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ABSTRACT

This Honours project literature review presents an analysis of the
work that has been developed within the field of meaning represen-
tation parsing, with emphasis on semantic graph parsing. This is
to assess the viability of existing work and whether there exists a
gap for further study. Various subtopics are discussed below which
relate to the project’s context, such as natural language process-
ing, neural networks and dependency parsing. It is concluded that,
whilst there has already been a relatively vast amount of studies
on this topic, there is still an opportunity for further studies to be
executed.
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1 INTRODUCTION

Semantic Graph Parsing is the process of generating graphical
meaning representation (MR) for natural language, that can be
interpreted by machines [10, 26]. This is a crucial aspect of natural
language processing (NLP) and has been studied extensively over
recent years [7, 16, 33, 37, 41].

There is a growing need for accurate and efficient semantic
parsers. They are used within fields such as robotics (understanding
commands) and data exploration (understanding varying amounts
of data) [26]. The ultimate end goal of these parsers is to cor-
rectly and quickly process sentences of different languages without
manual (human) processing. Several studies, such as [3, 4, 6, 8-
10, 12, 15, 28, 30, 31, 34, 40, 46], have been released, where re-
searchers create, analyse and compare various semantic parsers.
Each one intends to use a novel approach or outperform existing,
similar models using slight methodological variations.

Our project proposes another attempt at efficiently predicting
the correct interpretation of English sentences through the use of
neural networks (NNs).

Our project resides in the field of MR Parsing. We will be fo-
cusing on a framework called Minimal Recursion Semantics. This
field deals with constructing MR graphs for (English, in our case)
sentences. Each graph consists of nodes - representing the words
directly or more complex entities - and edges - representing the
relationships between the nodes.

This literature review attempts to explore the core aspects of
the project and analyse several sources related to these aspects.
First, a brief overview of the different NNs is discussed, as well as a

concise explanation of the related NLP topics. Subsequently, depen-
dency parsing is discussed, detailing the two dependency methods
- transition-based and graph-based. Semantic graph parsing is then
discussed in detail, particularly focusing on edge prediction. A
brief and simple explanation of the meaning representation frame-
works and of the performance evaluation metrics are discussed for
additional context. Finally, this review concludes with a section
on where our project fits into the field of meaning representation
parsing.

2 NEURAL NETWORKS

As described in [24], a neural network (NN) is a web of computa-
tional nodes which work together to compute a complex calculation.
Each node takes in some form of input, computes a calculation, and
sends its output as input to other nodes. They are constructed us-
ing a varying number of layers with a varying number of different
nodes, each serving its unique purpose. How these nodes and layers
are linked together depends on the type of NN. The calculations
are connected using node-specific weights and layer-specific biases.
The outputs of these nodes are then often transformed using a
non-linear function such as the sigmoid function [42]. The con-
struction and implementation of these NNs allow for parallelism,
which greatly increases the speed of the computations [1].

A NN is a type of Machine Learning model. Machine Learning is
the process of learning and predicting using historical data. It can be
supervised, semi-supervised or unsupervised, whereby supervised
learning contains training data to teach the rules [1, 36]. Using
machine learning techniques on provided data, the weights of the
NN can be learnt.

Semantic graph parsing can use NNs as a tool to train computa-
tional models. They have shown to be a primary tool in training
parsers to adequately predict natural language sentences’ MRs. The
array of papers cited in the introduction, such as [10, 28, 46], have
shown accuracy scores that outperform pre-existing parsers.

There are various kinds of NNs that can be used depending on
the problem’s context, as well as variations within variations. Three
particular types are used extensively in deep learning (referring
to the many layers of NNs, as expressed in [18]): feedforward,
recurrent and transformer. We consider all three but decide on
one which is ideal for our project’s requirements. Others include
convolution NNs, which [49] investigated and concluded to be
generally less suitable for NLP than other NN types. Depending
on the context, each could be considered the ideal form for the
problem at hand. Our project delves into these three as potential
candidates for our deep learning strategy.
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Figure 1: Two-layered feedforward neural network [1]

2.1 Feedforward Neural Networks

A feedforward neural network (FFNN) is a more straightforward
type, whereby within each layer of nodes, each node is linked to
all other nodes within the adjacent layers. It is originally based on
human neuron processing, as explained in [1, 18].

