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Abstract. Well-known forms of KLM-style defeasible entailment can
be defined syntactically, via formula-based manipulations, and semanti-
cally, using ranked models. While entailment algorithms based on such
syntactic characterisations have been developed, algorithms that directly
manipulate the underlying models have not been explored. We present
and analyse several algorithms, based on ranked model semantics, for
computing two prominent forms of defeasible entailment: rational clo-
sure and lexicographic closure. In each case, we define an abstract rep-
resentation of the ranked model, an algorithm for its construction, and
a suitable adaptation of existing entailment algorithms, compatible with
the representation. We also clarify the distinction between two forms of
lexicographic closure in the literature.
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1 Introduction

Knowledge representation and reasoning (KRR) is a subfield of artificial intelli-
gence that attempts to formalise the expression of information and philosophi-
cal patterns of reasoning. Knowledge is encoded symbolically and collated in a
structure referred to as a knowledge base. Reasoning services are then defined to
facilitate drawing reasonable conclusions from such knowledge bases.

A simple, yet expressive logic-based approach to KRR is defined in classical
propositional logic (or propositional logic).

While exhibiting many desirable characteristics, propositional logic has two
fundamental limitations in its ability to mimic human reasoning.

Propositional logic cannot explicitly express typicality whereby certain im-
plications usually hold but may have exceptions. It is also monotonic, meaning
conclusions drawn from some knowledge base cannot be retracted with the ad-
dition of new knowledge [9]. Such retractions are crucial in formalising the idea
that new knowledge may require a re-examination of past conclusions.

To address these shortcomings, defeasible approaches to reasoning have been
proposed as nonmonotonic alternatives to classical forms of entailment. Unlike
classical entailment, there is no obvious way defeasible entailment ought to be-
have.
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Kraus, Lehmann and Magidor (KLM) [9] proposed a set of properties as a the-
sis for how to define a ‘sensible’ or ‘rational’ notion of defeasible entailment. The
seminal KLM paper [9] set out to characterise the preferential model-theoretic
approach to nonmonotonic entailment taken by Shoham in proof-theoretic terms
applied to consequence relations, inspired by the work of Gabbay in [6].

Two such examples, which will be our primary focus in this paper, are ratio-
nal closure [12] and lexicographic closure [11], each representing distinct, valid
patterns of human reasoning.

In both cases, computing entailment for a given knowledge base has been
defined based on semantics involving the ranking of formulas in the knowledge
base [12]. Giordano et. al [7] provide an alternative but equivalent semantic
characterisation of rational closure based on a form of defeasible entailment
known as minimal ranked entailment. Casini et. al [4] extend this characterisation
to lexicographic closure, a refinement of rational closure, noting that it too can
be characterised by a specific ranked model.

This paper will focus on constructing model-based representations of these
forms of entailment, algorithmically. We also show that the lexicographic order-
ing defined by Casini et al. [4] differs from the usual ordering defined by Lehmann
[11].

2 Background

2.1 Propositional Logic

Language and Semantics We define a set P containing all atomic proposi-
tions, representing the most basic units of knowledge [1]. Formulas can consist
of a single atom, the negations (¬) of other formulas, or the combination of two
other formulas using one of the binary connectives {∧,∨,→,↔}. The set of all
possible formulas is often referred to as L (the language of propositional logic).
An interpretation is a function I : P → {T, F} which assigns truth values to
each propositional atom. We denote the set of all propositional interpretations
with U . We say that an interpretation I ∈ U satisfies a formula α ∈ L, denoted
I ⊩ α, if α evaluates to true using the usual truth-functional semantics. We refer
to a finite set of formulas as a knowledge base. We say that an interpretation
I satisfies a knowledge base K if ∀α ∈ K, I ⊩ α. Interpretations that satisfy a
knowledge base are referred to as models of that knowledge base. We use the
notation Mod(K) (or JKK) to refer to the set of models of a knowledge base K
(similarly for a single formula).

Entailment Using the above model-based semantics, entailment (or logical con-
sequence), denoted using the |= symbol, can be defined. A knowledge base K en-
tails a formula α, written as K |= α, if and only if Mod(K) ⊆ Mod(α). Intuitively,
whenever all the formulas in K are true under a given interpretation, such will
be the case for α and so we are able to conclude α whenever we have K.
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2.2 Defeasible Reasoning

2.3 The KLM Framework and Extensions

Initially, KLM [9] extended propositional logic by defining a consequence rela-
tion |∼ representing defeasible implications in an attempt to reasonably represent
typicality. Extensions of this framework instead define |∼ as an additional con-
nective (where α |∼ β, with propositional formulas α, β, is read as ‘typically, if α,
then β’ [4]). This extended language is defined as LP := L ∪ {α |∼ β | α, β ∈ L}
[8]. The semantics of |∼ are then defined using ranked interpretations [12].

Definition 1. A ranked interpretation is a function R : U 7→ N ∪ {∞}, such
that for every i ∈ N , if there exists a u ∈ U such that R(u) = i, then there
must be a v ∈ U such that R(v) = j with 0 ≤ j < i, where U is the set of all
possible propositional interpretations [8].

Ranked interpretations, therefore, assign to each propositional interpretation,
a rank (with lower ranks corresponding, semantically, with more typical inter-
pretations and higher ranks with less typical ‘worlds’). Worlds with a rank of
∞, according to the ranked interpretation, are impossible, whereas worlds with
finite ranks are possible.

Satisfaction Given that ranked interpretations indicate the relative typicality
of worlds, it makes sense to define whether a ranked interpretation satisfies a
defeasible implication based on the most typical worlds in that interpretation.
In order to define the ‘most typical worlds’, a definition of minimal worlds con-
cerning a formula in L is required.

Definition 2. Given a ranked interpretation R and any formula α ∈ L, it holds
that u ∈ JαKR (the models of α in R) is minimal if and only if there is no
v ∈ JαKR such that R(v) < R(u) [8].

This defines the concept of the ‘best α worlds’ (i.e. the lowest ranked, or
most typical, of the worlds in which α is true).

Definition 3. Given a ranked interpretation R and a defeasible implication α |∼
β, R satisfies α |∼ β, written R ⊩ α |∼ β if and only if for every s minimal in
JαKR, s ⊩ β. If R ⊩ α |∼ β then R is said to be a model of α |∼ β [8].

Therefore, in order for a ranked interpretation R to satisfy a defeasible im-
plication α |∼ β, it need only satisfy α → β in the most typical (lowest ranked)
α worlds of R.

In the case of a propositional formula α ∈ L, it is required that every finitely-
ranked world in R satisfies α for R to satisfy α. This is consistent with the
idea that propositional formulas, which do not permit exceptionality, should be
satisfied in every plausible world of a ranked interpretation, if such a ranking is
to satisfy the formula.
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It is now possible to model knowledge that expresses typicality and thus
handles exceptional cases more reasonably.

We refer to a finite set of defeasible implications as a defeasible knowledge
base. Note that we can express any classical propositional formula α ∈ L using
the defeasible representation ¬α |∼ ⊥. Henceforth, we assume that knowledge
bases are defeasible unless specified otherwise. We define the materialisation of
a defeasible knowledge base, K, as

−→
K := {α → β | α |∼ β ∈ K} [4].

Entailment We seek reasonable forms of non-monotonic entailment that permit
the retraction of conclusions in cases where added knowledge contradicts these
conclusions. A set of postulates defines such entailment relations [9], which is
extended to define more specific classes of entailment [12, 4]. We will look at
two particular patterns of entailment, namely rational closure and lexicographic
closure with a specific emphasis on their model-based semantics for computing
entailment.

