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ABSTRACT
The primary forms of KLM-style defeasible entailment are defined

syntactically, via formula-based manipulations, and semantically,

using ranked models. Although the current literature describes

formula-based algorithms for computing entailment, correspond-

ing model-based approaches have not been explored. We present

and analyse three model-based algorithms for computing a promi-

nent form of defeasible entailment termed lexicographic closure. In
each case, we define a suitable abstract representation of the ranked

model, a construction algorithm, and a compatible adaptation of

existing reasoning algorithms. We examine two definitions of lexi-

cographic closure in the literature and show that these represent

two distinct forms of entailment. Our analysis reveals that directly

manipulating the underlying valuations is most performant, in

producing the chosen lexicographic ordering.

CCS CONCEPTS
• Theory of computation→ Automated reasoning; • Comput-
ing methodologies → Nonmonotonic, default reasoning and
belief revision.

KEYWORDS
artificial intelligence, knowledge representation and reasoning,

defeasible reasoning, rational closure, lexicographic closure

1 INTRODUCTION
A subfield of artificial intelligence (AI), knowledge representation

and reasoning (KRR), formalises philosophical patterns of reason-

ing [7]. Symbolic representations of knowledge are collated into

abstract structures termed knowledge bases and manipulated by

several reasoning services to draw reasonable conclusions [14].

Classical propositional logic represents a simple yet expressive

approach to KRR. Propositional logic possess several beneficial char-

acteristics. However, it also has fundamental limitations precluding

the expression of certain forms of human reasoning.

A crucial limitation is propositional logic’s inability to capture

typicality whereby specific implications may usually hold except

for a few cases. Another is monotonicity, where conclusions cannot
be retracted once made, even with the addition of new conflicting

knowledge [10]. Such is vital in implementing forms of belief revi-

sion that involve reconsidering past conclusions with the potential

for retraction.

The literature defines several defeasible approaches to reasoning

as non-monotonic alternatives to classical entailment. In contrast

to classical reasoning, there are no set means of defining defeasible

reasoning.

Kraus, Lehmann and Magidor (KLM) [10] propose a set of prop-

erties as a thesis for how to define a ‘sensible’ or ‘rational’ form

of defeasible entailment. Two such well-known examples, are ra-
tional closure [13] and lexicographic closure [12], each representing

distinct, valid patterns of human reasoning. This paper focuses on

lexicographic closure but notes the relationship between lexico-

graphic and rational closure.

There are several distinct but equivalent characterisations of

lexicographic closure. Lehmann first defined an ordering on val-

uations based on the natural lexicographic ordering of tuples as-

sociated with each valuation. These semantics are used to define

formula-based algorithms for computing the same entailment rela-

tion. Casini et al. [3] define lexicographic closure, semantically, as

a refinement of rational closure, noting that, like rational closure,

it too can be characterised by a specific ranked model.

This paper investigates algorithms for constructing model-based

representations of lexicographic closure as defined in [3]. We pro-

vide formal descriptions of each algorithm and motivate the rep-

resentation and construction approaches. We aim to analyse the

performance of these approaches with respect to existing methods.

However, we will show that the definition provided by Casini et

al., applied in our algorithms, represents a pattern of reasoning

distinct from that proposed by Lehmann [12] in the original defi-

nition of lexicographic closure. We discuss this distinction using a

counter-example, proving the inequality of the two orderings.

Lastly, we perform a space-time complexity analysis of each

algorithm and discuss performance implications. In doing so, we es-

tablish baseline scalability constraints for this alternative definition

of lexicographic closure.

2 BACKGROUND
2.1 Propositional Logic
2.1.1 Language and Semantics. We define a set P containing all

atomic propositions, representing themost basic units of knowledge

[1]. Formulas can consist of a single atom, the negations (¬) of
other formulas, or the combination of two other formulas using

one of the binary connectives {∧,∨,→,↔}. The set of all possible
formulas is often referred to as L (the language of propositional

logic). An interpretation is a functionI : P → {𝑇, 𝐹 }which assigns
truth values to each propositional atom. We denote the set of all

propositional interpretations withU . We say that an interpretation

I ∈ U satisfies a formula 𝛼 ∈ L, denoted I ⊩ 𝛼 , if 𝛼 evaluates to

true using the usual truth-functional semantics. We refer to a finite

set of formulas as a knowledge base. We say that an interpretation

I satisfies a knowledge base K if ∀𝛼 ∈ K , I ⊩ 𝛼 . Interpretations

that satisfy a knowledge base are referred to as models of that

knowledge base. We use the notation Mod(K) (or JKK) to refer

to the set of models of a knowledge base K (similarly for a single

formula).
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2.1.2 Entailment. Using the above model-based semantics, entail-

ment (or logical consequence), denoted using the |= symbol, can

be defined. A knowledge base K entails a formula 𝛼 , written as

K |= 𝛼 , if and only if Mod(K) ⊆ Mod(𝛼). Intuitively, whenever all
the formulas in K are true under a given interpretation, such will

be the case for 𝛼 and so we are able to conclude 𝛼 whenever we

have K .

Example 2.1. Consider a knowledge baseK = {p∨q,¬p}.Mod(K) =
{pq} (pq is shorthand for an interpretation that maps p to false and
q to true). Consequently, K |= p → q since pq ⊩ p → q (equiva-

lently, pq ∈ Mod(p → q)) and so every model of K is also a model

of p → q.