For example, a node in layer 4 will receive, as input, the outputs
of all nodes in layer 3 and send its output to all nodes in layer 5.
Figure 1 presents an example of a simple FFNN.

FFNNSs are a relatively common tool used for NLP. He et al. [20]
chose to use an FFN in their model for the factor scores.

According to [24], there are some limitations with FFNNs such
as a limited context. This means that if a related word is outside
of the context, because it is too far away from the current word, it
will not be considered in the decision-making. There is no feedback
presented between nodes [1] which means that information is lost
during the input-output information transfer. This could also impact
the parser’s accuracy. Lawrence et al. [32] claim that an FFNN is
not the best for learning a grammar, particularly in comparison to
an RNN (as discussed in the following subsection). Ultimately, an
FFNN could be the best tool for a particular model, and could also
be a weaker option in comparison to other approaches.

2.2 Recurrent Neural Networks

While FFNNs do not take previous stages of the network into ac-
count (i.e., there is no feedback or backtracking), recurrent neural
networks (RNNs) do. As defined by [24, 43], an RNN is a network
where a node also depends on its own outputs as input. In other
words, the network contains cycles. It is able to process sequences
of any length. Figures 2 and 3 present a diagrammatic representa-
tion of this. Please note that x; is the input and h; is the output of
the node A.

According to [18], using a recurrent neural model is a strong
choice for various NLP tasks [49] such as dependency parsing [4].
Lawrence et al. [32] claim that this type of neural network is a more
suitable option for learning a grammar. Tarwani and Edem [43]
states that it is more powerful than feedforward. The network’s
nodes store internal memory. This is another reason why RNNs
are often preferred over feedforward for certain semantic graph
parsing tasks, as nodes should not be treated as independent units
[43]. Many of the papers reviewed for this literature review stated
using an RNN (or a sub-type such as bidirectional long short-term
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Figure 2: A Rolled Up Recurrent Neural Network [1]

memory (LSTM)) in their parsers and they have yielded satisfactory
results.

For additional information on the meaning representation frame-
works (DM, PSD, EDS, UCCA and AMR), performance evaluation
metrics (F1 and Smatch) used, and parsing (dependency and se-
mantic graph), please consult their respective sections within this
review.

Buys and Blunsom [4] used a bidirectional RNN for their sen-
tence encoding and decoding. They created a competitive neural
transition-based semantic graph parser. They report outperforming
the attention-based baselines on minimal recursion semantics as
well as the abstract MR benchmark, with their Smatch score being
higher than the upper bound.

Wang et al. [47] created a graph-based parser and also presented
an RNN for their encoder and decoder. They report higher F1 scores
than their competing models, both state-of-the-art and baseline
models.

Peng et al. [40] used a bidirectional LSTM network (a recurrent
variation) for their basic semantic dependency model. Using F1
scores, they report that their one model - which uses this network
- was one of the two best models, outperforming their other mod-
els and pre-existing models. Yet, they also report potential design
improvements, unrelated to their use of RNNs. They propose the
potential for future opportunities and extensions.

Other papers that have stated using some form of RNN include
[3, 8,13, 21].

While this type of neural network sounds like a strong option
to consider for our project, the model has its weaknesses. RNNs
perform many calculations sequentially, as the nodes are not com-
pletely independent of one another. This slows down the process.
Another reason is that information is lost during the recurrent
process, and this complicates the training [17, 24]. Therefore, the
longer the inputted sentence, the lower the accuracy of the model.
These issues inspire the next type, which our project has chosen
out of these three neural networks.

2.3 Transformer Neural Networks

In 2017, Vaswani et al. [45] proposed a new type of neural net-
work to combat the limitations of pre-existing neural networks:
the Transformer. This recently-developed neural network can have
record-high translation quality and allows for more parallelisation,
which is becoming increasingly important with the introduction
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Figure 3: An Unrolled Recurrent Neural Network [1]

of multi-core computer architectures. Vaswani et al. [45] reported
very positive results, outperforming all other models evaluated, and
expressed the potential for future, record-breaking work using this
neural network.