2.4 Rational Closure

Rational closure represents a prototypical pattern of defeasible reasoning (one
that is highly conservative in abnormal cases) in the KLM framework. Lehmann
and Magidor [12] propose that any other reasonable form of entailment, while
possibly being more ‘adventurous’ in its conclusions, should endorse at least
those assertions in the rational closure of the corresponding knowledge base.

There are two principal ways to compute the rational closure of a given
knowledge base. The first is minimal ranked entailment. This approach defines
rational closure and the semantics of the associated entailment relation using a
unique ranked model for a given knowledge base. The second is an algorithmic
approach involving ranking statements in the knowledge base [12].

Base Rank and Rational Closure Although the original focus of this paper
was on the semantics of rational closure and its model-theoretic construction, it
is necessary to address its syntactic/algorithmic characterisation as the two are
closely related.

Casini et al. [4] provide an aforementioned algorithmic description of rational
closure for computing entailment queries in terms of two sub-algorithms included
as Algorithms 1 and 2. Algorithm 1 ranks the formulas of the knowledge base ac-
cording to how exceptional their antecedents are, and Algorithm 2 then answers
a given entailment query using the information provided by Algorithm 1.
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Algorithm 1 BaseRank
1: Input: A knowledge base K
2: Output: An ordered tuple

(R0, ..., Rn−1, R∞, n)
3: i := 0;
4: E0 :=

−→
K ;

5: repeat
6: Ei+1 := {α → β ∈ Ei | Ei |= ¬α};
7: Ri := Ei \ Ei+1;
8: i := i+ 1;
9: until Ei−1 ̸= Ei

10: R∞ := Ei−1;
11: n := i− 1;
12: return (R0, ..., Rn−1, R∞, n);

Algorithm 2 RationalClosure
1: Input: A knowledge base K, and a de-

feasible implication α |∼ β
2: Output: true, if K |≈ α |∼ β, and false

otherwise
3: (R0, ..., Rn−1, R∞, n) := BaseRank(K);
4: i := 0
5: R :=

⋃j<n
i=0 Rj ;

6: while R∞ ∪R |= ¬α and R ̸= ∅ do
7: R := R \Ri;
8: i := i+ 1;
9: end while

10: return R∞ ∪R |= α → β;

Minimal Ranked Entailment A partial order over all ranked models of a
knowledge base K, denoted ⪯K, is defined as follows [4]:

Definition 4. Given a knowledge base, K, and RK the set of all ranked models
of K (those ranked interpretations which satisfy K), it holds for every RK

1 ,RK
2 ∈

RK that RK
1 ⪯K RK

2 if and only if for every u ∈ U , RK
1 (u) ≤ RK

2 (u).

Intuitively, this partial order favours ranked models that have their worlds
‘pushed down’ as far as possible [8]. It has a unique minimal element, RK

RC , as
shown by Giordano et al. [7]. We now define minimal ranked entailment using
this minimal element as follows:

Definition 5. Given a defeasible knowledge base K, the minimal ranked inter-
pretation satisfying K, RK

RC , defines an entailment relation, |≈, called minimal
ranked entailment, such that for any defeasible implication α |∼ β, K |≈ α |∼ β
if and only if RK

RC ⊩ α |∼ β [8].

2.5 Lexicographic Closure

Lexicographic closure is a formalism of the presumptive pattern of reasoning
introduced by Reiter [13] in the context of default logics. Presumptive reason-
ing is more ‘adventurous’ and willing to conclude statements so long as there
is no evidence to the contrary (even in atypical cases). The semantics of lexico-
graphic closure depends on a ‘seriousness’ ordering defined based on two criteria:
specificity and cardinality.

Like rational closure, there are syntactic (formula-based) [11] and semantic
(model-based) [4] descriptions of lexicographic closure.

Lehmann first defined lexicographic closure using a partial ordering on val-
uations [11]. This ordering favoured valuations with lower violation tuples, ac-
cording to the natural lexicographic ordering of tuples. A violation tuple of a
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valuation is derived from the subset of a given defeasible knowledge base con-
taining all the formulas the valuation violates. The tuple records the counts of
formulas violated by the valuation ordered by seriousness (in this case, the base
rank of the formula).

A formula-based algorithm for computing lexicographic closure, based on
Lehmann’s definition [11], successively produces weakened formula representa-
tions of each base rank. We refer to this algorithm as the LexicographicClosure
algorithm [5], defined in Algorithm 3. It proceeds in the same manner as the Ra-
tionalClosure algorithm but weakens each rank by considering incrementally
smaller subsets of the rank instead of completely discarding the entire rank at
each iteration.

Algorithm 3 LexicographicClosure

1: Input: A knowledge base K, and a defeasible implication α |∼ β
2: Output: true, if K |≈LC α |∼ β, and false otherwise
3: (R0, ..., Rn−1, R∞, n) := BaseRank(K);
4: i := 0
5: R :=

⋃j<n
i=0 Rj ;

6: while R∞ ∪R |= ¬α and R ̸= ∅ do
7: R := R \Ri;
8: m := #Ri - 1;
9: Ri,m :=

∨
S∈{T⊆Ri|#T=m}

∧
s∈S

s;

10: while R∞ ∪R ∪ {Ri,m} |= ¬α and m > 0 do
11: m := m− 1;
12: Ri,m :=

∨
S∈{T⊆Ri|#T=m}

∧
s∈S

s

13: end while
14: R := R ∪ {Ri,m};
15: i := i+ 1;
16: end while
17: return R∞ ∪R |= α → β;

Casini et al. provide another model-based definition of lexicographic closure
in their framework of rational defeasible entailment relations [4]:

Definition 6. m ≺K
LC n if and only if RK

RC(n) = ∞, or RK
RC(m) < RK

RC(n),
or RK

RC(m) = RK
RC(n) and m satisfies more formulas than n in K.

This definition characterises lexicographic closure as a count-based refine-
ment of rational closure. Its ranked model respects the rankings of rational clo-
sure (which encodes seriousness) but refines preference for worlds with the same
rank based on the total number of formulas each satisfies.
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3 Algorithm Development

Proofs for the propositions necessary to prove correctness of our algorithms can
be found in the appendices.

3.1 ModelRank

Motivation The preference ordering over ranked interpretations in definition 4
characterises the minimal model with respect to other knowledge base models.
We seek to develop an algorithm that directly constructs a representation of the
minimal model without the need to compare models.

A way to view this problem is to consider starting with all the worlds as
most preferred as possible and then performing only the most necessary ‘bump-
ing up’ of worlds. Booth et al. [2, 3] take this approach in constructing what
they refer to as the LM-minimum element for a Propositional Typicality Logic
(PTL) knowledge base. Our initial algorithm makes use of a similar ‘bumping
up’ approach. The intuition is to place as many worlds as possible on each rank
to produce not only a model but the minimal ranked model with all the worlds
as ‘pushed down’ as the knowledge permits [8].

We start with all the possible worlds for the propositional vocabulary of the
knowledge base. Then, at each step of the algorithm, we place all the worlds
that are models of the remaining materialised formulas from our knowledge base
on the current rank. All such worlds are then removed from the collection of
to-be-placed worlds to ensure they cannot be placed on more than one rank.
Finally, we remove all the formulas whose antecedents are satisfied by a world
we have just placed on the current rank from our collection of to-be-considered
formulas. Together these two steps satisfy the requirements for minimal ranked
entailment to hold.

