

CS/IT Honours Project

Final Paper 2022

Title: Mr

Author: Craig Stevenson

Project Abbreviation: Arch2

Supervisor(s): Hussein Suleman

Category Min Max Chosen

Requirement Analysis and Design 0 20 20

Theoretical Analysis 0 25

Experiment Design and Execution 0 20

System Development and Implementation 0 20 20

Results, Findings and Conclusions 10 20 10

Aim Formulation and Background Work 10 15 10

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

Ingestion Tool For an Archive of Archives

Craig Stevenson
 Computer Science

 University of Cape Town

 Cape Town
Stvcra005@myuct.ac.za

ABSTRACT

Archives are meant to be a safe haven for information however

many archives can simply disappear due to a variety of reasons

such as lack of funding, world events such as natural disasters or

wars. In addition changes to archives over time are not

documented anyway where. This a problem simply because it

takes valuable information out of circulation and is often never

returned. In order to solve this problem, an archive that is able to

store other archives called the Archive of Archives will be created.

This archive will be comprised of four components: UI,

Repository, Ingestor and Web-scraper. This paper presents a part

of the solution of this problem which is the design of the Ingestor

tool. The objective of this tool is to ingest and version a web-

scraped archive into the repository without any data loss

occurring.

CCS CONCEPTS

• Information Retrieval • Digital Archiving • Data Scraping

KEYWORDS

Digital Archiving, SimpleDL, archive of archives, versioning

1 Introduction

The internet is home to a vast amount of knowledge, much of

which we do not have control over. Archives exist for the purpose

to control and preserve important collections of information such

that they will be available for future generations. Archives

however are tied to organizations who need to upkeep the servers

they run off of. This means that at any given time a knowledge

source, one depends on, may suddenly vanish. Reasons for this

include wars, natural disasters or simply funding for a digital

archive running out. In addition the creation archives to begin

with can be a difficult task since it requires a lot of technical skills

and proficiency in the use of digital library toolkits such as

Eprints and Dpsace. This will not always be suited for lower

resource environments.

In order to combat this a digital library that is able to store other

digital libraries and version them, the Arhive of Archives, will be

created. The Archive of Archives, as seen in figure 1, will be

comprised of four main parts: (1) UI; (2) SimpleDL Repository,

which is a flat file format repository with indexing and search

functions; (3) Ingestor and Metadata Scraper and (4) Archive

Collector, which is a webscraper.

This Archive of Archives ultimately aims to: (1) digital resources

will be preserved in the long term, (2) changes to digital resources

will be recorded and stored to produce versions of those digital

resources, (3) we shall provide offline functionality for the digital

library such that content will be preserved through crashes, as

well as providing areas with poor network connections, (4)

preserve the look and feel of the archives scraped, by scraping the

actual HTML pages, (5) Act as a simple easy to understand toolkit

that many can use to create their own archive of archives.

Figure 1: Architecture Diagram showing all the core parts of

the archive of archives and how they interface with one

another

This paper focusses on the software engineering process used to

create the Ingestor and Metadata Scraper parts. This part’s

overarching responsibility is to: (1) Scrape the metadata for all the

digital objects stored in a specified archive and (2) Ingest the

output of the Archive Collector(See figure 1), without data loss,

into the SimpleDL repository so that is stored correctly(with

versioning) and the digital objects can be indexed.

This paper details, from a software engineering perspective, how

this Ingestor system was created. The paper is structured as

follows: Section 2: Related/Background work, Section 3:

Requirements analysis design, Section 4: Software development

and implementation, Section 5: Test methods and results and

discussion, section 6: conclusions, section 7: Future work, Section

8: References, Section 9: Supplementary information/appendix

2 Background work

2.1 Repository architecture

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

 The repository is the key component of a digital library since all

services or layers will have to interact with it. Hence the

organization and storage of data is key. The core requirements a

digital repository needs to have are: Long Term Preservation /

Access to the repository’s content, well organized Meta-data,

Interoperability, Security/ User Certification and organization of

digital objects[1]. Metadata is one of the most important pieces of

information in a digital library and hence how it is stored in a

repository is a key consideration when designing a digital

repository. There are three approaches to its storage: relational

biased solution, Documentbiased solution and unbiased solution.

2.1.1 Approach One – a relational biased solution

 In this solution Objects and Metadata are stored in a relational

multi-media, database. Files are stored as BLOBS and an ER

schema will show how to connect these tables in the DB to tables

holding meta data.

2.1.2 Approach two – Document biased solution

 Files are stored in database(with pointers/labels) and metadata

stored in an XML document repository. Business logic is hence

needed to associate the two components, requiring a lot of code.

In addition unique ids are needed in both xml and actual files.

2.1.3 Approach three – unbiased solution.

Use a relational DB with native XML support. Metadata stored

separately from the binary files, in XML documents that follow

their own schema. This approach is the most common approach

[1]. This approach has several benefits over the above two

approaches. With regard to approach (2.2) this approach fixes the

problem of needing business logic to link the metadata and the

binary data, due to both of them now being managed by one data

base management system. This approach is also a direct

improvement to approach (2.1) since the metadata is stored

separately. This allows for an easy way to contribute to the OAI

and allows for metadata about an object to be preserved even if

the actual object is removed somehow

2.2 Toolkits for building digital libraires

 Digital libraries are very complex structures with many

components, independent of which architecture you use. In order

to simplify the creation of digital libraries, toolkits can be used.