Figure 4 depicts the overall structure of the transformer neu-
ral network. Each word in a sentence is now able to be processed
independently of one another, allowing for all to be inputted simul-
taneously (rather than sequentially, as with RNNs). Because the
model inherently does not take word order into account, positional
encoding is combined with the embeddings to add some "context"
to the words [45]. The architecture includes three main layers: a
self-attention, feedforward and linear layer [24]. A self-attention
layer is one that takes in a sequence as input and returns a sequence
of the same length. For each word, it is compared to the other words
in the sentence that precede that word and a score is calculated
where the larger the value, the more compatible it is. For the de-
coding process, the scores of all words after the current one are
automatically set to zero. The linear and softmax transformations
during the decoding phase are done to predict the probabilities of
the subsequent tokens. Please consult [45] for a full explanation of
how the transformer neural network works.

This model was only introduced in 2017, making this a new
model. However, it has attracted attention from researchers such as
[25, 39]. Desai and Aly [12] evaluate transformers in more detail.

A popular type of transformer, for encoding particularly, is Bidi-
rectional Encoder Representations from Transformers (BERT). Ten-
ney et al. [44] investigate BERT in detail, expressing some concerns
that BERT lacks enough interpretability.

Kitaev and Klein [28] proved that using a self-attentive archi-
tecture yields benefits over LSTM. This inspired [7] to choose to
use a transformer encoder in their model. They present satisfactory
performance results, ranking first in AMR, sixth in PSD, seventh in
DM and fifth in UCCA.

Zhang et al. [51] created five graph-based parsing systems for
the different meaning representation frameworks. They reported
using BERT for most of their chosen frameworks. It proved to be
beneficial for them. They ranked third overall, notably first in EDS.

Che et al. [8] adopted BERT as well for word representation
for their transition-based parsing model. Their model showed a
noticeable improvement, using this rather than GloVe. Their model
ranked first in a metric called ALL-F1 with a score of 86.20 and they
ranked first in UCCA with a score of 81.67.

Ferraro and Suominen [17], a relatively recent paper, proved the
benefits of using a Transformer model for semantic graph pars-
ing. They calculated the accuracy of their developed parsing model
and compared it to pre-existing models. They outperformed their
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Figure 4: The Transformer - Model Architecture [45]

baselines. They note the transformer’s powerful potential for learn-
ing long-distance relationships, yet also note their specific model’s
upper limit on detecting these. Finally, they note the potential for
using transformers in future work.

Transformer neural networks are currently showing to be a
very attractive neural network for semantic graph parsing and
other NLP tasks. It combats the RNN sequential limitations and
loss of information [17, 24]. This is why using a transformer neural
network is the chosen method for this project.

3 NATURAL LANGUAGE PROCESSING

Natural language processing (NLP) is a combination of linguistics
(language) and artificial intelligence, and was first studied around
seventy years ago [36]. NLP is the process of understanding the
meaning of, learning, and producing human sentences of any lan-
guage using various computational techniques [22]. According to
[22], four key reasons drive this sector’s rapid development: new
machine learning developments, increasing computational power,
a better understanding of linguistics, and access to large amounts
of data. Researchers are constantly striving to develop more within
NLP and outperform what already exists. Languages hold complex
meanings and interpretations, depending on many aspects such
as context, time and place. It is also constantly changing, with
new words being added to the dictionary every year. Goldberg [19]
explains that humans are not very good at formally defining the
languages that we have developed, despite being very good at using
and understanding these languages. Various researchers, such as
[22], note the complexity and dynamic nature of linguistics, yet
also express confidence in the development of NLP within the near
future.

NLP has many uses. Many people do not realise how much of
the world around us utilise the advances within this field. Virtual
assistants on devices - such as Apple’s Siri [22] - utilise NLP to
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understand and carry out the users’ commands. Other uses include
translations, summarisation and speech recognition [43].

NLP is the essence of the project being developed, as depen-
dency parsing falls under this. As stated previously, this is a rapidly
developing sector which we intend to research as well.