2.2 Defeasible Reasoning
2.3 The KLM Framework and Extensions
Extending the preferential approach and semantics defined by

Shoham [16, 17], and the associated proof-theoretic system de-

fined by Gabbay [5], KLM [10] define a framework for defeasible

reasoning referred to as the KLM framework. This framework is of

particular interest because it has both a model and proof theory and

computationally efficient algorithms for the associated reasoning

services [9].

Initially, KLM [10] extended propositional logic by defining a

consequence relation |∼ representing defeasible implications in

an attempt to reasonably represent typicality. Extensions of this
framework instead define |∼ as an additional connective (where

𝛼 |∼ 𝛽 , with propositional formulas 𝛼, 𝛽 , is read as ‘typically, if 𝛼 ,

then 𝛽’ [3]). This extended language is defined as L𝑃 B L ∪ {𝛼 |∼
𝛽 | 𝛼, 𝛽 ∈ L} [9]. The semantics of |∼ are then defined using ranked
interpretations [13].

Definition 2.1. A ranked interpretation is a function R : U ↦→
N ∪ {∞}, such that for every 𝑖 ∈ N , if there exists a 𝑢 ∈ U such

that R(𝑢) = 𝑖 , then there must be a 𝑣 ∈ U such that R(𝑣) = 𝑗

with 0 ≤ 𝑗 < 𝑖 , where U is the set of all possible propositional

interpretations [9].

Ranked interpretations, therefore, assign to each propositional

interpretation, a rank (with lower ranks corresponding, semanti-

cally, with more typical interpretations and higher ranks with less

typical ‘worlds’). Worlds with a rank of∞, according to the ranked

interpretation, are impossible, whereas worlds with finite ranks are

possible.

2.3.1 Satisfaction. Given that ranked interpretations indicate the

relative typicality of worlds, it makes sense to define whether a

ranked interpretation satisfies a defeasible implication based on the

most typical worlds in that interpretation. In order to define the

‘most typical worlds’, a definition of minimal worlds with respect

to a formula in L is required.

Definition 2.2. Given a ranked interpretation R and any formula

𝛼 ∈ L, it holds that 𝑢 ∈ J𝛼KR (the models of 𝛼 in R) is minimal if

and only if there is no 𝑣 ∈ J𝛼KR such that R(𝑣) < R(𝑢) [9].

This defines the concept of the ‘best 𝛼 worlds’ (i.e. the lowest

ranked, or most typical, of the worlds in which 𝛼 is true).

Definition 2.3. Given a ranked interpretation R and a defeasible

implication 𝛼 |∼ 𝛽 , R satisfies 𝛼 |∼ 𝛽 , written R ⊩ 𝛼 |∼ 𝛽 if and

only if for every 𝑠 minimal in J𝛼KR , 𝑠 ⊩ 𝛽 . If R ⊩ 𝛼 |∼ 𝛽 then R is

said to be a model of 𝛼 |∼ 𝛽 [9].

This says that in order for a ranked interpretation R to satisfy

a defeasible implication 𝛼 |∼ 𝛽 , it need only satisfy 𝛼 → 𝛽 in the

most typical (lowest ranked) 𝛼 worlds of R.
In the case of a propositional formula 𝛼 ∈ L, it is required that

every finitely-ranked world in R satisfies 𝛼 in order for R to satisfy

𝛼 . This is consistent with idea that propositional formulas, which

do not permit exceptionality, should be satisfied in every plausible

world of a ranked interpretation, if such a ranking is to satisfy the

formula.

It is now possible to model knowledge that expresses typicality,

and thus handles exceptional cases more reasonably.

We refer to a finite set of defeasible implications as a defeasible

knowledge base. Note that we can express any classical proposi-

tional formula 𝛼 ∈ L using the defeasible representation ¬𝛼 |∼ ⊥.
Henceforth, we assume that knowledge bases are defeasible unless

specified otherwise.

In many cases, we require a propositional knowledge base con-

taining the propositional analogue (or material counterpart) of each

defeasible implication in a defeasible knowledge base. We term this

the materialisation of a defeasible knowledge base.

Definition 2.4. Thematerial counterpart of a defeasible implication

𝛼 |∼ 𝛽 is the propositional formula 𝛼 → 𝛽 . Given a defeasible

knowledge baseK , the material counterpart ofK , denoted

−→
K , is the

set of material counterparts,𝛼 → 𝛽 , for every defeasible implication

𝛼 |∼ 𝛽 ∈ K . [9]

2.3.2 Entailment. We seek reasonable forms of non-monotonic

entailment that permit the retraction of conclusions in cases where

knowledge is added that contradicts these conclusions. Such en-

tailment relations are defined by a set of postulates [10] which is

extended to define more specific classes of entailment [3, 13]. We

will look at two specific patterns of entailment, namely rational
closure and lexicographic closure with a particular emphasis on their

model-based semantics for the purposes of computing entailment.

2.4 Rational Closure
Rational closure represents a prototypical pattern of defeasible

reasoning (one that is extremely conservative in abnormal cases)

in the KLM framework. Lehmann and Magidor [13] propose that

any other reasonable form of entailment, while possibly being

more ‘adventurous’ in its conclusions, should endorse at least those

assertions in the rational closure of the corresponding knowledge

base.