The toolkits that will be discussed here are the SimpleDL toolkit,

FEDORA toolkit and Dspace

2.2.1 SimpleDL

 SimpleDL is a tool for creating pre-generated digital libraries in a

low resource environment[2]. SimpleDL allows for the long term

preservation of data and retains data through network failures or

computer system crashes. In addition, simpleDL allows for the

easy migration of data. This toolkit has several benefits for the

archive that we are building. Most notably the fact that it has

support for offline functionality, which is something our archive

needs to have. A disadvantage of simpleDL is that our archive

will store a lot of digital objects and simpleDL can only return

results in a feasible amount of time for up to 100 000 items, of

which our digital repository may contain more. Due to its

minimalist design this toolkit is very easy to extend to add other

features as well as maintain making it a suitable choice for this

project

2.2.2 Dspace

 Dspace is another tool used for creating, normally, institutional

digital libraries[3]. This tool provides many core aspects a digital

library requires robust repository architecture, search and browse

functions, web user interface, ingesting functionality and OAI

support, all in one toolkit. Dspace orders members of the

community that will use the digital library in a hierarchical

fashion to determine their interaction permissions (namely

addition and deletion permissions)[4]. Dspace follows a layered

architecture approach, consisting of three layers: Application

Layer, Business logic layer and storage layer. Dspace is

considered to be the most popular tool for creating digital

libraries[5]

2.2.3 FEDORA

Another common tool that specializes in assisting in digital

repository design is FEDORA. This service architecture consists

of three layers: Web Services Exposure Layer, the Core

Subsystem Layer and the Storage Layer[6]. This tool is useful

since our digital library needs to be able to store complex

objects(other archives). This tools main features include: XML

submission and storage, Parameterized disseminators, Access

Control and Authentication, Default Disseminator, Searching,

OAI Metadata Harvesting and Batch Utility. Features such as

versioning, which is an important requirement for our archive,

will be made available in future updates. Fedora has four main use

cases: Fedora "out-of-the-box", A digital asset management

system, A digital library for a research university and Fedora for

distributed content objects. In practice a typical implementation

uses a blend of all four of these use-cases. [7] presents a case

study of where FEDORA was used to create an extensible digital

repository. The digital repository in this paper has a similar goal

to ours since this repository was also used to store already made

collections of digital objects. The Fedora architecture allowed

them to have: support for heterogeneous data types; (2)

accommodation of new types as they emerge; (3) aggregation of

mixed, possibly distributed, data into complex objects; (4) the

ability to specify multiple content disseminations of these objects;

and (5) the ability to associate rights management schemes with

these disseminations

SimpleDL has many differences with Dspace and FEDORA. This

toolkit is designed to create libraries that are a lot smaller in scale

to libraries created with DSpace and FEDORA. SimpleDL adopts

a more lightweight approach to developing digital libraries, so it

wont have all the features Dspace and FEDORA have. What

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

SimpleDL does that DSpace and FEDORA cant do, is that it

provides offline functionality and hence reduces the dependency

on remote servers. SimpleDL is also a lot simpler to maintain and

build since there are less moving parts. One notable advantage

simpleDL has over FEDORA is that simpleDL comes with user

interface and search engine features. If one uses FEDORA these

have to be integrated with it[13]. Like Dspace simpleDL also

allows the feature for user profiling allowing one to set

permissions of users. Of course Dspace and FEDORA have the

advantage of doing a lot of what SimpleDL can do but at a much

larger scale. Examples being, that libraries made using these tools,

store more data and access data faster than simpleDL libraries and

the storage of more complex digital objects can be

accommodated. FEDORA and Dspace are both tools that are used

in creation of large institutional digital libraries hence they do

share some similarities. The tools are compared in the table

below.

2.3 Offline Archiving approaches

2.3.1 Approach One

 In this first approach[8] Ajax is used as the tool to create many

client side digital library services. One such example is an

inbrowser query system. All data is indexed and the inverted files

as well as the mapping of id to actual name are stored in XML

files. Each inverted file contains part of a document id to link

documents of its type, allowing for simple queries.

2.3.2 Approach Two

 The second approach uses an extended Boolean model, and was

designed based off of typical information retrieval policies

described in Managing Gigabytes[9]. It uses two applications:

create index.pl and search.js. search.js simply builds the indices

needed by producing lists of inverted indices for each field.

Search.js uses that index to locate the item and display it. This

search engine has good performance with the most complicated

search taking less than half a second to complete for collections of

32000 items[9].

2.3.3 Approach Three

Another approach that allows for offline functionality would be to

use the Greenstone architecture. This approach involves indexing

collections and then distributing them on a CDROM[9]. Users use

the service by first selecting a collection they want to use then,

use browsing terms to further filter the results and then can use

search terms to find individual words or phrases that occur in

selected parts of the document[10]. At a high level the system

works by organizing the data into collections, each of which have

five directories(import, GML, indices of the collection, building

information and support files(e.g., configuration files). When new

additions to collections are made, importing occurs, in which

source material is converted to GML(Greenstone markup

language), which includes any metadata that comes with the

document. The building step then occurs; which index the

data[10].