This literature review delves deeper into certain natural language
sections to decide whether to include them in our project. First,
parts-of-speech tagging is explored as well as word embeddings.
Pretrained transformers are then explored.

3.1 Part-of-Speech Tagging

To understand a sentence, understanding the words’ parts of speech
is imperative. Part-of-Speech (POS) Tagging is the assignment of
POS tags to each word in a sentence. It allows the model to under-
stand how a particular word fits in the sentence, in relation to the
other words. It provides additional context (especially since many
words fit into different parts of speech) and allows the model to
predict dependencies between words.

POS tagging is a popular way to deal with this, as it often has
very high accuracy rates [24]. Each word in the sentence is assigned
a POS tag, such as NOUN, VERB or AUX.

In conjunction with POS tagging, one could also adopt named
entity recognition to understand proper nouns in more detail. See
[24] for more information.

POS Tagging, or simply utilising the tags, is a popular choice in
NLP, as stated above.

Peng et al. [40] chose this method to compute a tag sequence.

Cao et al. [6], too, used this in their data-intensive parser to com-
pute an embedding for "richer contextual information". In this paper,
they compared knowledge-intensive and data-intensive parsers,
which are different approaches to parsing.

Zhang et al. [51] used an embedding of words and POS tags.

Droganova et al. [15] were provided with pre-processed data
that included automatic tagging. In this paper, they utilised external
parsers for their parsing system.

Other papers include [29, 31, 37].

One shortfall, noted by [24], is that the tagger often runs into
unknown words. They are then required to adapt to fit in these
words, which can be a challenging task. As stated in the previous
section, languages are dynamic entities, often adding new words
and popular acronyms.

While POS tagging seems like a popular and successful choice,
our project will not be using this. Instead, we will be using a different
approach, whereby node label prediction is at the forefront.

3.2 Sequence Modelling Taggers

Sequence Modelling Tagging is another important aspect of a se-
mantic parser. These taggers make sure that each node has some
kind of label [24]. There are two main kinds to be considered for
this project: Hidden Markov Model and Conditional Random Fields.
The Hidden Markov Model (HMM) is a generative approach.
It calculates a probability distribution over every combination of
labels in a sequence and then using those values, picks the best
sequence [24]. It is especially useful for speech recognition [36].
The alternative to the HMM is a discriminative approach called
Conditional Random Fields (CRF). This differs from the above as
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it discriminates against certain tags depending on their posteriors

p(Y|X). It computes a probability to an output sequence as a whole,

as opposed to each label individually [24]. According to [36], they

are more appropriate than an HMM for sequential multivariate data.

Wang et al. [46] used the CRF approach during edge prediction.
Our project will be using CRF for labelling.

3.3 Word Embeddings

Word Embeddings have uses in various fields. Here, we focus on
its vital place in NLP. Embeddings allow for words of similar mean-
ing to be placed nearer to each other in a low dimensional space
[18, 43]. They are represented in the form of vectors. Using embed-
dings allow for easier interpretation by the parser. According to
[43, 49], using the appropriate embedding procedure can impact
the accuracy levels of the parser.

Many models adopt different kinds of embeddings. Two common
approaches are Word2Vec and GloVe [24]. To name a few examples
seen in papers, [6] used both character- and word-based embed-
dings in their parser. He et al. [20] used a pretrained embedding
procedure. Bai and Zhao [3], Cao et al. [7] and Lai et al. [31] used
pre-trained GloVe.

3.4 Pretraining

Pretraining is a technique often used in conjunction with a trans-
former. The transformer is first trained in a self-supervised fashion
using a corpus of text. Once this has been completed, an additional
layer is placed (either feedforward or linear) for finetuning [24].
This allows for a more intricate analysis of a language.

Pretraining is a popular technique. Some examples are high-
lighted below.

Che et al. [8] used a pretrained BERT and then switched to a
pretrained GloVe to improve certain conditions for a speed test.
They report ranking first in two separate frameworks.

Koreeda et al. [29] used a pretrained GloVe, BERT and ELMo
(another word embedding procedure) as well for their MR parsing
network (where they integrate all five frameworks). They report
mixed results, ranking fifth overall, competing against twelve other
submissions.

