0
patience 100
verbose True

Table 7: Full Parameter List for Both BERT and BiLSTM Modules (Including Original Codebase Defaults)

* ((words): SubwordField(vocab_size=28996, pad=[PAD], unk=[UNK], bos=[CLS]), None, None, None) (BERT) ;
((words): Field(vocab_size=402247, pad=<pad>, unk=<unk>, bos=<bos>, lower=True), (chars): SubwordField(vocab_size=87, pad=<pad>,
unk=<unk>, bos=<bos>), None, None) (BiLSTM)

Page 16



Meaning Representation Parsing: Edge Prediction C. Greenberg

D SUPPLEMENTARY INFORMATION FOR RESULTS, FINDINGS AND CONCLUSIONS: ADDITIONAL
RESULTS

These results do not aid in answering the research questions. However, they are necessary to include. See Section 5 for accompanying text.

Accuracy Scores (%) Precision Recall F1 Score
With Spans 96.36 94.63 95.50

Without Spans 6.04 64.36 9.92
Table 8: F1 Results on Test Data for the BERT Module (10 Epochs) With and Without the Span Adaptation

Accuracy Scores (%) Precision Recall F1 Score
Pretrained BERT 72.08 0.95 1.11

Table 9: F1 Results on Validation Data for BiLSTM (20 Epochs)

Accuracy Scores (%) Precision Recall F1 Score
Pretrained BERT 74.01 0.81 1.21

Table 10: F1 Results on Test Data for BiLSTM (20 Epochs)

Page 17


	Abstract
	1 Introduction
	1.1 Research Questions
	1.2 Ethical, Professional and Legal Issues
	1.3 Structure of the Paper

	2 Background and Related Work
	2.1 Semantic Parsing
	2.2 Neural Networks

	3 Architectural Structure
	3.1 Data Encoding
	3.2 Biaffine Network for Individual Edge Scoring
	3.3 Maximum Spanning Tree Algorithm for Graph Scoring

	4 Experimental Setup
	4.1 Parser Building and Data Preprocessing
	4.2 Biaffine Network: Individual Edge Scoring
	4.3 Maximum Spanning Tree Algorithm for Graph Scoring
	4.4 Evaluation
	4.5 Hyperparameter Tuning
	4.6 Final Edge Prediction Module Overview

	5 Results and Discussion
	5.1 Pretrained BERT vs. Non-Trained LSTM
	5.2 Maximum Entropy Loss vs. Maximum Margin Loss

	6 Conclusions
	7 Limitations and Future Work
	7.1 Limitations
	7.2 Future Work

	Acknowledgments
	References
	A Supplementary Information for System Development and Implementation: A List of Developed Classes
	B Supplementary Information for Experiment Design and Execution: Experimentation Results
	C Supplementary Information for System Development and Implementation: Module Parameters
	D Supplementary Information for Results, Findings and Conclusions: Additional Results