Algorithm 4 ModelRank
1: Input: A defeasible knowledge base K
2: Output: A ranked interpretation (R0, ..., Rn−1, R∞) and the number of ranks, n
3: i := 0;
4: PK := {p | p is a propositional letter occurring in K};
5: Ui := universe of interpretations for vocabulary PK;
6: Ki :=

−→
K ;

7: repeat
8: Ri := {v ∈ Ui | v ⊩ Ki};
9: Ui+1 := Ui \Ri;

10: Ki+1 := {α → β ∈ Ki | ∄v ∈ Ri s.t. v ⊩ α}
11: i := i+ 1;
12: until Ri−1 = ∅
13: n := i− 1
14: R∞ = Ui

15: return (R0, ..., Rn−1, R∞), n
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3.2 ModelRank Refinement

Motivation We wish to construct the ranked model corresponding to the lexico-
graphic ordering in definition 6 using an approach similar to that of ModelRank.

Given the rational closure model and counts for each model, representing the
number of formulas satisfied, there does not seem to be a straightforward way
of directly computing the lexicographic rank of a valuation. Because the number
of refined ranks produced from a rational closure rank varies, a less complicated
strategy would be to employ a procedure that ranks valuations as necessary, re-
moving the need to place the worlds directly. As the lexicographic ordering gives
preference to valuations on lower rational closure ranks and satisfying more for-
mulas, respectively, a simple approach would be to consider, for each of the
rational closure ranks, in turn, every possible count of formulas that could be
violated. For any combination of these two criteria the algorithm places all valu-
ations, if any exist, that satisfy the criteria. This ensures that the relative order
of worlds in the rational closure rank is maintained in the lexicographic model
while refining based on formulas violated to produce the required ordering.

We formalize this bottom-up construction of the lexicographic ranked model
in the LexicographicModelRank algorithm.

Algorithm 5 LexicographicModelRank
1: Input: A defeasible knowledge base K
2: Output: An ordered tuple (RLC

0 , ..., RLC
k−1, R

LC
∞ , k)

3: (RRC
0 , ..., RRC

n−1, R
RC
∞ , n) := ModelRank(K);

4: i := 0; ▷ rational closure rank
5: k := 0; ▷ lexicographic closure rank
6: while i < n do
7: j := 0; ▷ number of formulas to violate
8: Uij := RRC

i ; ▷ remaining worlds to place
9: while Uij ̸= ∅ do

10: Lij := {u ∈ Uij | #{k ∈
−→
K | u ⊮ k} = j};

11: if Lij ̸= ∅ then
12: RLC

k := Lij ; ▷ place worlds violating j formulas
13: k := k + 1;
14: end if
15: Ui(j+1) := Uij \ Lij ; ▷ remove placed worlds
16: j := j + 1;
17: end while
18: i := i+ 1;
19: end while
20: RLC

∞ := RRC
∞ ;

21: return (RLC
0 , ..., RLC

k−1, R
LC
∞ , k)

Motivation The ModelRank algorithm directly produces the minimal ranked
model in a representation consistent with its abstract definition in the liter-
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ature [4, 8, 2]. Although that representation is suitable in an abstract setting,
it is infeasible from an implementation standpoint. Furthermore, we note the
space-complexity issues arising from the exponential relationship between the
cardinality of the propositional vocabulary of a given knowledge base and the
cardinality of the corresponding universe of worlds.

Therefore, we investigate new ways of representing ranked interpretations
that still use the model-theoretic properties of minimal-ranked entailment but
provide tractable alternatives to the current formula-based approaches.

Our first approach is then to construct formulas in correspondence with the
levels of the rational closure model such that the models of each formula corre-
sponds exactly with the worlds situated on the corresponding level in the rational
closure model. That is, for a knowledge base, K, and its corresponding minimal
ranked model, RK

RC = (R0, · · · , Rn−1, R∞), we seek to construct a representa-
tion of the form (F0, · · · , Fn−1, F∞), where each Fi is a propositional formula
satisfying the condition: Mod(Fi) = Ri.

Hence, instead of enumerating the entire universe of worlds for the propo-
sitional vocabulary of the knowledge base and then determining whether such
worlds satisfy specific criteria to place them on ranks, we instead ‘place the
criteria’ itself on the ranks of the new representation.

3.3 FormulaRank

Algorithm 6 FormulaRank
1: Input: A defeasible knowledge base K
2: Output: A ranked formula interpretation (F0, ..., Fn−1, F∞) and the number of

ranks, n
3: i := 0;
4: Ki :=

−→
K ;

5: repeat
6: Fi := (

∧
i Ki) ∧ ¬(

∨
j<i Fj);

7: Ki+1 := {α → β ∈ Ki | Fi |= ¬α};
8: i := i+ 1;
9: until Ki = Ki−1

10: n := i
11: F∞ := Fi

12: return (F0, ..., Fn−1, F∞), n

3.4 FormulaRank Refinement

Motivation The motivation for considering a formula-based lexicographic algo-
rithm is precisely that for developing a formula-based rational closure algorithm.
We take issue with the implementation of approaches that directly manipulate
models, and for the same reasons outlined in 3.2, adapt our LexicographicMod-
elRank algorithm to represent the models on each rank syntactically.
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Using a formula-based version of the refinement strategy in Lexicograph-
icModelRank, we represent worlds satisfying a particular number of formulas n
using all possible subsets of the knowledge with cardinality n. Combining these
subsets disjunctively, we construct a formula with models satisfying at least n
formulas, or equivalently, violating no more than #K − n formulas. Therefore,
when refining each rank, we start by constructing a formula with worlds on the
rank violating no more than 0 formulas and, if any exist, removing these from
the formula representing the remaining worlds. This process continues, as in
LexicographicModelRank, until there are no remaining worlds, and is repeated
for each rank.

Algorithm 7 LexicographicFormulaRank
1: Input: A defeasible knowledge base K
2: Output: An ordered tuple (FLC

0 , ..., FLC
k−1, F

LC
∞ , k)

3: (FRC
0 , ..., FRC

n−1, F
RC
∞ , n) := FormulaRank(K);

4: i := 0; ▷ rational closure rank
5: k := 0; ▷ lexicographic closure rank
6: while i < n do
7: j := 0; ▷ number of formulas to violate
8: Uij := FRC

i ; ▷ remaining worlds to place
9: while Uij ̸|= ⊥ do

10: Lij := Uij ∧

( ∨
S∈{T⊆

−→
K|#T=#

−→
K−j}

∧
s∈S

s

)
;

11: if Lij ̸|= ⊥ then
12: FLC

k := Lij ; ▷ place worlds violating j formulas
13: k := k + 1;
14: end if
15: Ui(j+1) := Uij ∧ ¬Lij ; ▷ remove placed worlds
16: j := j + 1;
17: end while
18: i := i+ 1;
19: end while
20: FLC

∞ := FRC
∞ ;

21: return (FLC
0 , ..., FLC

k−1, F
LC
∞ , k)

3.5 Cumulative FormulaRank

Motivation After implementing the FormulaRank algorithm using our exten-
sion of the Tweety Project Library, we encountered severe performance issues.

We determined the cause to be the interaction between the implementation
of the Sat4j SAT solver [10] provided by the TweetyProject library [14] and the
construction of the representative formulas on each rank.

Each representative rank formula comprises the conjunction of all the remain-
ing formulas and the negation of the disjunction of all the previous representative
rank formulas. The negation of the disjunction of all the previous representative
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rank formulas essentially asserts that we wish to exclude worlds that are already
associated with the previous representative rank formulas.