Zhang et al. [51] used a pretrained word embedding technique for
edge prediction as well as a pretrained GloVe. They report effective
results, ranking third overall using the F1-score metric system.

On the other hand, Cao et al. [6] expressed concerns that pre-
trained embeddings may not have a positive impact on semantic
parsers. Yet, they use a pretrained ELMo embedding and reported
positive results with a 95.05 Smatch accuracy level in EDS.

It has been decided that our project will be using pretraining
to improve the accuracy of our parsers. We will first pretrain our
transformer. We believe that there will be benefits to using this
technique in this project’s context.

4 DEPENDENCY PARSING

Dependency Parsing, which falls under NLP, is the process of under-
standing the syntactic meaning of a natural language text [2]. Oepen
et al. [38] emphasised the use of graph-based rather than tree-based,
because of its assumption that every node may be reached from the
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Figure 5: A Dependency Tree Parse for "Casey hugged Kim"
[14]

root node via one directed path. The goal is to correctly discover
the words’ syntactic relationships.

There are two different dependency parsing approaches, both of
which will be studied in this project. The first is transition-based
dependency parsing and the second is graph-based dependency
parsing.

Figure 5 depicts a simple dependency parse tree. This diagram
format is used extensively in dependency parsing. Depicted here
is the sentence "Casey hugged Kim". A root node has been added,
pointing to the word hugged. Each word is given a POS tag, where
NNP is a singular proper noun and VBD is a past tense verb. The
edges point from the head to the dependent, depicting the relation-
ship between them, where nsubj is a nominal subject relationship
and dobj is a direct object relationship [24].

4.1 Transition-Based Dependency Parsing

Transition-Based Dependency Parsing, introduced almost twenty
years ago [30], is an approach based on shift-reduce parsing [24]. It
consists of a stack, token buffer and an oracle (parser). The tokens
get shifted from the buffer onto the stack one by one. At each step,
the first two tokens of the stack are examined by the oracle and it
decides whether to LEFTARC (second « first dependency; remove
second word), RIGHTARC (second — first; remove first word) or
SHIFT (push a word from the buffer onto the stack) [4, 24]. It is
a greedy algorithm, meaning that the best option at that current
moment is taken and the future is not considered [24, 27]. Figure
6 provides a transition-based trace for a better understanding of
LEFTARC, RIGHTARC and SHIFT.

To illustrate a few examples: Kiperwasser and Goldberg [27]
adopts a transition-based parser for one of their approaches. They
reported it to have either outperformed or matched competing
models.

Bai and Zhao [3] trained a transition-based parser. They reported
an F1 score of only 42%. Compared to their baseline, their model
generally had higher precision but lower recall.

Buys and Blunsom [4] proposed a transition-based parser. As
stated previously in this review, they reported high-performing
results. According to their Smatch scores, they outperformed most
of their competing models.

Other transition-based parsers researched during this review
include [2, 31, 48].

Our project will include the creation of our own transition-based
parser, as transition-based dependency parsing can extend to se-
mantic graph parsing.
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Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT
6 [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)
7 [root, book, the, flight] | [] LEFTARC (the + flight)
8 [root, book, flight] | [] RIGHTARC (book — flight)
9 [root, book] | [] RIGHTARC (root — book)
10 [root] | [] Done

Figure 6: Trace of Transition-Based Parse [24]

4.2 Graph-Based Dependency Parsing

According to [24], graph-based dependency parsing is a more ac-
curate approach than transition-based when dealing with longer
sentences. The output is a labelled, directed graph [40]. The edges,
called arcs, each have a label defining the relationship between a
head (parent) and dependent (child) node.

The main difference between the transition- and graph-based is
that decisions in graph-based are made based on the entire output
structure, as opposed to on individual entities. Another distinction
is that graph-based is able to create non-projective structures [40].
A projective tree is one where all arcs have the projective property,
whereby the head word may access all words that lie between it
and its dependent word [24].

This approach attempts to find the best possible tree for the
inputted sentence. How this is decided is by first assigning some
calculated score for each arc, depicting its viability, and then finding
the maximum spanning tree based on all arc scores [24, 27].