There are 2 principle ways in which to compute the rational

closure of a given knowledge base. The first is minimal ranked
entailment. This approach defines rational closure and the semantics

of the associated entailment relation using a unique ranked model

for a given knowledge base. The second is an algorithmic approach

involving the ranking of statements in the knowledge base [13].
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Algorithm 1 BaseRank

1: Input: A knowledge base K
2: Output: An ordered tuple (𝑅0, ..., 𝑅𝑛−1, 𝑅∞, 𝑛)
3: i := 0;

4: 𝐸0 :=
−→
K ;

5: while 𝐸𝑖−1 ≠ 𝐸𝑖 do
6: 𝐸𝑖+1 := {𝛼 → 𝛽 ∈ 𝐸𝑖 | 𝐸𝑖 |= ¬𝛼};
7: 𝑅𝑖 := 𝐸𝑖 \ 𝐸𝑖+1;
8: 𝑖 := 𝑖 + 1;

9: end while
10: 𝑅∞ := 𝐸𝑖−1;
11: 𝑛 := 𝑖 − 1;

12: return (𝑅0, ..., 𝑅𝑛−1, 𝑅∞, 𝑛)

Algorithm 2 RationalClosure

1: Input: A knowledge baseK , and a defeasible implication 𝛼 |∼ 𝛽

2: Output: true, if K |≈ 𝛼 |∼ 𝛽 , and false otherwise
3: (𝑅0, ..., 𝑅𝑛−1, 𝑅∞, 𝑛) := BaseRank(K);

4: 𝑖 := 0

5: 𝑅 :=

⋃𝑗<𝑛
𝑖=0

𝑅 𝑗 ;

6: while 𝑅∞ ∪ 𝑅 |= ¬𝛼 and 𝑅 ≠ ∅ do
7: 𝑅 := 𝑅 \ 𝑅𝑖 ;
8: 𝑖 := 𝑖 + 1;

9: end while
10: return 𝑅∞ ∪ 𝑅 |= 𝛼 → 𝛽 ;

2.4.1 BaseRank and RationalClosure. Casini et al. [3] provide an al-

gorithmic description of rational closure for computing entailment

queries in terms of two sub-algorithms included as Algorithms

1 and 2. Algorithm 1 ranks the formulas of the knowledge base

according to how exceptional their antecedents are, and Algorithm

2 then answers a given entailment query using the information

provided by Algorithm 1.

2.4.2 Minimal Ranked Entailment. A partial order over all ranked

models of a knowledge base K , denoted ⪯K , is defined as follows

[3]:

Definition 2.5. Given a knowledge base, K , and RK
the set of

all ranked models of K (those ranked interpretations which satisfy

K), it holds for every RK
1
,RK

2
∈ RK

that RK
1

⪯K RK
2

if and only

if for every 𝑢 ∈ U , RK
1
(𝑢) ≤ RK

2
(𝑢).

Intuitively, this partial order favours ranked models that have

their worlds ‘pushed down’ as far as possible [9]. It has a unique

minimal element, RK
𝑅𝐶

, as shown by Giordano et al. [6]. We now

define minimal ranked entailment using this minimal element as

follows:

Definition 2.6. Given a defeasible knowledge baseK , the minimal

ranked interpretation satisfying K , RK
𝑅𝐶

, defines an entailment

relation, |≈, called minimal ranked entailment, such that for any

defeasible implication 𝛼 |∼ 𝛽 ,K |≈ 𝛼 |∼ 𝛽 if and only if RK
𝑅𝐶

⊩ 𝛼 |∼
𝛽 [9].

Example 2.2. Consider the following knowledge base: K B
{bird |∼ fly, bird |∼ wings, kiwi → bird}.

Intuitively, K suggests that birds usually fly, birds usually have

wings, and kiwis are birds (kiwi here refers to the national bird of

New Zealand). Using the partial order of ranked interpretations

defined previously, the minimal ranked model, RK
𝑅𝐶

, of K is:

∞ bfkw bfkw bfkw bfkw

1 bfkw bfkw bfkw bfkw bfkw bfkw

0 bfkw bfkw bfkw bfkw bfkw bfkw

Figure 1: Minimal ranked model of K

For brevity, each proposition is represented by a single letter.

We see that RK
𝑅𝐶

⊩ kiwi |∼ wings since the circled minimal

kiwi world has that wings is true, i.e. it follows that kiwis typically
have wings (K |≈ kiwi |∼ wings).

Example 2.3. Suppose the statement kiwi → ¬fly (that kiwis do
not fly)was added toK . Theminimal rankedmodelRK∪{kiwi→¬fly}

𝑅𝐶
of K ∪ {kiwi → ¬fly}, is:

∞ bfkw bfkw bfkw bfkw bfkw bfkw

1 bfkw bfkw bfkw bfkw bfkw

0 bfkw bfkw bfkw bfkw bfkw

Figure 2: Minimal ranked model of K ∪ {kiwi → ¬fly}

Now, notice that RK∪{kiwi→¬fly}
𝑅𝐶

⊮ kiwi |∼ wings, since the
circled minimal kiwi worlds do not both have wings being true.

This demonstrates the non-monotonicity of rational closure, as

a previous conclusion was retracted with the addition of new in-

formation. Importantly, it also demonstrates the conservative na-

ture of prototypical reasoning, formalized in rational closure. In

K ∪ {kiwi → ¬fly}, kiwis are atypical birds since they are birds

that do not fly and hence don’t conform to the prototype of a bird,

warranting the retraction of the conclusion in example 2.2.

2.5 Lexicographic Closure
Lexicographic closure is a formalism of the presumptive pattern

of reasoning introduced by Reiter [15] in the context of default

logics. Presumptive reasoning is more ‘adventurous’ and willing to

conclude statements so long as their is no evidence to the contrary

(even in atypical cases). The semantics of lexicographic closure

depends on an ordering that is defined based on two criteria: seri-

ousness and cardinality.