All three of these techniques are very suitable to design digital

libraries or services of digital libraries. Ajax is a more flexible

approach compared to Greenstone since Greenstone requires the

installation of their own operating system and Ajax needs just use

the technology built into browsers. Ajax technology as mentioned

earlier is used to build individual services that can be integrated

into digital library systems. This is advantageous over Greenstone

since Greenstone is a full package tool and cannot be easily

integrated with other client side services. Searching is an

important service in digital libraries, each of which the above

approaches are able to perform. These search engines have been

evaluated in different ways. The Ajax based search engine has

been used in the Bleek and Lloyd collection[8]. The search engine

used in approach two has been evaluated through a number of

experiments ultimately theorizing that this approach can be used

on collections of 100 000 items feasibly[9]. Greenstone’s search

service has been long established and is able to operate on

collections that have several thousand to millions of records[10].

While it seems Greenstone is the best option to choose, all of its

features are not necessary when designing smaller repositories.

Approach one and two are hence advantageous to use in the

design of smaller repositories.

3 Requirement Analysis and Design

3.1 Initial Requirements

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

This tool forms part of a larger digital library toolkit - the archive

of archives, hence most requirements of the system are based on

the needs of the other components of the system. These

components are: The UI, Simpledl toolkit and the Archive

Collector. The main techniques employed in finding the

requirements were: (1) Meetings, these included meetings with

the project supervisor as well as meeting with other group

members developing separate parts of the system, (2) Literature

analysis, this included reading documentation about SimpeDL as

well information about metadata standards, (3)Presentation

feedback, this involved presenting the project proposal to

computer science staff as well to the digital library research group

at UCT.

The requirements for this tool can hence be summarized into

functional and non-functional requirements as follows:

3.1.1 Functional Requirements

3.1.1.1 Data ingestion. The Archive Collector produces scraped

archives that need to be ingested. The ingestor will use the

metadata scraper to acquire metadata for each digital object and

convert that into a metadata format that SimpleDL can index. The

ingestor will also generate metadata for the scraped archive

website for SimpleDL to index.

3.1.1.2 Versioning. One of the most important aspects of an

archive of archives is being able to track changes to an archive

over time. This feature detects, when an archive is being scraped,

whether or not it exists already in SimpleDL and up to what

version. This new archive will then be saved under what version it

is detected to be and metadata will be produced to reflect this.

Information, including how many items were added or removed

and how many items were modified, will be saved.

3.1.1.3 Ingestion report generation. After all digital objects from

the scraped archive has been ingested into SimpleDL, a report

needs to be generated to document how many digital objects were

not ingested due to them not being present in the scraped archive.

Handles for the digital objects not ingested will be included in the

report

3.1.1.4 API for UI. Allows user interface to interact with the

scrapers to relay instructions on what archives to scrape and when

to do so as well as removal of certain archives.

3.1.1.5 Metadata scraping. In order to ingest items from a scraped

archive the metadata for each of those items is required.

Therefore- this tool needs to scrape all the metadata from the

archive that is to be scraped.

3.1.2 Non-Functional Requirements

3.1.2.1 Scalability. The tool needs to able to ingest large archives

without crashing or taking too long to complete.

3.1.2.2 Compatibility. The tool needs to be able to run on MS -

Windows and Linux operating systems as well as work with

SimpleDL.

3.1.2.3 Reliability. The ingestor needs to be able to ingest digital

objects from a scraped archive at anytime with 100% accuracy.

3.1.1 System Architecture

Figure 2: Architecture Diagram depicting the service

orientated design of the Ingesting tool. Note entities

represented by circles are not part of the ingestion tool they

just use it

Figure 2 showcases the architecture used for this program. This

architecture was chosen because the program can be divided

easily be sub-divided into a series of interdependent tasks that

each will contribute to the program output that will satisfy the

functional requirements detailed earlier. These tasks can hence be

developed as services and they will include: (1) Scraping

Metadata; (2) creating an archive: which involves checking if said

archive is already ingested and generating metadata for this

archive which can be understood by Simpledl; (3) Versioning the

ingested archive: which involves checking how many versions of

this archive exist in SimpleDL and hence storing this version

correctly and generating the appropriate metadata for this version;

(4) Object ingestion: this service entails ingesting the actual

scraped archive into Simpledl with all its digital objects and

producing metadata for those objects. Each task is reliant on the

output of the next adjacent task and they communicate to each

other via simple API’s. Figure 3, in the appendix, shows how each

service interacts in practice.

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

This design approach has inherent loose coupling and high

cohesion allowing the program to satisfy the non-functional

requirements of understandability/maintainability which is

important since the Archive of Archives is an experimental project

meaning that others may work on it in the future.

 4 System Development and Implementation

4.1 Software Development Methodology

For this project the agile methodology chosen, is a simplified

version of feature driven development, since this was a one man

project[11]. The reason this methodology is a good fit for this

project is because it is based off a service orientated architecture.

Each service will be developed as a small program that will take

about 2 weeks to complete. This means that each major service

can be seen as a feature hence making it easy to setup a feature

backlog and divide that backlog into iterations. At the end of each

iteration the service developed during that can then be integrated

with the previously developed service.

Feature driven development methodology uses 5 steps[11]: (1)

Develop an overall object model; (2) Build a features list; (3) Plan

by feature; (4) Design by feature; (5) Build by feature. This

project was done over a total of 4 iterations, with steps 1-3 being

done in iteration 0 and steps 4-5 being repeated for each feature

over 3 iterations

4.1.2 Iterations

Iteration 0. The work for this iteration has been mostly covered by

the above requirements and analysis and design section(steps 1 -

2). The features detailed in there were divided up into 3 iterations.