Kiperwasser and Goldberg [27], for example, created a graph-
based dependency parser as part of their research on a bidirectional
LSTM dependency parsing design. It managed to outperform all
but two competing parsers when not using external embeddings.

The techniques for graph-based dependency parsing are similar
to the techniques that will be used for edge prediction, as detailed
in the subsequent section.

5 SEMANTIC GRAPH PARSING

Semantic Graph Parsing is the task of constructing a graph to rep-
resent the semantic meaning of natural language text. These graphs
are constructed in a way that is easily understood by machines.
This differs from dependency parsing, which is syntactic by nature.
They have overlapping concepts and techniques, yet ultimately
complete different tasks.

Du et al. [16] investigated how effective using syntactic parsing
methods would be for semantic graph parsing. Given appropriate
context, there is potential for the dependency parsing methods, as
described in the previous section, to be used effectively for semantic
graph parsing.

According to Johansson and Nugues [23], semantic role labelling
is the task of learning "who does what to whom". It is a specific
kind of semantic graph parsing that may be the most appropriate,
depending on the problem’s context.

Zhang et al. [51] created graph-based semantic parsers. As pre-
viously stated, they reported ranking third overall in their perfor-
mance test.

Cao et al. [6] created a graph-based parser. This parser produced
a high Smatch score of 95.5 for the EDS framework for MR.
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Peking et al. [9] created a semantic parser using a factorisation-
based approach, which reported F1 scores of over 95 for most eval-
uation sections.

For this project, two semantic parsers will be implemented, one
transition-based and one graph-based. The latter of the two will be
produced in a pipeline fashion with node prediction being separated
from edge prediction.

5.1 Node Prediction

Predicting the nodes of the graph is the first step of the pipeline. The
input is a sequence of words and the output is a sequence of nodes.
The nodes represent the words of the sentence, or some indirect
representation of the words, such as the ROOT node. There may
be multiple nodes relating to one word, or vice versa. The model
needs to be able to predict the correct sequence of nodes that map
to an inputted sentence with a high level of accuracy and speed
[24].

On top of predicting the nodes, they must also be labelled. Some-
times, it may be more appropriate, given the context of the words,
to predict and label spans (i.e., multiple words) rather than singular
words. This is another important task of node prediction.

There are various ways to predict the nodes and labels, depending
on the context and parsing approach. For example, Zhang et al. [51]
used a multi-head self-attention model for their node prediction.
Some errors were noted during their analysis and these errors rolled
over to affect the edge prediction performance. Using F1 scores,
they reported ranking highly - notably third overall.

Node prediction may be treated as a labelled span prediction
problem or, more specifically, a tagging problem. For this project,
we will be undertaking this using a transformer encoder.

5.2 Edge Prediction

After node prediction, edge prediction is the second part of the
pipeline. As previously explained, edge prediction can pull similar
techniques from graph-based dependency parsing. It receives, as in-
put, the appropriate nodes and labels for the graph. From there, the
model must predict potential edges (arcs) using a neural network.
These edges are then scored using a particular calculation. From
there, the highest-scoring graph is chosen strategically (i.e., not
necessarily in a greedy fashion), usually by finding the maximum
spanning tree (more on this below). This means that the chosen
edges form the best-scoring MR graph for the inputted text, even if
some of the highest-scoring labels are not chosen because they do
not fit in with the optimal combination [24].

Figure 7 depicts a semantic graph for the sentence "Book that
flight". An additional root has been set in place to pinpoint the
root node (in some cases, it is the main verb of the sentence). An
algorithm is run to calculate which combination of edges yields the
maximum spanning tree. In this case, the graph contains cycles and
these can be eliminated using some other technique, such as [11]
(explained below). If one were to use the greedy approach to choose
the maximum spanning tree, the edge from that to flight would be
chosen because it has a score of 8. However, this restricts the other
appropriate edges. What ends up being the most appropriate is the
path highlighted in purple.