We reformulated the entailment query of step seven of the FormulaRank
algorithm to a satisfiability query that we can present to the SAT solver. The
SAT solver then converts the given query to Conjunctive Normal Form (CNF) as
part of its implementation. Hence, there is an exponential blowup in the number
of clauses in the CNF of the original formula.

One can modify the definition of the representative rank formulas to no longer
require the conjunction with the negation of the disjunction of all the previous
representative rank formulas. The resulting sequence of formulas now represents
an accumulation of worlds whereby the models of each formula are a subset of the
models of the following formula. We term this new representation the ‘cumulative
ranked formula model’ of a knowledge base. Significantly, this new representation
does not affect our ability to answer entailment queries using minimal ranked
entailment and avoids the complexity issues relating to the conversion to CNF.

This new representation is intimately related to the original BaseRank and
RationalClosure algorithms. The BaseRank ranks are constructed from the
difference between successive sets of exceptional formulas. RationalClosure
answers entailment queries by starting with the union of all such BaseRank
ranks and iteratively removing ranks from the lowest rank upwards until the
antecedent of the query is classically consistent with the remaining knowledge.
RationalClosure effectively reconstructs the sequence of exceptional sets ini-
tially produced by BaseRank from the BaseRank ranks to answer the entailment
query.

We can show that the representative formula on a given finite rank of the
cumulative ranked model is, in fact, the conjunction of the formulas in the excep-
tional set of the same index. Thus, not only does the cumulative ranked formula
model provide a syntactic representation of the models of a given knowledge base
in a cumulative sense, it functions as a cache of the information used by Ratio-
nalClosure to answer entailment queries. Hence answering entailment queries
using the cumulative ranked model is similar to the RationalClosure algorithm.
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Algorithm 8 CumulativeFormulaRank
1: Input: A defeasible knowledge base K
2: Output: A ranked formula interpretation (F0, ..., Fn−1, F∞) and the number of

ranks, n
3: i := 0;
4: Ki :=

−→
K ;

5: repeat
6: Fi := (

∧
Ki);

7: Ki+1 := {α → β ∈ Ki | Fi |= ¬α};
8: i := i+ 1;
9: until Ki = Ki−1

10: n := i
11: F∞ := Fi

12: return (F0, ..., Fn−1, F∞), n

4 Lexicographic Closure

We wish to formulate a cumulative approach for computing lexicographic clo-
sure that highlights the relationship between the model-theoretic definition and
the usual LexicographicClosure algorithm. Based on our cumulative rational
closure approach findings, we expect that the cumulative model ranks corre-
spond to various iterations of the original LexicographicClosure algorithm.
In attempting such, however, we make an important observation regarding the
distinction between definitions of lexicographic closure presented in [11] and [4].

The refinement definition of lexicographic closure applied in our model-based
algorithms defines an ordering based on the criteria of seriousness and count
(similar to the ordering defined by Lehmann). However, we find that this is,
in fact, distinct from the ordering originally defined for lexicographic closure in
[11].

We prove, via an example, how these definitions differ regarding the produced
ranked models.

Example 1. Consider K = {p → b, b |∼ f, b |∼ w, p |∼ ¬f, p |∼ w}.
This represents the knowledge that all penguins are birds, birds typically fly,

birds typically have wings, penguins typically don’t fly, and penguins typically
have wings.

The base rank of the formulas in K and the corresponding minimal ranked
(rational closure) model are shown in figure 1.

We construct the ranked models in figure 2 according to the, purportedly
equivalent, Lehmann [11] and Casini et al. [4] definitions of lexicographic closure.

We observe that both lexicographic models respect the relative order of the
worlds in the rational closure model.

However, we notice a difference in the refinement of the second rational clo-
sure rank in producing the two lexicographic models. In particular, consider
valuations bfpw and bfpw(circled in the rational closure model). The tuples of
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∞ p → b

1 p |∼ ¬f, p |∼ w

0 b |∼ f, b |∼ w

(a) Base Rank

∞ bfpw bfpw bfpw bfpw

2 bfpw bfpw bfpw

1 bfpw bfpw bfpw bfpw

0 bfpw bfpw bfpw bfpw bfpw

(b) Minimal Ranked Model

Fig. 1: Base Rank and Minimal Ranked Model of K

∞ bfpw bfpw bfpw bfpw

5 bfpw

4 bfpw

3 bfpw

2 bfpw

1 bfpw bfpw bfpw

0 bfpw bfpw bfpw bfpw bfpw

(a) Lexicographic Closure [11] Model

∞ bfpw bfpw bfpw bfpw

4 bfpw bfpw

3 bfpw

2 bfpw

1 bfpw bfpw bfpw

0 bfpw bfpw bfpw bfpw bfpw

(b) Lexicographic Closure [4] Model

Fig. 2: The Two Lexicographic Ranked Models

violated formula counts ordered by base rank, as defined in the Lehmann def-
inition of lexicographic closure [11], are ⟨0, 2, 1⟩ and ⟨0, 1, 2⟩, respectively. We
define similar tuples based on the refinement criteria of the Casini et al. lexi-
cographic ordering [4] to include the rational closure rank and the number of
formulas violated in K (as the ordering favours valuations with a lower rational
closure rank, violating fewer formulas in K). Both valuations, in this case, have
the same rational closure rank of two and violate three formulas in K. Hence
the corresponding tuple associated with these valuations is ⟨2, 3⟩. Noting that
both partial orders can be defined by comparing the corresponding tuples using
the natural lexicographic ordering of tuples, the Lehmann ordering places the
valuations on different ranks while the Casini et al. ordering places them on the
same rank.

Example 1 demonstrates that refining the rational closure model ranks by
count alone does not necessarily produce the Lehmann lexicographic closure
ranked model. The rational closure model separates valuations according to the
number of trailing zeroes in their formula violation tuples or, equivalently, the
highest base rank among the formulas each violates (based on the connection
between the base rank of a formula and the rank of its minimal world in the
minimal ranked model [7]). Therefore, to refine such to produce the Lehmann
lexicographic closure model, valuations on the same rational closure rank must
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be separated, not based on the number of formulas violated in total [4], but
rather by considering each of the remaining violation counts in turn (essentially
completing the lexicographic tuple comparison).

Nonetheless, the ordering defined in [4] still represents a valid form of lexico-
graphic closure in which the tuples used to compare valuations are of order two,
consisting of a valuation’s rational closure rank and formula violation count.
Notably, the ranked models corresponding to each ordering constitute refine-
ments of the rational closure model and will, therefore, fall within the rational
defeasible entailment framework described in [4].

While it would be possible to construct a cumulative version of the Lexico-
graphicFormulaRank algorithm by instead refining cumulative rational closure
ranks without the negation of prior ranks (much like in the CumulativeFormu-
laRank algorithm), we would need to show that such represents the cumulative
model. The output of the CumulativeFormulaRank algorithm is cumulative as
the formulas on each rank become strictly weaker as the rank increases. While
such is also the case for iterations of the LexicographicClosure algorithm, it
may not hold for the modified LexicographicFormulaRank, as described above.
Therefore, a cumulative algorithm may need to explicitly include the prior cu-
mulative rational closure ranks, as it is possible for a lower-ranked valuation to
violate more formulas than a higher-ranked valuation.

5 Complexity Analysis

We assume a propositional vocabulary containing p atoms and hence 2p possible
worlds. We claim that 2p satisfaction checks can be considered approximately
equivalent to a single entailment check as, in the worst case, checking whether
a particular entailment, α |= β, holds can be evaluated by determining whether
α ∧ ¬β is unsatisfiable.