Like rational closure, there are syntactic (formula-based) and

semantic (model-based) descriptions of lexicographic closure [3, 12].

Lehmann first defined lexicographic closure using a modular par-

tial ordering on valuations [12]. This ordering favoured valuations

with lower violation tuples, according to the natural lexicographic

ordering of tuples. A violation tuple of a valuation is derived from

the subset of a given defeasible knowledge base containing all the
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formulas the valuation violates. The tuple records the counts of

formulas violated by the valuation ordered by seriousness (in this

case, the base rank of the formula).

Definition 2.7. Given a defeasible knowledge base K of order 𝑘 ,

every subset 𝐷 ⊆ K has a corresponding 𝑘 + 1 tuple of natural

numbers, denoted 𝑛𝐷 , ⟨𝑛0, ..., 𝑛𝑘 ⟩, where each is defined as such:

𝑛0 = |{𝛼 |∼ 𝛽 ∈ 𝐷 | 𝑏𝑟K (𝛼) = ∞}|, 𝑛1 = |{𝛼 |∼ 𝛽 ∈ 𝐷 | 𝑏𝑟K (𝛼) =
𝑘 − 1}| and for any 𝑖 = 1, ..., 𝑘 , 𝑛𝑖 = |{𝛼 |∼ 𝛽 ∈ 𝐷 | 𝑏𝑟K (𝛼) = 𝑘 − 𝑖}|.
That is, 𝑛0 is the number of defeasible implications of infinite base

rank, or having no rank, in 𝐷 , and each 𝑛𝑖 for 0 < 𝑖 ≤ 𝑘 is the

number of defeasible implications of base rank 𝑘 − 𝑖 in 𝐷 [9].

Definition 2.8. Given a defeasible knowledge base K , a serious-

ness ordering on subsets 𝐷 ⊆ K is a modular partial ordering,

denoted ≺𝑆 , that is a lexicographic ordering over the tuples of

ranks for each subset. That is, given two subsets, 𝐷1, 𝐷2 ⊆ K ,

𝐷1 ≺𝑆 𝐷2 if and only if 𝑛𝐷1
≺𝑆 𝑛𝐷2

using the natural lexicographic

ordering over tuples of natural numbers, e.g. ⟨1, 0, 2⟩ ≺𝑆 ⟨1, 1, 2⟩.
≺𝑆 is a strict modular partial order over subsets of K [9].

Definition 2.9. Given a defeasible knowledge base K , and valu-

ations𝑚,𝑛 ∈ U, the preference order ≺K
𝐿𝐶

over U is defined as:

𝑚 ≺K
𝐿𝐶

𝑛 if and only if𝑉 (𝑚) ≺𝑆 𝑉 (𝑛) where𝑉 (𝑚) ⊆ K is the set of

defeasible implications violated by𝑚 ∈ U. ≺K
𝐿𝐶

is a modular partial

order over U , and so defines a ranked interpretation, denoted RK
𝐿𝐶

[9].

A formula-based algorithm for computing lexicographic closure,

based on Lehmann’s definition [12], successively produces weak-

ened formula representations of each base rank. We refer to this

algorithm as the LexicographicClosure algorithm [4], defined in

Algorithm 3. It proceeds in the same manner as the RationalClo-
sure algorithm but weakens each rank, by considering incremen-

tally smaller subsets of the rank, instead of completely discarding

the entire rank at each iteration.

Algorithm 3 LexicographicClosure

1: Input: A knowledge baseK , and a defeasible implication 𝛼 |∼ 𝛽

2: Output: true, if K |≈𝐿𝐶 𝛼 |∼ 𝛽 , and false otherwise
3: (𝑅0, ..., 𝑅𝑛−1, 𝑅∞, 𝑛) := BaseRank(K);

4: 𝑖 := 0

5: 𝑅 :=

⋃𝑗<𝑛
𝑖=0

𝑅 𝑗 ;

6: while 𝑅∞ ∪ 𝑅 |= ¬𝛼 and 𝑅 ≠ ∅ do
7: 𝑅 := 𝑅 \ 𝑅𝑖 ;
8: 𝑚 := #𝑅𝑖 - 1;

9: 𝑅𝑖,𝑚 :=

∨
𝑆∈{𝑇 ⊆𝑅𝑖 |#𝑇=𝑚}

∧
𝑠∈𝑆

𝑠;

10: while 𝑅∞ ∪ 𝑅 ∪ {𝑅𝑖,𝑚} |= ¬𝛼 and𝑚 > 0 do
11: 𝑚 :=𝑚 − 1;

12: 𝑅𝑖,𝑚 :=

∨
𝑆∈{𝑇 ⊆𝑅𝑖 |#𝑇=𝑚}

∧
𝑠∈𝑆

𝑠

13: end while
14: 𝑅 := 𝑅 ∪ {𝑅𝑖,𝑚};
15: 𝑖 := 𝑖 + 1;

16: end while
17: return 𝑅∞ ∪ 𝑅 |= 𝛼 → 𝛽 ;

Casini et al. provide another model-based definition of lexico-

graphic closure in their framework of rational defeasible entailment

relations [3]:

Definition 2.10. 𝑚 ≺K
𝐿𝐶

𝑛 if and only ifRK
𝑅𝐶

(𝑛) = ∞, orRK
𝑅𝐶

(𝑚) <
RK
𝑅𝐶

(𝑛), or RK
𝑅𝐶

(𝑚) = RK
𝑅𝐶

(𝑛) and𝑚 satisfies more formulas than

𝑛 in K .