C. Greenberg, GRNCLA009

12

S e
¥-6 -~ 7
7—/

5

Figure 7: A directed graph for "Book that flight" [24]

One example of an algorithm for scoring these edges is a biaffine
network [14]. To calculate this, the embedded nodes are first sent
through two FFNNSs. The first network creates a representation
for the head of the edge and the second, the dependent. These
representations are:

h¢ad = FENNe% (r;) (1)

de d
h{” = FENN“¢P (r;) (2)
These representations are then sent to a biaffine scoring function
that calculates the edge’s score.

Score(i — j) = Biaff (¢4, n?) 3)

where

Biaff(x,y) = xTUy + W(x @ y)+b (4)
where U, W and b are learned weights.

Passing this onto a softmax function calculates a probability
between 0 and 1. All equations above are from [24].

Once the individual scores have been calculated, the best combi-
nation of edges must be chosen to find the optimal (highest-scoring)
graph. As stated above, this is often done by finding the maximum
spanning tree, which is a tree within the graph that encompasses
all of the nodes in that graph, and the edges within the tree yield
the highest score when combining the edges [24].

A common, potentially-recursive algorithm to find the maxi-
mum spanning tree for a weighted directed graph is the Chu-Li
Edmonds algorithm [24], as shown in Figure 8. First, the algorithm
uses the greedy approach by finding the highest-scoring incoming
edge for each node in the graph. If the combination of those edges
is a spanning tree, this is the maximum spanning tree. If not, a
cycle is found and eliminated by contracting the graph, finding the
maximum spanning tree of that new graph and then expanding
it back to the original form with the deleted edge that deletes the
cycle. This is the recursive step of the algorithm. From there, the
maximum spanning tree can be found in this newly-acyclic graph.

Edge prediction is an imperative step in the semantic graph
parsing process. Different parsers use different techniques.

Koreeda et al. [29] used a biaffine network to predict their node
attributes and labelled edges. They reported positive results, rank-
ing fifth against their competing parsers, and they outperformed
their baseline parser.
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function MAXSPANNINGTREE(G=(V,E), root, score) returns spanning tree

F+1l
T[]
score’+[]
for each v € Vdo
bestlnEdge < argmax,_,, ,)c g scorele]
F+F U bestInEdge
for each e=(u,v) € E do
score’[e] «score[e] — score[ bestInEdge]

if T=(V,F) is a spanning tree then return it
else
C+acycleinF
G+ CONTRACT(G, C)
T +— MAXSPANNINGTREE(G ', root, score”)
T+ Expanp(T’,C)
return T

function CONTRACT(G, C) returns contracted graph

function EXPAND(T, C) returns expanded graph

Figure 8: The Chu-Li Edmonds Algorithm for Finding the
Maximum Spanning Tree [24]

Na et al. [35] also chose to use a biaffine network for their parsing
model and investigated biaffine models and methods in detail. They
do not present state-of-the-art performance results, outperform-
ing baseline models for the DM and PSD frameworks but ranking
relatively low for all frameworks evaluated (DM, PSD and UCCA).

Highlighting one parser in particular, used for SDP (DM and
PSD), [51] was inspired by [14]’s biaffine network. The words are
transformed into a vector which is sent to an LSTM for contex-
tualised representations. Two modules are used, one to predict
whether a particular edge exists and one which predicts the most
suitable label for the edge. Using, overall F1 scores, they ranked
eighth for DM (with a score of 91.64) and ninth for PSD (with a
score of 81.84).

Wang et al. [47] used the method used by [46], which follows
from [14]’s biaffine network for scoring. Wang et al.’s [46], however,
differs slightly. Scores are done for first- and second-order parts
and are then sent through recurrent inference layers. For context,
first-order parts are the usual individual edges and second-order
parts deal with relationships between more than two nodes (see
[46] for more information). For edges specifically, [47] received the
following F1 scores and ranks for each framework: 92.32 for DM
(ranking first) and 79.50 for PSD (first).

Our project will be utilising the biaffine network for scoring
predicted edges. We will be finding the maximum spanning tree to
determine the most appropriate graph.

6 MEANING REPRESENTATION
FRAMEWORKS

Oepen et al. [37] describe the five main frameworks (consisting of
different expectations and assumptions) in detail for MR parsing,
which are briefly described below. Each framework requires its own
specific structure and has unique linguistic properties for the nodes,
labels (tags) and edges[3].