We estimate the space complexity of ModelRank and LexicographicModel-
Rank in terms of the number of propositional worlds to be stored. For the re-
maining algorithms, we estimate their space complexity in terms of the number
of syntactic knowledge base formulas their resulting representations comprise.
This decision is motivated by the fact that the representative formulas on each
rank entirely comprise combinations of formulas from the original knowledge
base.

Time complexity results in table 1 show that all algorithms perform in the
order of n2 classical entailment checks and are thus not much more complex
than the problem of boolean satisfiability for propositional logic (solvable in
non-deterministic polynomial time) [12].

Under the assumption that storage requirements for valuations and formulas
do not differ significantly, we favour the space efficiency of the Cumulative-
FormulaRank algorithm for constructing a representation of the rational clo-
sure model. However, the difficulty of expressing counts in propositional logic
produces a super-exponential space complexity for the LexicographicFormu-



Model-based Defeasible Reasoning 15

laRank. We, therefore, favour the LexicographicModelRank algorithm despite
its exponential space complexity.

Algorithm Time Space

ModelRank O(n2) O(2p)
FormulaRank O(n2) O(2n × n2)
CumulativeFormulaRank O(n2) O(n2)

LexicographicModelRank O(n2) O(2p)
LexicographicFormulaRank O(n2) O(2n × n3)

Table 1: Algorithm Time and Space Complexities

6 Conclusions and Future Work

Our work represents an avenue largely unexplored in the literature: the design of
model-based algorithms for computing forms of KLM-style defeasible entailment.

We present five new algorithms for constructing representations of the ra-
tional and lexicographic closure ranked models of a given defeasible knowledge
base. The first two construct representations consistent with those abstractly
defined elsewhere in the literature. The remaining three construct new compact
representations for the ranked models using representative formulas. The thrid
rational closure algorithm produces a new class of representation that we term
cumulative, as the models of each rank’s representative formula are precisely
those on and below the corresponding rational closure rank.

With all algorithms following the same bottom-up pattern of construction,
based on the initial model ranking algorithms, we prove these produce the desired
ranked models for rational and lexicographic closure.

In attempting to formulate a cumulative algorithm for lexicographic closure,
we find that the ordering defined in [4] for lexicographic closure differs from
that initially described in [11]. While both constitute refinements of the rational
closure model, they represent distinct forms of reasoning that will need to be
compared and further explored.

In light of this observation, we need to develop similar algorithms for the
Lehmann lexicographic closure and a more compact representation for the Casini
et al. lexicographic closure.

Additionally, we wish to explore whether these algorithms and their cor-
responding model representations may be generalised to compute any rational
defeasible entailment relation [4].
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A ModelRank Algorithm Proofs

Proposition 1. The ModelRank algorithm terminates.

Proof. We assume that
−→
K is consistent. Thus, we want to show that Ri = ∅ for

some i.
By definition, we have that ∀j, Rj := Uj ∩Mod(Kj) and Uj+1 ⊆ Uj .
Thus for arbitrary i, either:

1. Ui+1 ⊂ Ui

2. Ui+1 = Ui

Since U is finite, (1) can only occur a finite number of times. If Ui+1 = Ui,
then Ri = ∅ since Ui+1 := Ui \Ri and Ri ⊆ Ui.

Proposition 2. The ModelRank algorithm produces a ranked model of the given
defeasible knowledge base, K.

Proof. Suppose ModelRank produces R∗ = (R0, · · · , Rn−1, R∞).
We therefore wish to show that R∗ is a ranked model of K.
We show this in two parts:

1. R∗ a ranked interpretation:
We show that R∗ is a function from U to N ∪ {∞} such that R∗(u) = 0
for some u ∈ U , and satisfying the following convexity property: ∀i ∈ N, if
R∗(v) = i, then, for ∀j such that 0 ≤ j < i, ∃u ∈ U for which R∗(u) = j.

We assume that
−→
K is consistent.

Hence, Mod(
−→
K ) ̸= ∅. Thus R0 := U0 ∩Mod(K0) ̸= ∅.

Thus, ∃u ∈ U such that R∗(u) = 0.
Take arbitrary u ∈ U .
Either u ∈ Rj or u ̸∈ Rj for some j ∈ N.
If u ∈ Rj , then u ∈ Uj and u ∈ Mod(Kj).

u ∈ Uj and u ∈ Rj

⇒ u ̸∈ Uj+1

⇒ ∀m > 0, u ̸∈ Uj+1+m, since ∀i > 0,Ui+1 ⊂ Ui

⇒ ∀m > 0, u ̸∈ Rj+1+m

If u ̸∈ Rj for some j ∈ N, then u ∈ Ui for i ≤ n. But R∞ := Un, thus
u ∈ R∞.
Thus, as soon as a world is placed on a rank, it can no longer be placed on
any subsequent ranks. We note that the stopping condition of the algorithm
is that the current rank is empty, and that this empty rank is excluded from
the output. Thus, there can never be any empty ranks.

2. R∗ is a model of K:
We want to show that ∀α |∼ β ∈ K, min≺JαKR

∗ ⊆ JβKR
∗
.

We note that min≺JαKR
∗

is just alternative notation for the minimal α-
worlds with respect to the interpretation R∗.
Take arbitrary α |∼ β ∈ K.
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(a) If JαKR
∗
= ∅, we are done.

(b) If JαKR
∗ ̸= ∅, then take arbitrary v ∈ JαKR

∗
.

Suppose R∗(v) = i.
Note that Rj := Uj ∩Mod(Kj) and

Kj := {γ → δ ∈ Kj−1 | ∄v ∈ Rj−1 s.t. v ⊩ γ}.

Since v ∈ JαKR
∗

and R∗(v) = i, we must have that ∀j < i, ∄u ∈ Rj such
that u ⊩ α.
Note that α → β ∈ K0 :=

−→
K .

Hence, α → β ∈ Kj , ∀j ≤ i.
Since v ∈ JαKR

∗
and v ∈ Ri := Ui ∩Mod(Ki) and α → β ∈ Ki, we have

that v ∈ JβKR
∗
.

Lemma 1. Suppose ModelRank produces R∗ = (R0, · · · , Rn−1, R∞).
Take arbitrary v ∈ Ri for i > 0.
∀α → β ∈ Ki−1 \ Ki, ∃w ∈ Ri−1, s.t. w ⊩ α ∧ β.

Proof. Take arbitrary α → β ∈ Ki−1 \ Ki

⇒ α → β ∈ Ki−1 \ Ki = Ki−1 ∩ Ki

= Ki−1 ∩ {α → β ∈ Ki−1 | ∄v ∈ Ri s.t. v ⊩ α}

= Ki−1 ∩ (Ki−1 ∩ {α → β ∈
−→
K | ∄v ∈ Ri s.t. v ⊩ α})

= Ki−1 ∩ (Ki−1 ∪ {α → β ∈
−→
K | ∄v ∈ Ri s.t. v ⊩ α})

= Ki−1 ∩ {α → β ∈
−→
K | ∄v ∈ Ri s.t. v ⊩ α}

= Ki−1 ∩ {α → β ∈
−→
K | ∃v ∈ Ri s.t. v ⊩ α}

= {α → β ∈ Ki−1 | ∃v ∈ Ri s.t. v ⊩ α}

Since α → β ∈ {α → β ∈ Ki−1 | ∃v ∈ Ri s.t. v ⊩ α}, take arbitrary u ∈ Ri−1

such that u ⊩ α.
But u ∈ Ri ⇒ u ∈ Mod(Ki−1) ⊆ Mod(Ki−1 \ Ki).
Hence, u ⊩ α and u ∈ Mod(Ki−1 \ Ki) and α → β ∈ Ki−1 \ Ki ⇒ u ⊩ β.