This definition characterises the lexicographic closure ordering

as a count-based refinement of the rational closure ordering, in that

its ranked model respects the rankings of rational closure (which

encode seriousness) but refines preference for worlds with the same

rank based on the total number of formulas each satisfies.

We now define the lexicographic closure entailment relation

|≈𝐿𝐶 as follows [3]:

Definition 2.11. Given a defeasible knowledge baseK , the ranked

model derived from the modular ordering in definition 2.10, RK
𝐿𝐶

,

defines an entailment relation, |≈𝐿𝐶 , such that for any defeasible

implication 𝛼 |∼ 𝛽 , K |≈𝐿𝐶 𝛼 |∼ 𝛽 if and only if RK
𝐿𝐶

⊩ 𝛼 |∼ 𝛽 [3].

Example 2.4. Returning to our kiwi example whereK B {bird |∼
fly, bird |∼ wings, kiwi → bird, kiwi → ¬fly}, we can con-

struct the model RK
𝐿𝐶

corresponding to lexicographic closure by

‘lifting up’ worlds that satisfy fewer statements while preserving

the original rational closure ordering.

∞ bfkw bfkw bfkw bfkw bfkw bfkw

2 bfkw bfkw

1 bfkw bfkw bfkw

0 bfkw bfkw bfkw bfkw bfkw

Figure 3: Ranked model for Lexicographic Closure of K

Checking if the formula, kiwi |∼ wings, is satisfied by RK
𝐿𝐶

,

and hence in the lexicographic closure of K , we find that RK
𝐿𝐶

⊩
kiwi |∼ wings and hence that K |≈𝐿𝐶 kiwi |∼ wings.

Notice that lexicographic closure endorses that kiwis have wings

whereas rational closure would not. This speaks to the presumptive

nature of lexicographic closure, as it is willing to assert that kiwis

have wings despite the fact that kiwis are atypical birds (since there

is no knowledge to the contrary).

This also demonstrates that there are multiple valid solutions to

the problem of defeasible entailment. We may prefer the behaviour

of rational closure in this case (since we know kiwis don’t have

wings), but may prefer lexicographic closure if kiwis are substituted

for penguins, which do have wings.

It is important to note that we have mentioned two model-based

definitions of lexicographic closure, one defined by Lehmann based

on violation tuples, and the other defined by Casini et al. based

on a count-based refinement of lexicographic closure. While these

may appear to produce the same ranked model and thus the same

entailment relation as claimed in [3], we will show this not to

be the case. Henceforth, we use the definition for lexicographic

closure proposed by Casini et al., unless otherwise stated, and,

where necessary, refer to the associated ordering as the count-based

lexicographic ordering.
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3 ALGORITHM DEVELOPMENT
Our construction algorithms refine the output of the ModelRank,
FormulaRank, and CumulativeFormulaRank algorithms, by Cohen,

according the count-based lexicographic ordering.

3.1 Model Construction
3.1.1 Motivation. We wish to construct the ranked model corre-

sponding to the lexicographic ordering in definition 2.10 using an

approach similar to that of ModelRank by Cohen. ModelRank em-

ploys an ad hoc ‘pushing up’ of remaining worlds based on a similar

algorithm defined in [2] for propositional typicality logic.

Given the rational closure model and counts for each model,

representing the number of formulas satisfied, there does not seem

to be a straightforward way of directly computing the lexicographic

rank of a valuation. Because the number of refined ranks produced

from a rational closure rank varies, a less complicated strategy

would be to employ a procedure that ranks valuations iteratively,

removing the need to place the worlds directly. As the lexicographic

ordering gives preference to valuations on lower rational closure

ranks and satisfying more formulas, respectively, a simple approach

would be to consider, for each of the rational closure ranks in turn,

every possible count of formulas that could be violated in ascending

order. For each rational closure rank, the algorithm could place

all valuations, if any exist, violating the current count, removing

these from a set of remaining worlds to place. This resembles the

‘pushing up’ of worlds in ModelRank and would ensure that the

relative order of worlds in the rational closure rank is maintained in

the lexicographic model, while refining based on formulas violated

to produced the required ordering.

We formalize this bottom-up construction of the lexicographic

ranked model in the LexicographicModelRank algorithm and pro-

vide proofs of correctness in Appendix A.

Algorithm 4 LexicographicModelRank

1: Input: A defeasible knowledge base K
2: Output: An ordered tuple (𝑅𝐿𝐶

0
, ..., 𝑅𝐿𝐶

𝑘−1, 𝑅
𝐿𝐶
∞ , 𝑘)

3: (𝑅𝑅𝐶
0

, ..., 𝑅𝑅𝐶
𝑛−1, 𝑅

𝑅𝐶
∞ , 𝑛) := ModelRank(K);

4: 𝑖 := 0; ⊲ rational closure rank

5: 𝑘 := 0; ⊲ lexicographic closure rank

6: while 𝑖 < 𝑛 do
7: 𝑗 := 0; ⊲ number of formulas to violate

8: U𝑖 𝑗 := 𝑅𝑅𝐶
𝑖

; ⊲ remaining worlds to place

9: while U𝑖 𝑗 ≠ ∅ do

10: 𝐿𝑖 𝑗 := {𝑢 ∈ U𝑖 𝑗 | #{𝑘 ∈
−→
K | 𝑢 ⊮ 𝑘} = 𝑗};