Iteration One(1 weeks): This involved the development of the

service that adds a new archive entity to the SimpleDL repository

and generating metadata for that archive entity. This involved

writing a simple API class that will be used by the UI to call this

service. An error contingency, that reverts the SimpleDL

repository to its’ state before the ingestion of the new scraped

archive in case an error occurs during ingestion, will also be

developed.

Iteration Two(1 week): This involved the development of

versioning service. This entails checking up to what version the

scraped archive being ingested has been stored up to and using

that information to store it correctly

Iteration Three(1 week): This iteration involved creating the

Metadata Scraper, which scrapes just the metadata for the archive

that is to be ingested into the Archive of Archives using the OAI-

PMH protocol This is to be stored in a directory the Ingestor can

access.

Iteration Four(2 weeks.) This involved the development of the

service that ingests digital objects from a scraped archive into

SimpleDL using the metadata generated from the metadata

scraper. This entails writing a class that is able to understand the

format of the scraped archive and the output of the Metadata

Scraper, so that it can process each digital object and generate

metadata that SimpleDL can understand for each object. An

algorithm will also be developed in this iteration which will

compare the contents in the scraped archive currently being

ingested to the latest version of that archive in SimpleDL to

determine: (1) how many objects were added or removed and (2)

which objects were modified. This information will be added to

the metadata for this version.

4.2 Language choice

The language chosen to develop the system was python. This

language was chosen because: (1) it is a language that is familiar

to the developer, hence simplifying the development process; (2)

it is a language that is very easy to understand, making it easier

for future developers of the Archive of Archives lives’ easier; (3)

Python has very robust XML parsing libraries.

4.3 System Implementation

In order to understand this implementation one needs to

understand how SimpleDL’s repository works. SimpleDL uses a

flat file format repository instead of a database management

system, meaning that instead of tables, directories are used. This

ingestion system works with 3 key directories:

 The new directory: this directory stores the output of the Archive

Collector and hence is where the scraped archive is ingested from.

This output of the Archive Collector was formatted as follows: A

directory that contains 3 other directories. These directories were:

(1) A directory that stored all the HTML pages for the archive; (2)

A directory that stored a tree of directories based off of the

structure of the scraped archive with all the digital objects and (3)

a metadata directory(produced from the metadata scraper) that

contained all the metadata for all the digital objects stored in (2).

 The spreadsheet directory: this is the directory where the

metadata for collections and digital objects are stored in a

hierarchical fashion, with parent collections’ metadata being

stored in the top level directory and the individual items’ metadata

being stored in the lowest directory. The format in which this

metadata is stored is CSV spreadsheets. For this project, a 3 level

hierarchy of directories was used(as seen in Figure 4). The top

level contains directories that store all data related to the archive

they represent. The second level contains all versions of the top

level archive; each version is stored as a directory in the second

level. The third level contains just the csv file that stores the

metadata for each individual object in that version

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

The collection directory: this is the directory in which the actual

digital objects are stored in the same hierarchical fashion as in the

spreadsheet directory.

Figure 4: Hierarchy Diagram showing the end result of the

ingestion of three versions of one archive in the spreadsheets

directory

All classes have a similar structure- they each have a constructor

and one public method that in turn invokes all the private methods

to execute the service the class implements. Figure 4 shows a

class diagram showing each class and their interactions, all

methods referred to in the upcoming sections will be present

Figure 5.

4.3.1 CreateArchive Class

 This class represents the service that creates the archive directory

in SimpleDL’s flat file format repository and generates the

appropriate metadata for this archive. How the class achieves this

is by first scanning the spreadsheet directory to see if this archive

has been ingested previously using the checkArchiveExists()

Function. If it has not, then a new directory is made to house the

versions and digital objects for this archive using the

createArchDirs() function. The spreadsheet containing the

metadata for each archive ingested will be updated with an entry

containing the metadata for this archive using the

writeArchToSpreadsheet() function. This function gets the

required metadata by using the function generateArchiveInfo().

This function is responsible for generating the metadata, for each

metadata field, which will be written into the spreadsheet for this

archive. Notable fields include legacyId, which is needed if this

collection is a parent collection, date which is acquired using the

datetime library and description which is information describing

the archive provided by the user. The function cleanArchive() is

invoked if a problem happens when adding the archive to revert

the repository to the state it was in before the attempted ingestion

of the scraped archive. This is achieved by having a try except

block in the addArchive() function with the method

cleanArchive() being in the except block. The cleanArchive()

function removes the metadata entry in the spreadsheet for this

archive as well as removing the directory created in the

spreadsheet directory and the collections directory for this

archive, if this archive was never ingested before or removes the

version directory(and all of its’ contents) for this version of the

archive and removes the entry in the version spreadsheet, if this

archive has already been ingested.