Lemma 2. Suppose ModelRank produces R∗ = (R0, · · · , Rn−1, R∞).
Let i > 0.
∀α → β ∈ Ki−1 \ Ki,∀j < i− 1,∄w ∈ Rj , s.t. w ⊩ α.

Proof. Take arbitrary α → β ∈ Ki−1 \ Ki.
Suppose for the sake of contradiction that ∃w ∈ Rj with j < i− 1 and that

w ⊩ α.
By definition, Rj = Uj ∩Mod(Kj).
⇒ w ∈ Mod(Kj)
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By definition, ∀m > 0, Km+1 ⊂ Km.
By assumption, α → β ∈ Ki−1 \ Ki ⊆ Ki−1

⇒ α → β ∈ Ki−1 ⊂ · · · ⊂ Kj ⊂ Kj−1 ⊂ · · · ⊂ K1 ⊂ K0 :=
−→
K .

Note that Kj+1 := {α → β ∈ Kj | ∄v ∈ Rj s.t. v ⊩ α}.
Now, α → β ∈ Kj and w ∈ Rj and w ⊩ α.
Hence, α → β ̸∈ Kj+1 ⇒ α → β ̸∈ Ki−1 ⇒ α → β ̸∈ Ki−1 \ Ki.
Which is clearly a contradiction. Thus no such w exists.

Lemma 3. Suppose ModelRank produces R∗ = (R0, · · · , Rn−1, R∞).
Take arbitrary v ∈ Ri for i > 0.
∀α → β ∈ Ki−1 \ Ki, min≺Jα ∧ βKR

∗ ⊆ Ri−1.

Proof. This follows from Lemma 1 and Lemma 2 since Lemma 1 shows that
there exists a world with the specified property and Lemma 2 shows that there
does not exist a world with such property on any lower rank.

Lemma 4. Suppose ModelRank produces R∗ = (R0, · · · , Rn−1, R∞).
Take arbitrary v ∈ Ri for i > 0.
∃α → β ∈ Ki−1 \ Ki such that v ⊮ α → β

Proof. Suppose for the sake of contradiction that v ∈ Ri and ∀α → β ∈ Ki−1\Ki,
v ⊩ α → β.

Hence, v ∈ Mod(Ki−1 \ Ki).
By definition, Ri = Ui ∩Mod(Ki) ⊆ Mod(Ki).
⇒ v ∈ Ui and v ∈ Mod(Ki).
Take arbitrary x ∈ Ki−1.
Since Ki ⊂ Ki−1, we have that Ki−1 = Ki ∪ (Ki−1 \ Ki).
Hence, either x ∈ Ki or x ∈ Ki−1 \ Ki.
If x ∈ Ki, then since v ∈ Mod(Ki), v ⊩ x.
If x ∈ Ki−1 \ Ki, then since v ∈ Mod(Ki−1 \ Ki), v ⊩ x.
Thus v ∈ Mod(Ki−1).
Hence, v ∈ Ui−1 and v ∈ Mod(Ki−1) ⇒ v ∈ Ri−1.
This is a contradiction since we assumed that v ∈ Ri and we have shown

that R∗ is a ranked interpretation.

Consider the ordering ⪯K on all ranked models of a knowledge base K, which
is defined as follows: R1 ⪯K R2 if for every v ∈ U , R1(v) ≤ R2(v).

Proposition 3. Suppose ModelRank produces R∗ = (R0, · · · , Rn−1, R∞). R∗ is
the minimal ranked model of K with respect to ⪯K.

Proof. Suppose ModelRank produces R∗ = (R0, · · · , Rn−1, R∞).
Take arbitrary v ∈ Ri for i > 0.
We want to show that if we remove v and place it on any rank lower than i,

that the resulting ranked interpretation, is no longer a model of K.
To do this, we use Lemma 3 and Lemma 4.
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Lemma 3 shows that all the best alpha worlds, that are also beta worlds, for
any formula in Ki−1 \ Ki, are located on rank i− 1.

Lemma 4 then shows that there must be at least one formula, say γ → δ, in
Ki−1 \ Ki that v violates.

Hence, γ → δ ∈ Ki−1 \ Ki ⊂ Ki−1 ⊂ · · · ⊂ K0.
Thus, we can conclude that

R∗′
:= (R0, · · · , Ri−k ∪ {v}, · · · , Ri \ {v}, · · · , Rn−1, R∞)

for some 0 < k ≤ i is not a model of K.

B FormulaRank Algorithm Proofs

Lemma 5. Consider each set of remaining worlds, Ui, as defined in the Mod-
elRank algorithm as Ui := Ui−1 \ Ri−1,∀i > 0. One can write, ∀i > 0,Ui =

U \
⋃i−1

j=0 Rj.

Proof. We use induction.

– Base Case:

U1 = U0 \R0 (by definition)

= U0 \
0⋃

j=0

Rj

– Induction Step: suppose for some k > 0, k ∈ N that

Uk = U \
k−1⋃
j=0

Rj holds.

We wish to show that

Uk+1 = U \
k⋃

j=0

Rj
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Uk+1 = Uk \Rk (by definition)

= (U \
k−1⋃
j=0

Rj) \Rk

= U \ ((
k−1⋃
j=0

Rj) ∪Rk)

= U \
k⋃

j=0

Rj

Proposition 4. With respect to the ModelRank and FormulaRank algorithms,
the representative formula, Fi, on each rank of the FormulaRank model, is related
to the worlds on each rank, Ri, of the ModelRank model by the following property:
∀i, Mod(Fi) = Ri and K′

i = Ki. Additionally, both algorithms terminate at the
same point.

Proof. Base Case:

We assume that K is consistent.
Thus we have that R0 := U0 ∩Mod(K0) = Mod(

−→
K ) is not empty.

Furthermore, for both ModelRank and FormulaRank, K0 :=
−→
K and K′

0 :=
−→
K .

Thus K0 = K′
0.

F0 :=
∧

K′
0 ∧ ¬(

∨
j<0

Fj)

=
∧

K′
0 ∧ ¬⊥

=
∧

K′
0 ∧ ⊤

=
∧

K′
0

=
∧

K0 (by definition)

⇒ Mod(F0) = Mod(
∧

K0)

= Mod(K0)

= U0 ∩Mod(K0) (since U0 := U )
= R0

We also know that both K1 and K′
1 exist.

‘Repeating Base Case’:
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Suppose that for some i > 0, Ri ̸= ∅, that Ki = K′
i and that ∀k ≤ i,

Mod(Fk) = Rk.

We first show that Ki+1 = K′
i+1.

Note that

Ki+1 := {α → β ∈ Ki | ∄v ∈ Ris.t.v ⊩ α}
and
K′

i+1 := {α → β ∈ K′
i | Fi |= ¬α}.

Since Ki = K′
i by our induction hypothesis,

K′
i+1 = {α → β ∈ Ki | Fi |= ¬α}.

Now,

Fi |= ¬α ⇔ Mod(Fi) ⊆ Mod(¬α)
⇔ Ri ⊆ Mod(¬α) (by induction hypothesis)
⇔ ∀u ∈ Ri, u ∈ Mod(¬α)
⇔ ∀u ∈ Ri, u ⊩ ¬α
⇔ ∄u ∈ Ri, u ⊩ α

Thus, since Ki = K′
i (by induction hypothesis), and Fi |= ¬α ⇔ ∄u ∈

Ri s.t. u ⊩ α, we have that Ki+1 = K′
i+1.