11: if 𝐿𝑖 𝑗 ≠ ∅ then
12: 𝑅𝐿𝐶

𝑘
:= 𝐿𝑖 𝑗 ; ⊲ place worlds violating 𝑗 formulas

13: 𝑘 := 𝑘 + 1;

14: end if
15: U𝑖 ( 𝑗+1) := U𝑖 𝑗 \ 𝐿𝑖 𝑗 ; ⊲ remove placed worlds

16: 𝑗 := 𝑗 + 1;

17: end while
18: 𝑖 := 𝑖 + 1;

19: end while
20: 𝑅𝐿𝐶∞ := 𝑅𝑅𝐶∞ ;

21: return (𝑅𝐿𝐶
0

, ..., 𝑅𝐿𝐶
𝑘−1, 𝑅

𝐿𝐶
∞ , 𝑘)

3.1.2 Entailment. Given that LexicographicModelRank produces
the rankedmodel corresponding to the lexicographic ordering in [3],

we can use this to generate the lexicographic closure of a knowledge

base according to definition 2.11. Algorithm 5 defines a straightfor-

ward procedural application of the definition for the satisfaction

of a defeasible formula by a ranked interpretation, necessary for

computing the lexicographic closure. Definition 2.11 states that a

defeasible implication is in the lexicographic closure of a knowledge

base if and only if the corresponding lexicographic ranked model

satisfies the implication. Therefore, to answer a query, we construct

the lexicographic ranked model using LexicographicModelRank
and pass the result as input with the query to the ModelSatisfac-
tion algorithm.

Algorithm 5 ModelSatisfaction

1: Input: A ranked interpretation 𝑅∗ := (𝑅0, ..., 𝑅𝑛−1, 𝑅∞), the

number of ranks, 𝑛, and a query defeasible implication, 𝛼 |∼ 𝛽 .

2: Output: true if 𝑅∗ ⊩ 𝛼 |∼ 𝛽 , otherwise false
3: 𝑖 := 0;

4: while 𝑅𝑖 ∩ J𝛼K = ∅ and 𝑖 < 𝑛 do ⊲ No 𝛼 worlds found

5: 𝑖 := 𝑖 + 1;

6: end while
7: return 𝑅𝑖 ∩ J𝛼K ⊆ J𝛽K; ⊲ All minimal 𝛼 worlds are 𝛽 worlds

The ModelSatisfaction algorithm checks whether theminimal

worlds consistent with the query antecedent, also satisfy the query’s

consequent, as required by definition 2.3.

3.2 Formula Representation
3.2.1 Motivation. The motivation for considering a formula-based

lexicographic algorithm is precisely that for developing a formula-

based rational closure algorithm. We take issue with the imple-

mentation of approaches that directly manipulate models, as such

requires the enumeration of all worlds, which may lead to perfor-

mance issues with the exponential growth of worlds in the number

of unique propositional atoms. We, therefore, adapt our Lexico-
graphicModelRank algorithm to represent the models on each rank

syntactically, by constructing a formula 𝐹𝑖 for each rank 𝑖 such that

Mod(𝐹𝑖 ) = 𝐿𝑖 , the worlds on the 𝑖𝑡ℎ rank of the lexicographic

ranked model.

Using a formula-based version of the refinement strategy in Lex-
icographicModelRank, we represent worlds satisfying a particular
number of formulas 𝑛 using all possible subsets of the knowledge

with cardinality 𝑛. Combining these subsets disjunctively, we con-

struct a formula with models satisfying at least 𝑛 formulas, or

equivalently, violating no more than #K − 𝑛 formulas. Therefore,

when refining each rank, we start by constructing a formula with

worlds on the rank violating no more than 0 formulas and, if any

exist, removing these from the formula representing the remaining

worlds. This process continues, as in LexicographicModelRank,
until there are no remaining worlds and is repeated for each rank.

We prove, in Appendix B, that the models of each formula in

this representation correspond exactly to the ranks of the model

produced by the LexicographicModelRank algorithm.
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Algorithm 6 LexicographicFormulaRank

1: Input: A defeasible knowledge base K
2: Output: An ordered tuple (𝐹𝐿𝐶

0
, ..., 𝐹𝐿𝐶

𝑘−1, 𝐹
𝐿𝐶
∞ , 𝑘)

3: (𝐹𝑅𝐶
0

, ..., 𝐹𝑅𝐶
𝑛−1, 𝐹

𝑅𝐶
∞ , 𝑛) := FormulaRank(K);

4: 𝑖 := 0; ⊲ rational closure rank

5: 𝑘 := 0; ⊲ lexicographic closure rank

6: while 𝑖 < 𝑛 do
7: 𝑗 := 0; ⊲ number of formulas to violate

8: U𝑖 𝑗 := 𝐹𝑅𝐶
𝑖

; ⊲ remaining worlds to place

9: while U𝑖 𝑗 ⊭ ⊥ do

10: 𝐿𝑖 𝑗 := U𝑖 𝑗 ∧
©« ∨
𝑆∈{𝑇 ⊆

−→
K |#𝑇=#

−→
K− 𝑗 }

∧
𝑠∈𝑆

𝑠
ª®¬;

11: if 𝐿𝑖 𝑗 ⊭ ⊥ then
12: 𝐹𝐿𝐶

𝑘
:= 𝐿𝑖 𝑗 ; ⊲ place worlds violating 𝑗 formulas

13: 𝑘 := 𝑘 + 1;

14: end if
15: U𝑖 ( 𝑗+1) := U𝑖 𝑗 ∧ ¬𝐿𝑖 𝑗 ; ⊲ remove placed worlds

16: 𝑗 := 𝑗 + 1;

17: end while
18: 𝑖 := 𝑖 + 1;

19: end while
20: 𝐹𝐿𝐶∞ := 𝐹𝑅𝐶∞ ;

21: return (𝐹𝐿𝐶
0

, ..., 𝐹𝐿𝐶
𝑘−1, 𝐹

𝐿𝐶
∞ , 𝑘)

3.2.2 Entailment. We modify the ModelSatisfaction algorithm
to use the formula representation returned by LexicographicFor-
mulaRank by similarly converting the valuation set operations in

the algorithm to the corresponding formula-based semantics.