4.3.2 CreateVersion Class

This class implements a service that versions an archive being

ingested by creating a directory in the second level of the

hierarchy, in the spreadsheets and collections directory, which

represents a version of the archive as well as all metadata for this

version. Each version needs a unique legacyId since it is meant to

be a parent collection. This is implemented in the versioning

system by naming each directory in the version directory after

their legacyId. The id generation is done by simply incrementing

by 1 from a start number of 1 for each new version of the archive

created. So, for example, if 2 versions of an archive exist, when a

third version is created for that archive, it will be saved under the

directory called 3. The checkVersion() function is used to

calculate this id and the createVersionDirs() function is used to

create the version directories in the second level of the hierarchy

in the collection and spreadsheet directories. The

writeVersionToSpreadsheet() function and the

generateVersionInfo() do the same thing as the

writeArchToSpreadsheet() function and the generateArchiveInfo()

function in the createArchive class except with different metadata

headings specific for a version. Notable metadata fields for each

version include numItemDifference and numItemsModified. These

fields document the change in item count and the number of items

changed from the previous version, respectively. The

calculateItemDifference() is used to find these values by using

output received from the ingestItems class as well as searching the

previous version’s entry in the spreadsheet for the number of

items it contained and subtracting the two values. The

moveZipClean() function is responsible for moving the scraped

archive from the new directory to its correct location in the

Collection directory(Under the correct archive directory and in the

correct version directory for that archive) in SimpleDL,

compressing it in that directory aswell as removing the metadata

directory created by the metadata scraper. In order to achieve this

the moveZipClean() function uses: the shutil.archive function in

the shutil library for compression; the shutil.copy function to copy

the scraped archive to its correct location in SimpleDL and the

shutil.rmtree function to delete the now ingested scraped archive

in the new directory.

4.3.3 IngestItems Class

 The purpose of this class is to provide the service of ingesting the

items from the scraped archive into Simpledl. The

createItemSpreadSheet() is the main function responsible for this.

This function processes a directory of metadata items generated

for every item in the scraped archive(this metadata is produced by

the metadataScraper class). Each item’s metadata is first

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

formatted into a standard format using the formatXml() function

then, it is put through an XML parser and all relevant elements are

extracted according to the predefind metadata headings that

SimpleDL understands. Once all the required elements have been

extracted for an item, they are written as an entry in the item csv

file.

Since the ingestion process requires the processing of a large

amount of items(depending on the archive), the above process was

multithreaded. The multiprocessing library was used to achieve

this. The directory of metadata items that need to be processed

was divided up into smaller segments and each segment was given

to a thread to process. The segment size is determined by taking

the whole directory and dividing it by 16. Since each process item

needs to be written to the same spreadsheet, race conditions can

occur. To circumvent that a shared queue, which is a thread safe

data structure was used. A thread that runs the

writeToSharedCSV() function was also created to constantly

check the queue and pop off any item entries that have been

added. These item entries are then written to the CSV file. The

queue used for this was called EntryBuffer.

One notable algorithm implemented in this class is the algorithm

that determines: Which items have been modified since the

previous version and how many. This algorithm, makes use of the

sha256 hash function to hash the digital objects contents and add

that hash as part of an item entry in the item csv file. The

hashObject() function is responsible for this. This hash is then

compared with the hash in the previous version for that particular

item. This is achieved through the use of two hashtables. When

the ingestItem class is created, the hash and identifier fields of the

previous version’s spreadsheet are loaded and inserted into two

hashtables. The createHashTableHash() function, which creates a

hash table that stores the hash of an item in the previous version

of the archive being ingested, and createHashTableId(), which is

a hashtable that stores the identifier of an item stored in the

previous version of the current archive being ingested, are used to

achieve this. Both of these functions make use of the

hashTableFun() function, which is the function responsible for

mapping an item to its position in the hash table. This function

does this by simply converting each character in the item to its

Unicode value, adding them together and modding it by the table

size(500). Collisions in the hastable are handed by using chaining.

The searchHashTableId() is then used by the threads to search the

Id hash table to verify that the item being processed does exist in

the previous version. The searchHashTableHash() is then used to

find the hash for the corresponding item in the previous version

and then compare it with the currently ingested item’s hash. If the

hashes differ then the current item is tagged as modified and the

number of items modified counter is incremented.

The next feature this class implements is the ingestion report. This

feature uses the createItemSpreadsheet(), the writeReport() and

the itemExists() function. The itemExists() function checks that

the item that the metadata represents exists in the scraped archive.

The createItemSpreadsheet() function uses this function to insert

items being ingested into a list of items that don’t exist in the

scraped archive. This list is then used by the writeReport()

function to create a report that lists the identifiers for all the items

that did not exist in the scraped archive. Once again, since this

involved writing to a shared file, the writeReport() function was

implemented as a thread, that like the writeToSharedCSV()

function, constantly checks a queue to see if an item is present and

then pops that item and writes it to a file. The queue used for this

was called nonIngestBuffer.

The function generateWebsiteInfo(), is used to generate metadata

for the directory that stores all the HTML pages in the scraped

archive. Notable metadata fields include digitalObjectPath, which

holds the filepath to location of the homepage of the website once

ingested into SimpleDL.

4.3.4 MetadataScraper Class

Since the Archive Collector does not scrape metadata for digital

objects in an archive, this class needed to implement a service that

scrapes just the metadata from the archive being scraped, by the

Archive Collector and store it in the same file location as the

scraped archive. To do this, the class makes uses of the OAI-PMH

interface. OAI-PMH is a protocol that most archives support[12]

that allows one to extract an archive’s metadata for all of its’

items in a specified metadata format. The harvest() function is

responsible for the use of the OAI protocol. It does this by

creating and sending an HTTP request to the archive’s OAI,

interface requesting the metadata, and for it to be formatted in the

Dublin Core format. Initially when the metadata is scraped using

the OAI-PMH it comes in batches, so the createMetadataItems()

function processes each batch and splits them into individual

metadata items and saves each item to its own file.