Now,

Fi+1 :=
∧

K′
i+1 ∧ ¬(

∨
j<i+1

Fj)

=
∧

Ki+1 ∧ ¬(
∨

j<i+1

Fj)

⇒ Mod(Fi+1) = Mod(
∧

Ki+1) ∩Mod(¬(
∨

j<i+1

Fj))

Now,

Mod(¬(
∨

j<i+1

Fj)) = U \Mod(
∨

j<i+1

Fj)

= U \
i⋃

j=0

Mod(Fj)

= U \
i⋃

j=0

Rj (by induction hypothesis)

= Ui+1 (by lemma 5)
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Thus,

Mod(Fi+1) = Mod(
∧

Ki+1) ∩ Ui+1

= Ui+1 ∩Mod(Ki+1)

= Ri+1 (by definition)

Now, if K′
i+1 = K′

i, then we have that FormulaRank terminates.
We must now show that ModelRank terminates at the same index (i+ 1).

Ri+1 : = Ui+1 ∩Mod(Ki+1)

= Ui+1 ∩Mod(Ki)

= (Ui \Ri) ∩Mod(Ki)

= (Ui ∩Mod(Ki)) \ (Ri ∩Mod(Ki))

= Ri \Ri

= ∅

Thus ModelRank terminates at the same index.

C CumulativeFormulaRank Algorithm Proofs

Proposition 5. With respect to the ModelRank and CumulativeFormulaRank
algorithms, the representative formula, F ′

i , on each rank of the CumulativeFor-
mulaRank model, is related to the worlds on each rank, Ri, of the ModelRank
model by the following property: ∀i, Mod(F ′

i ) =
⋃i

j=0 Rj and K′
i = Ki. Addi-

tionally, both algorithms terminate at the same point.

Proof. Base Case:

We assume that K is consistent.
Thus we have that R0 := U0 ∩Mod(K0) = Mod(

−→
K ) is not empty.

Furthermore, for both ModelRank and FormulaRank, K0 :=
−→
K and K′

0 :=
−→
K .

Thus K0 = K′
0.
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F ′
0 :=

∧
K′

0

=
∧

K0 (by definition)

⇒ Mod(F0) = Mod(
∧

K0)

= Mod(K0)

= U0 ∩Mod(K0) (since U0 := U )
= R0

=

0⋃
j=0

Rj

We also know that both K1 and K′
1 exist.

‘Repeating Base Case’:

Suppose for that for some i > 0, Ri ̸= ∅, that Ki = K′
i and that ∀k ≤ i,

Mod(F ′
k) =

⋃k
j=0 Rj .

We first show that Ki+1 = K′
i+1.

Note that

Ki+1 := {α → β ∈ Ki | ∄v ∈ Ris.t.v ⊩ α}
and
K′

i+1 := {α → β ∈ K′
i | F ′

i |= ¬α}.

Since Ki = K′
i by our induction hypothesis,

K′
i+1 = {α → β ∈ Ki | Fi |= ¬α}.

We show that Ki+1 ⊆ K′
i+1 and K′

i+1 ⊆ Ki+1.
If K′

i+1 ̸= ∅, then take arbitrary α → β ∈ K′
i+1. Thus, we have that

F ′
i |= ¬α ⇔ Mod(F ′

i ) ⊆ Mod(¬α)

⇔
i⋃

j=0

Rj ⊆ Mod(¬α)

⇒ Ri ⊆ Mod(¬α)
⇒ α → β ∈ Ki+1
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If Ki+1 ̸= ∅, then take arbitrary α → β ∈ Ki+1. Thus, we have that

∄v ∈ Ri, s.t. v ⊩ α ⇒ ∄v ∈ Rj ,∀j ≤ i s.t. v ⊩ α

⇒
i⋃

j=0

Rj ⊆ Mod(¬α)

⇒ Mod(F ′
i ) ⊆ Mod(¬α)

⇔ F ′
i |= ¬α

⇒ α → β ∈ K′
i+1

Thus Ki+1 = K′
i+1.

We now need to show that Mod(F ′
i+1) =

⋃i+1
j=0 Rj .

We first show that
⋃i+1

j=0 Rj ⊆ Mod(F ′
i+1).

i+1⋃
j=0

Rj =

i⋃
j=0

Rj ∪Ri+1

= Mod(F ′
i ) ∪Ri+1

= Mod(F ′
i ) ∪ (Ui+1 ∩Mod(Ki+1)

= Mod(Ki) ∪ (Ui+1 ∩Mod(Ki+1)

= (Mod(Ki) ∪ Ui+1) ∩ (Mod(Ki) ∪Mod(Ki+1))

= (Mod(Ki) ∪ Ui+1) ∩Mod(Ki+1)

⊆ Mod(Ki+1)

= Mod(F ′
i+1)

Next, we show that Mod(F ′
i+1) ⊆

⋃i+1
j=0 Rj .

Suppose for the sake of contradiction that Mod(F ′
i+1) ⊈

⋃i+1
j=0 Rj .

Mod(F ′
i+1) ⊈

i+1⋃
j=0

Rj ⇔ Mod(K′
i+1) ⊈

i+1⋃
j=0

Rj

⇔ ∃v ∈ Mod(K′
i+1) s.t. v ̸∈

i+1⋃
j=0

Rj
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Now,

v ̸∈
i+1⋃
j=0

Rj ⇔ v ̸∈ Rj , ∀j ≤ i+ 1

⇒ v ̸∈ Ri+1 = Ui+1 ∩Mod(Ki+1)

⇒ v ̸∈ Mod(Ki+1) = Mod(K′
i+1)

Thus, we have that Mod(F ′
i+1) ⊆

⋃i+1
j=0 Rj and consequently, Mod(F ′

i+1) =⋃i+1
j=0 Rj .

Now, if K′
i+1 = K′

i, then we have that CumulativeFormulaRank terminates.
We must now show that ModelRank terminates at the same index (i+ 1).

Ri+1 : = Ui+1 ∩Mod(Ki+1)

= Ui+1 ∩Mod(Ki)

= (Ui \Ri) ∩Mod(Ki)

= (Ui ∩Mod(Ki)) \ (Ri ∩Mod(Ki))

= Ri \Ri

= ∅

Thus ModelRank terminates at the same index.
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D LexicographicModelRank Proofs

Proposition 6. The LexicographicModelRank algorithm terminates.

Proof. The outermost while loop executes exactly n times and should not affect
termination. Therefore, termination will depend entirely on whether the inner
while loop terminates for each value of i.

For any i < n:
Since {Lij | 0 ≤ j ≤ #K} \ {∅} partitions Ui0,

⋃#K
j=0 Lij = Ui0 = RRC

i .
Now, the algorithm recursively defines Uij as Ui(j−1) \ Li(j−1), resulting in

the following derivation:

Uij = Ui0 \ Li0 \ ... \ Li(j−1)

=⇒ Uij = Ui0 \
j−1⋃
k=0

Lik

=⇒ Uij = RRC
i \

j−1⋃
k=0

Lik

But for j = #K+1, we have
⋃#K

k=0 Lik = Ui0 = RRC
i , since the Lik’s partition

the rank.
Thus, Uij = RRC

i \ RRC
i = ∅, the required condition for termination of the

inner loop.
Therefore, we have that the innermost loop will terminate after at most

#K + 1 iterations, for each value of i, and hence the algorithm terminates.