Algorithm 7 FormulaModelSatisfaction

1: Input: A formula-based representation of a ranked interpreta-

tion 𝐹 ∗ := (𝐹0, ..., 𝐹𝑛−1, 𝐹∞), the number of ranks, 𝑛, and a query

defeasible implication, 𝛼 |∼ 𝛽 .

2: Output: true if 𝑅∗ ⊩ 𝛼 |∼ 𝛽 where 𝑅∗ is the ranked interpreta-

tion associated with 𝐹 ∗, otherwise false
3: 𝑖 := 0;

4: while 𝐹𝑖 ∧ 𝛼 |= ⊥ and 𝑖 < 𝑛 do ⊲ No 𝛼 worlds found

5: 𝑖 := 𝑖 + 1;

6: end while
7: return 𝐹𝑖 ∧ 𝛼 |= 𝛽 ; ⊲ All minimal 𝛼 worlds are 𝛽 worlds

3.3 Cumulative Model Construction
3.3.1 Motivation. While the LexicographicFormulaRank algo-

rithm removes the need to enumerate and manipulate the valu-

ations directly, it still suffers from similar implementation-based

constraints. When refining ranks, the algorithm uses the formula

U𝑖 𝑗 to represent the remaining yet-to-be-placed valuations. The al-

gorithm defines U𝑖 ( 𝑗+1) as the conjunction of U𝑖 𝑗 and the negation

of the current lexicographic rank formula 𝐿𝑖 𝑗 , analogous to exclud-

ing placed valuations from those remaining. The lexicographic rank

formulas are defined in terms of the current U𝑖 𝑗 formula.

Consequently, formulas on each rank grow exponentially in the

number of knowledge base formulas syntactically included, result-

ing in an intractable solution for knowledge bases containing more

than a few statements. While there are some ways of improving

this, such as only including the negated current rank for satisfiable

𝐿𝑖 𝑗 , such would not improve the worst-case exponential growth.

We obtain a more compact representation by removing the nega-

tion of prior ranks, intending to produce a cumulative model rep-

resentation. Cohen takes this approach to produce a cumulative

rational closure model representation. In this case, the result is

strongly tied to the original formula-based algorithm for comput-

ing rational closure. The cumulative rank formulas corresponded

precisely to the exceptional sets in the original algorithm. There-

fore, this cumulative approach resembles a cached version of the

RationalClosure algorithm in which the exceptional sets in each

iteration are precomputed and stored.

We wish to formulate a similarly cumulative approach for com-

puting lexicographic closure that exemplifies the relationship be-

tween the model-theoretic definition and the usual Lexicograph-
icClosure algorithm. Based on the cumulative rational closure

approach findings, we expect that the cumulative model ranks

correspond to various iterations of the original Lexicographic-
Closure algorithm.

However, attempting to do so, we find that the count-based

definition of lexicographic closure applied in our approaches is not

equivalent to that initially proposed by Lehmann, contrary to what

is stated in [3]. We describe this distinction fully in 4.

Consequently, there is no formula-based algorithm for specif-

ically computing this form of lexicographic closure as the Lexi-
cographicClosure algorithm corresponds to the lexicographic

closure ordering defined by Lehmann [12]. Further, the count-

based ordering may not possess the same cumulative properties

as the Lehmann ordering, allowing the LexicographicClosure
algorithm to efficiently represent cumulative model ranks at each

iteration. For example, it has not been shown that the set of val-

uations on rank 𝑖 or less satisfying 𝑗 or more formulas will also

include valuations on rank 𝑖 − 1 or less satisfying any number of

formulas. Equivalently, it may be possible to have two valuations,

one on rank 𝑖 satisfying 𝑗 formulas and the other on a rank, say

𝑖′ > 𝑖 , satisfying 𝑗 ′ < 𝑗 formulas (it is not necessarily the case

that a lower rational closure rank implies a lower total formula

satisfaction count).

Therefore, in defining a cumulative formula-based representa-

tion of the ranked model, we explicitly include a representation

of the previous rational closure ranks to ensure the cumulative

property is upheld. The algorithm is mechanically similar to Lexi-
cographicFormulaRank but is adjusted to account for cumulative

ranks. In particular, the notion of remaining worlds to place is now

checked by observing whether the last cumulative lexicographic

formula’s model set does not contain the models of the current

cumulative rational closure formula. Similarly, refined cumulative

formulas are only included if the last lexicographic cumulative

formula’s model set does not contain the models of the refined

formula.

While justification for the adaption of the LexicographicFor-
mulaRank is provided, we leave the proof of the cumulative model

construction as future work, owing to the need for further explo-

ration of the count-based lexicographic ordering. Such exploration
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may produce more efficient representations for computing the as-

sociated entailment relation and clarify the cumulative properties

of the ordering.