Each metadata item has an element called identifier which is a

handle that points to the location of where that digital object is

stored in the archive. When developing the Metadata Scraper, it

was found that in some metadata items, from Dspace based

archives, the identifier element was not present or did not provide

the full handle. The next few methods: changeIdentifiersDspace(),

changeIdentifiersEprints(), findResource() and createXMLTag()

are all part of an algorithm that ensures that the identifier element

present and complete. The changeIdentifiersDspace(),

findResource() and createXMLElement() were used to solve this.

The changeIdentifiersDspace() function was used to check if that

identifier was present; if it wasn’t then the element would have to

be built. From examining how Dspace constructs its identifier

elements, it was determined that the general form was

“bitstream/handle/x/y/z”. This means that the values x y and z

need to be determined. Both x and y could easily be determined

since they were present in the other identifier elements for this

item. The findResource() function was used to find the value for z

by following the path bitstream/handle/x/y (with the determined x

and y values) to the directory in the scraped archive and extracting

the name of the item that was present there (the z value). The

createXMLElement() function is then used to create the new

identifier element for that item’s metadata. Once a valid identifier

element is present the changeIdentifiersDspace() will format that

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

handle so that it now points to that item’s location in the scraped

archive in SimpleDL. The process described above was

multithreaded in a similar fashion to what was done in the

ingestItems class. The setUpThreads() function was used to

achieve this. This function divided up the metadata items into

segments and gave each segment to a thread. These threads once

again had to write to a shared directory so the same queue method

explained earlier was used with saveXml() being the function that

access and writes data from that queue to the output metadata

directory

Eprints based archives metadata item’s was found, during the

development of the metadata scraper, to not have the same

identifier element problem the Dspace based archives metadata

item’s identifier elements had. The changeIdentifiersEprints()

simply modifies the identifier element so it points to the location

of the item in the scraped archive stored in SimpleDL.

4.3.5 Key Libraries used

OS library. Its functions to do with directory processing and file

path creation were used.

Shutil library. Its functions to do with advanced directory

processing such as entire directory removal, moving directories

and zipping directories.

Padas Library. Its functions to do with advanced CSV reading

and writing were used.

Hashlib Library. Its sha256 hashing function was used.

Lxml’s Etree Library. Its XML parser was used.

Requests Library. This was used to make HTTP requests to the

OAI interface to scrape an items metadata.

Multiprocessing. This library was used to multithread the

ingestion of items and the formatting of identifiers in the metadata

scraper.

5 System Evaluation and Testing

Since this system forms part of the backend of the archive of

archives the most appropriate evaluation methods are automated

testing as opposed to user testing. This was done through the

creation of a script that was be configured to run the program and

compare the actual output of the program with the expected output

over a number of test cases. The output that was tested was: (1)

Have all the items been ingested from the scraped archive into

SimpleDL?, (2) Have the correct directories been created in the

correct places to correctly reflect versioning?, (3) Does the error

report correctly reflect which items were not ingested?

The metadata scraper part of the Ingestor does not require any

direct testing since it makes use of an already established

protocol(OAI). In addition tests done on the Ingestor itself also

evaluate the handle formatting part of the metadata scraper.

In addition to the functional testing above the non-functional

requirements of: performance, scalability and portability will be

evaluated. All tests were performed on a Windows based machine

unless otherwise stated

5.1 Functional Test One: Archive Ingestion

5.1.1 Test Case Description

This test will verify if the system can take a scraped archive

produced from the archive collector and ingest it into the directory

hierarchy in the SimpleDL repository and gernerate the

appropriate metadata

5.1.2 Test Case Data

• Scraped Archive called archive X, size 133 items

generated by Eprints

• Scraped archive called archive Y, size 1115 generated

by Dspace

5.1.3 Test Result

Test Case Expected Result

Ingest Archive X Directories created

in correct locations,

appropriate entries

added to CSV files,

scraped archive

moved correctly

and 133 items

ingested

Pass, see

supplementary

information, table

one for output of

the script

Ingest Archive Y Same as above,

except with 1115

items ingested

Pass,

supplementary

information, table

one for output of

the script

Ingest Archive X

again

No new directory

created in top level.

New version

directory created in

second level for

archive X. Version

CSV updated

Pass,

supplementary

information, table

one for output of

the script

Ingest Archive Y

Again

Same as above

except for archive

Y

Pass,

supplementary

information, table

one for output of

the script

Ingest Archive X 3

more times

No new top level

directories. 3 new

version directories

created in 2nd level

for archive X called

3, 4 ,5

Pass,

supplementary

information, table

one for output of

the script

Ingest Archive Y 3

more times

Same as above but

for archive Y

Pass,

supplementary

information, table

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

one for output of

the script

Change format of

archive Y and

ingest it

Exception to occur

and repository to be

reset

Pass,

supplementary

information, table

one for output of

the script

5.2 Test Two(Functional) : Advanced Versioning

5.2.1 Test Case Description

This test case will focus on the versioning service. It aims to test

whether the versioning can successfully detect how many items

have been added and how many items have been removed from a

previous version of the same archive

5.2.2 Test Case Data

• Scraped Archive called X

5.2.3 Test Cases

Test Case Expected Result

Ingest Archive

X twice

No items

added/removed/modified,

correct version and

archive dirs created

Pass, see

appendix for

screenshots

Ingest Archive

again X but

remove 4 items

4 items removed, 0 items

modified, correct version

and archive dirs

created/present

Pass, see

appendix for

screenshots

Ingest Archive

X(with -4 items)