Proposition 7. The LexicographicModelRank algorithm produces the lexico-
graphic [4] ranked model of K.

Proof. Suppose LexicographicModelRank produces
R∗ = (R0, ..., Rn−1, R∞).

We will prove the above in two parts:

1. R∗ is a ranked interpretation:
We show that all worlds are assigned a unique rank, and that there are no
empty ranks in the model.

We have that RRC
K = (RRC

0 , ..., RRC
n−1, R

RC
∞ ) produced by ModelRank is a

ranked interpretation.
Consider u ∈ RRC

i :
There is some j such that u ∈ Lij , since

⋃#K
k=0 Lik = RRC

i .
Since Lij ̸= ∅, there is some k such that Rk = Lij and hence R∗(u) = k.
This rank is unique since ̸ ∃Li′j′ : u ∈ Li′j′ , i

′ ̸= i or j′ ̸= j.
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This follows from the fact that the rational closure ranks partition U and
each RRC

i is partitioned by the Lij ’s (ignoring potentially empty Lij ’s).
And so, ̸ ∃k′ : R∗(u) = k′ and k′ ̸= k, since Rk = Lij .

Consider Ri for some i:
∃j, k : Ri = Ljk and Ljk ̸= ∅, by construction, and such Ljk’s are placed
consecutively.
Therefore, there cannot be an empty rank in the interpretation, which is suf-
ficient in satisfying the required convexity property of ranked interpretations.

2. R∗ conforms to the lexicographic ordering [4] defined on K:
We consider the 3 cases in the defined ordering: m ≺K

LC n if and only if
RK

RC(n) = ∞, or RK
RC(m) < RK

RC(n), or RK
RC(m) = RK

RC(n) and m satis-
fies more formulas than n in K.

Consider arbitrary u, v ∈ U :
(a) RK

RC(v) = ∞:
Since R∞ = RRC

∞ , R∗(v) = ∞, and hence u ≺R∗ v.

(b) RK
RC(u) < RK

RC(v):
Then u ∈ Lij and v ∈ Lkl for some i, j, k, l such that i < j. Since
Rm = Lij and Rn = Lkl for some m < n, we have that R∗(u) < R∗(v)
and therefore than u ≺R∗ v.

(c) RK
RC(u) = RK

RC(v) and u satisfies more formulas than v in K:
Let i = RK

RC(u) = RK
RC(v). Then, u ∈ Lij and v ∈ Lik for some j < k,

since u satisfies more formulas and hence violates fewer formulas than v
in K. Since Rm = Lij and Rn = Lik with j < k, we have m < n, and
hence that R∗(u) < R∗(v) and u ≺R∗ v.

We now have that ≺R∗ satisfies all the properties of the lexicographic
closure modular ordering, and since it is a ranked interpretation, it must
be the unique ranked interpretation obeying such an ordering. From [4],
we know that the ranked interpretation corresponding to lexicographic
closure is a model of K, and hence R∗ is the lexicographic ranked model
of K, as defined by the ordering in [4].

E LexicographicFormulaRank Proofs

Proposition 8. For each rank L′
k in the output of the LexicographicFormula-

Rank algorithm, Mod(L′
k) = Lk where Lk is the corresponding rank in the output

of the LexicographicModelRank algorithm, with both algorithms returning the
same number of ranks.

Proof. We will first show, inductively, that for each refined rank L′
ij in the Lex-

icographicFormulaRank algorithm, for any arbitrary i, is such that Mod(L′
ij) =
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Lij where Lij is defined in the LexicographicModelRank algorithm, and simi-
larly, that Mod(U ′

ij) = Uij . We also show that U ′
ij is defined if and only if Uij

is defined.

We first note that Mod(L′
∞) = Mod(FRC

∞ ) = RRC
∞ = L∞ (we explicitly

assign the infinite rank in both algorithms, ensuring correspondence).

Let i < n be any finite rank in any rational closure model with n − 1 finite
ranks.

Base Case:

1. Mod(U ′
i0) = Mod(FRC

i ) = RRC
i = Ui0

2. Ui0 ̸= ∅, since the rational closure ranks are non-empty, therefore Ui1 and
Li0 will be defined. Similarly, U ′

i0 ̸|= ⊥, since U ′
i0 ̸|= ⊥ ⇐⇒ Mod(U ′

i0) =
Ui0 ̸= ∅. Therefore, U ′

i1 and L′
i0 will be defined.

3.

Mod(L′
i0) = Mod

FRC
i ∧

 ∨
S∈{T⊆

−→
K|#T=#

−→
K−0}

∧
s∈S

s


= Mod(FRC

i ) ∩
⋃

S∈{T⊆
−→
K|#T=#

−→
K}

Mod(S)

= RRC
i ∩ Mod(

−→
K )(the only subset of size #

−→
K is

−→
K )

= Ui0 ∩ Mod(
−→
K )

= {u ∈ Ui0 | #{k ∈
−→
K | u ⊮ k} = 0}

= Li0

Inductive Step:
Assume for some j such that Lij , L

′
ij and Uij ,U ′

ij are defined, that Lij =
Mod(L′

ij) and Uij = Mod(U ′
ij) ̸= ∅.

1.

Mod(U ′
i(j+1)) = Mod(U ′

ij ∧ ¬L′
ij)

= Mod(U ′
ij) ∩ Mod(L′

ij)

= Uij \ Lij

= Ui(j+1)

2. Now,

Ui(j+1) = ∅ ⇐⇒ Mod(U ′
i(j+1)) = ∅

⇐⇒ U ′
i(j+1) |= ⊥
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Therefore,

Li(j+1) is defined ⇐⇒ Ui(j+1) ̸= ∅
⇐⇒ U ′

i(j+1) ̸|= ⊥
⇐⇒ L′

i(j+1) is defined .

3. If Ui(j+1) = ∅, we are done (both Li(j+1) and L′
i(j+1) will not be defined,

with Lij , L
′
ij the last defined ranks for the refinement of rational closure rank

i.
Else, Ui(j+1) ̸= ∅ and so Li(j+1), L

′
i(j+1) are defined.

Mod(L′
i(j+1)) = Mod

U ′
i(j+1) ∧

 ∨
S∈{T⊆

−→
K|#T=#

−→
K−(j+1)}

∧
s∈S

s


= Mod

U ′
ij ∧ ¬L′

ij ∧

 ∨
S∈{T⊆

−→
K|#T=#

−→
K−(j+1)}

∧
s∈S

s


= Mod(U ′

ij) ∩ Mod(L′
ij) ∩ {u ∈ U | #{k ∈

−→
K | u ⊩ k} ≥ #

−→
K − (j + 1)}

= Uij ∩ U \ Lij ∩ {u ∈ U | #{k ∈
−→
K | u ⊮ k} ≤ j + 1}

= Uij \ Lij ∩ {u ∈ U | #{k ∈
−→
K | u ⊮ k} ≤ j + 1}

= Ui(j+1) ∩ {u ∈ U | #{k ∈
−→
K | u ⊮ k} ≤ j + 1}

= {u ∈ Ui(j+1) | #{k ∈
−→
K | u ⊮ k} ≤ j + 1}

= {u ∈ Ui(j+1) | #{k ∈
−→
K | u ⊮ k} = j + 1}

= Li(j+1)

Thus, by induction, the refined ranks in each algorithm correspond as re-
quired.

Using this result, since

Lk = Lij ⇐⇒ Lij ̸= ∅
⇐⇒ L′

ij ̸|= ⊥
⇐⇒ L′

k = L′
ij

we must have that ∀k ≤ n,Mod(L′
k) = Lk.