C. Greenberg, GRNCLA009

DELPH-IN MRS Bi-Lexical Dependencies (DM) is the first frame-
work. It was developed for the Semantic Dependency Parsing tasks
in 2014 and 2015 at the SemFEval campaigns. Its nodes (tokens) are
only straight-forward, directly representing the words, and there is
no designated root node.

Prague Semantic Dependencies (PSD) was also developed for
SDP. Many papers, such as [51], refer to PSD and DM under SDP.
PSD shares similarities with DM, also only utilising straight-forward
nodes. However, its labelling system and dependency structure are
noticeably distinct.

The third framework is Elementary Dependency Structures (EDS).
It is a variable-free semantic graph and is based on DM. Its nodes
are not necessarily straight-forward, i.e. it may mean more com-
plex entities than just the word itself, with additional information
attached.

The Universal Conceptual Cognitive Annotation (UCCA) frame-
work is one that is tree-like (although need not have a root node)
and contains unlabelled nodes, which correspond to the words and
grammatical units (such as commas) in the sentence. There may
be different types of edges and the edges are labelled with singular
letters.

The final framework reviewed is Abstract Meaning Representa-
tion (AMR). The nodes contain more abstract entities, rather than
a straight-forward relation to the words of the sentence. They may
use inverted edges, mainly for tree-viewing convenience.

For all five frameworks, nodes may have more than one incoming
edge.

Our project will only be using EDS.

7 EVALUATION

Parsers need to undergo performance evaluations to fully under-
stand their usefulness and competitiveness. Metrics may be run
on the entire parser and on the individual sections such as labels,
nodes and edges. These metrics aim to understand how close a
parser’s resulting sentence representation is, to what was expected.
Two metrics are discussed below in detail.

F1, precision and recall is a very common [50] accuracy scoring
metric combination and is used in many papers, such as [4, 20, 28].
Precision is the ratio of correct to total labels. Recall is the ratio
of correct to total expected labels. F1 is the "harmonic mean" of
the previous two [24]. Whilst these calculations are centred around
assessing labels (tags), they can be adapted to evaluate the nodes
and edges of parsers. Parsers are fed natural language sentences
and the resulting meaning representations are compared to what
was expected and correct.

A slight variation to the above is Smatch, introduced by [5],
which calculates overlap between different "feature structures".
This has been used by papers such as [4, 6, 9].

Another evaluation metric pair, that could be used for depen-
dency parsing only, is unlabelled attachment score and labelled
attachment score. [27] has used this.

One final evaluation strategy is exact match. This marks an
entire sentence as right or wrong. Within many contexts, this is
an unsuitable option if used as the sole metric. This is because a
more precise measure must be used to understand how incorrect a
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sentence is and whether a future iteration of the parser is predicting
better [24].

We will be using F1 scores to evaluate our parsers’ nodes, labels
and edges.

8 MOTIVATION

This Honours project is centred around producing two new seman-
tic parsers - one transition-based and one graph-based. For the
latter approach, we are separating the node and edge prediction
tasks rather than combining them, as in [4, 10, 20].

The goal is to perform a careful analysis of the effect of our
algorithm design choices, such as which of our parsers are faster
and more accurate, according to some quantitative measure, and
whether using a pretrained transformer (which is a relatively novel
approach [45]) has a positive effect on the performance results.

9 CONCLUSIONS

Semantic graph parsing, within the field of meaning representation
parsing, is an extensively-studied and relatively new field. There
have been various attempts at predicting the meaning of natural
language sentences with 100% accuracy. As proven in previous sec-
tions, many have reported creating high-scoring parsers. There are
different ways of representing the meaning of sentences and differ-
ent techniques to get there, depending on the languages covered.
This is a dynamic field, with new techniques and state-of-the-art
parsers still being developed. We conclude that there have already
been extensive studies within the field, yet there is still future work
to be explored and higher-performing parsers to be developed. This
project aims at contributing to the field with two new semantic
graph parsers, whose performances will be evaluated against exist-
ing baseline and state-of-the-art parsers.
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