but add 4 items

4 items added, 0 items

modified, correct version

and archive dirs

created/present

Pass, see

appendix for

screenshots

Ingest Archive

X but modify 3

items and

remove 4 items

0 items added/removed,

2 items modified, correct

archive version dirs

created/present

Pass, see

appendix for

screenshots

5.3 Test Three: System and Performance Test

5.3.1 Test Case Description

This test will test the scalability as well as performance for the

Ingestor and Metadata Scraper. Performance will be evaluated by

timing the execution of the Metadata Scraper and Ingestor

separately. Scalability can only be assessed through the size of

archive that can be ingested, which will be a scraped archive with

its number of items increased artificially by duplicating the

metadata directory. Doing this will have the same affect as

ingesting a scraped archive that actually has many items since the

ingestor treats each item(whether its duplicate or not) as a new

item and hence will overwrite the entry in item csv file if the

processed metadata item is a duplicate.

5.3.2 Test Data

• Scraped archive called archive X, size 132 itetms

• Scraped archive called archive Y, size 1115 items

5.3.3 Test Cases

Test Case Execution Time(Average

over 3 runs in seconds)

Ingest Archive X Ingestor: 5.67

Metadata Scraper: 9.73

Ingest Archive Y Ingestor: 7.71

Metadata Scraper: 32.42

Ingest Archive X

again

Ingestor: 5.75

Metadata Scraper: 9.41

Ingest Archive Y

again

Ingestor: 7.22

Metadata Scraper: 32.48

Duplicate Items in

Archive Y till

35681 then ingest

one version

Ingestor: 51.84

Take above

archive and ingest

it again

Ingestor: 87.18

5.5 Test Four: SimpleDL integration

5.5.1 Test Description

This tests primary goal is to evaluate whether or not SimpleDL

understands the metadata produced in each of the csv files . It will

involve ingestion two versions of two scraped archives and seeing

the hierarchy of folders SimpleDL creates when processing that

metadata is the same as the hierarchy in the spreadsheets

directory, with all digital objects present

5.5.2 Test Data

• Scraped Archive X, 133 items

• Scraped Archive Y, 1115 items

Expected Result Actual Result

Hierarchy Correct for archive

X

Correct hierarchy

hierarchy Correct for archive

Y

Correct hierarchy

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

All items present for version 1

archive X

All items present

All items present for version 1

of archive Y

All items present

5.6 Discussion

From test one it can be seen that the Ingestor is able to ingest and

version archives produced by the archive collector correctly.

While only two archives were used to test this the results are still

fairly reliable since all Dpsace and Eprints archive’s have a

similar format. Only 5 versions of each archive were ingested, this

however is sufficient to show that the ingestor can ingest n

versions of an archive long as version (n – 1) exists. The only

pitfall that can result from this, is if version (n – 1) of an archive

gets removed somehow. If another version of that archive is then

ingested it will be saved under version (n – 1) instead of n. To

solve this a simple check can be done before the ingestion of

another version of an archive, to see if the latest version is in fact

present.

From test two it can be seen that the versioning features: Number

of items modified and Number of items added or removed works

correctly. These results make sense since the number of items

modified feature uses a precise hashing algorithm(sha256) to

detect changes and to detect changes in the number of items

between versions a simple subtraction is used.

From test three the efficiency/performance the ingestor

component performs quite well since it makes use of

multithreading. Using multithreading is important since it allows

the Ingestor to be scaled which is important since the Archive of

Archives is going to be used to rapidly store archives. It can be

seen in test case 6 that ingesting an archive of size 35681 takes

87.18, if this was done sequentially this would take longer.

However in order to fully leverage multithreading, a machine that

has many cpu cores needs to be used. This may not always be

possible for low resource environments, which could easily be a

candidate for the use of the archives of archives since its built off

SimpleDL. The functionality that requires the most computational

power is what was tested in test two. While this functionality does

provide an eloquent way of showing how an archive has changed

over its’ different versions it may not be strictly needed. Not

having this functionality significantly decreases the computation

time as seen by the difference in execution time from test 5 to test

case 6. An option to hence turn this feature off should be added in

the future.

The metadata scraper scrapes metadata of an archive using the

OAI protocol. In test three it can be seen that the metadata scraper

is acting as a performance bottleneck. This is because requests to

the OAI interface are made sequentially, this however is difficult

to parallelize since output from the previous OAI call(resumption

token) is needed for the next one. This problem can however be

circumvented when this part is integrated with the web scraper

since the metadata scraper can be configured to run in parallel

with the web scraper.

From test four it can be seen that the import script in SimpleDL is

able to process an organize the metadata into the csv files to a

hierarchy of metadata that SimpleDL will use for indexing. The

main limitation with this test is the lack of integration with the UI

component. Because of this tests that involve searchability of an

item cant be performed.

One other notable limitation may be scalability with the current

system. Test case three showed that the system is able to ingest a

very large archive in a feasible amount of time however the

system can only ingest one archive’s items at a time. If one was

planning to scale the archive of archives up to mass ingest

archives the current ingestion and meta scraper would become a

bottleneck. This problem can be solved by once again using

multithreading however each thread will run the ingestor program

for a different scaped archive.

6 Conclusions

This report showcased the development cycle for the ingestor and

metascraper part of the archive of archives. From the results of the

testing it is clear that the Ingestor is able to Ingest archives, in a

feasible amount of time, in such a way that they are: (1)

Versioned correctly, (2) Are not missing any items, (3) Correctly

detect changes in items from previous versions and (4) understood

by SimpleDL.

7 Future work

The Ingestor tool can be scaled up into a tool that is able to ingest

multiple scraped archives at the same in a feasible amount of time.

The Metadata Scraper can be improved to scrape metadata from

archives that do not support the OAI-PMH protocol

The Ingestor can have its algorithm that detects items modified

improved to detect exactly what and where these changes

occurred.

Complete integration with the UI and Archive Collector

8 References

1. Dimitrios A. Koutsomitropoulos, Anastasia A. Tsakou,

Dimitris K. Tsolis, Theodore S. Papatheodorou.2004,

Towards the Development of a General-Purpose Digital

Repository, Vol: ICEIS (5)

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

2. Hussein Suleman. 2021, Simple DL: A toolkit to create

simple digital libraries, International Conference on

Asian Digital Libraries, 2021, Springer, 325-333.

https://pubs.cs.uct.ac.za/id/eprint/1512/1/paper_88.pdf

[8] Kumar, A., Saigal, R., Chavez, R. and Schwertner,

N

3. Robert Tansley, Mick Bass, David Stuve, Margret

Branschofsky, Daniel Chudnov, Greg McClellan, and

MacKenzie Smith. 2003. The DSpace institutional

digital repository system: current functionality. In

Proceedings of the 3rd ACM/IEEE-CS joint conference

on Digital libraries (JCDL '03). IEEE Computer

Society, USA, 87–97.

4. Kurtz, M. (2010). Dublin Core, DSpace, and a brief

analysis of three university repositories. Information

technology and libraries, 29,1, 40-46.

5. Khan, S. 2019. DSpace or Fedora: Which is a better

solution?. SRELS Journal of information management,

56,1, 45-50

6. Staples, T., Wayland, R. and Payette, S., 2003. The

Fedora Project. D-Lib Magazine, 9(4). DOI

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.90.919 4&rep=rep1&type=pdf

7. Kumar, A., Saigal, R., Chavez, R. and Schwertner, N.,

2004. Architecting an Extensible Digital Repository. In

ACM/IEE CS joint conference on digital libraries.

JCDL. DOI https://dl-

acmorg.ezproxy.uct.ac.za/doi/10.1145/996350.99635

8. Suleman, H. (2007). in-Browser Digital Library

Services, in Kovacs, Laszlo, Norbert Fuhr and Carlo

Meghini (eds): Proceedings of Research and Advanced

Technology for Digital Libraries, 11th European

Conference (ECDL 2007), 16-19 September, Budapest,

Hungary, pp.462-465, Springer

9. Hussein Suleman (2019) Investigating the effectiveness

of client-side search/browse without a network

connection, Proceedings of 21st International

Conference on Asia-Pacific Digital Libraries (ICADL),

4-7 November 2019, Kuala Lumpur, Malaysia,

Springer. Available DOI

10. Ian H. Witten, Stefan J. Boddie, David Bainbridge, and

Rodger J. McNab. 2000. Greenstone: a comprehensive

opensource digital library software system. In

Proceedings of the fifth ACM conference on Digital

libraries (DL '00). Association for Computing

Machinery, New York, NY, USA, 113–121. https://doi-

org.ezproxy.uct.ac.za/10.1145/336597.336650

11. Goyal, S. (2008). Major seminar on feature driven

development. Jennifer Schiller Chair of Applied

Software Engineering,

http://csis.pace.edu/~marchese/CS616/Agile/FDD/fdd.p

df

12. Lagoze, C., & Van de Sompel, H. (2003). The

making of the open archives initiative protocol for

metadata harvesting. Library hi tech .https://www-

emerald-

com.ezproxy.uct.ac.za/insight/content/doi/10.1108/0737

8830310479776/full/pdf?title=the-making-of-the-open-

archives-initiative-protocol-for-metadata-harvesting

13. Khan, S. 2019. DSpace or Fedora: Which is a better

solution?. SRELS Journal of information management,

56,1, 45-50.

https://doi-org.ezproxy.uct.ac.za/10.1145/336597.336650
https://doi-org.ezproxy.uct.ac.za/10.1145/336597.336650
http://csis.pace.edu/~marchese/CS616/Agile/FDD/fdd.pdf
http://csis.pace.edu/~marchese/CS616/Agile/FDD/fdd.pdf

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

9 Supplementary information

Figure 5: Class Diagram showing the classes that make up the

Ingestor and Metadata Scraper and their interactions.

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

Table One: Output for test One

Test Case Screenshot

1

2

3

4

5

6

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

Test

Case

Screenshot

1

2

3

4

Table Two: Output for test 2

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

Table 3: Output for test 3

Test

Case

Screenshot

1

2

3

4

5

6

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

Figure 3 Sequence Diagram depicting how and which services

invoke each other

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

Figure 6: Hierarchy Output for Test 4