Algorithm 8 LexicographicCumulativeFormulaRank

1: Input: A defeasible knowledge base K
2: Output: An ordered tuple (𝐶𝐿𝐶

0
, ...,𝐶𝐿𝐶

𝑘−1,𝐶
𝐿𝐶
∞ , 𝑘)

3: (𝐶𝑅𝐶
0

, ...,𝐶𝑅𝐶
𝑛−1,𝐶

𝑅𝐶
∞ , 𝑛) := CumulativeFormulaRank(K);

4: 𝐶𝑅𝐶
−1 := ⊥;

5: 𝐶𝐿𝐶
−1 := ⊥; ⊲ required in first iteration of outer loop

6: 𝑖 := 0; ⊲ rational closure rank

7: 𝑘 := 0; ⊲ lexicographic closure rank

8: while 𝑖 < 𝑛 do
9: 𝑗 := 0; ⊲ number of formulas to violate

10: while 𝐶𝑅𝐶
𝑖

⊭ 𝐶𝐿𝐶
𝑘−1 do ⊲ until no remaining worlds

11: 𝐿𝑖 𝑗 := 𝐶
𝑅𝐶
𝑖−1 ∨

©«𝐶𝑅𝐶
𝑖

∧ ©« ∨
𝑆∈{𝑇 ⊆

−→
K |#𝑇=#

−→
K− 𝑗 }

∧
𝑠∈𝑆

𝑠
ª®¬ª®¬;

12: if 𝐿𝑖 𝑗 ⊭ 𝐶𝐿𝐶
𝑘−1 then ⊲ contains additional worlds

13: 𝐶𝐿𝐶
𝑘

:= 𝐿𝑖 𝑗 ; ⊲ place worlds violating ≤ 𝑗 formulas

14: 𝑘 := 𝑘 + 1;

15: end if
16: 𝑗 := 𝑗 + 1;

17: end while
18: 𝑖 := 𝑖 + 1;

19: end while
20: 𝐶𝐿𝐶

∞ := 𝐶𝑅𝐶
∞ ;

21: return (𝐶𝐿𝐶
0

, ...,𝐶𝐿𝐶
𝑘−1,𝐶

𝐿𝐶
∞ , 𝑘)

3.3.2 Entailment. The definition of ranked interpretation satisfac-

tion only considers the minimal worlds consistent with the query

antecedent. Both ModelSatisfaction and FormulaModelSatis-
faction process ranks in order, checking for the existence of mini-

mal worlds. Therefore, a cumulative representation does not affect

the correctness of these algorithms as worlds inconsistent with the

query antecedent from prior ranks have already been checked in

prior iterations and must not constitute minimal 𝛼 worlds.

We, therefore, use the FormulaModelSatisfaction algorithm
for computing entailment with the cumulative formula representa-

tion without the need for modification.

Examples of this, and the other algorithms can be found in ap-

pendix C.

4 LEXICOGRAPHIC CLOSURE
We make an important observation regarding the distinction be-

tween definitions of lexicographic closure presented in [12] and

[3].

The refinement definition of lexicographic closure applied in our

model-based algorithms defines an ordering based on the criteria of

seriousness and count (similar to the ordering defined by Lehmann).

However, we find that this is, in fact, distinct from the ordering

originally defined for lexicographic closure in [12].

We prove, via an example, how these definitions differ regarding

the produced ranked models.

Example 4.1. Consider K = {𝑝 → 𝑏,𝑏 |∼ 𝑓 , 𝑏 |∼ 𝑤, 𝑝 |∼ ¬𝑓 , 𝑝 |∼
𝑤}.

This represents the knowledge that all penguins are birds, birds

typically fly, birds typically have wings, penguins typically don’t

fly, and penguins typically have wings.

The base rank of the formulas in K and the corresponding mini-

mal ranked (rational closure) model are shown in figure 4.

∞ 𝑝 → 𝑏

1 𝑝 |∼ ¬𝑓 , 𝑝 |∼ 𝑤

0 𝑏 |∼ 𝑓 , 𝑏 |∼ 𝑤

(a) Base Rank

∞ bfpw bfpw bfpw bfpw

2 bfpw bfpw bfpw

1 bfpw bfpw bfpw bfpw

0 bfpw bfpw bfpw bfpw bfpw

(b) Minimal Ranked Model

Figure 4: Base Rank and Minimal Ranked Model of K

We construct the ranked models in figure 5 according to the, pur-

portedly equivalent, Lehmann [12] and Casini et al. [3] definitions

of lexicographic closure.

∞ bfpw bfpw bfpw bfpw

5 bfpw

4 bfpw

3 bfpw

2 bfpw

1 bfpw bfpw bfpw

0 bfpw bfpw bfpw bfpw bfpw

(a) Lexicographic Closure [12] Model

∞ bfpw bfpw bfpw bfpw

4 bfpw bfpw

3 bfpw

2 bfpw

1 bfpw bfpw bfpw

0 bfpw bfpw bfpw bfpw bfpw

(b) Lexicographic Closure [3] Model

Figure 5: The Two Lexicographic Ranked Models
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We observe that both lexicographic models respect the relative

order of the worlds in the rational closure model.

However, we notice a difference in the refinement of the second

rational closure rank in producing the two lexicographic models. In

particular, consider valuations bfpw and bfpw(circled in the rational
closure model). The tuples of violated formula counts ordered by

base rank, as defined in the Lehmann definition of lexicographic

closure [12], are ⟨0, 2, 1⟩ and ⟨0, 1, 2⟩, respectively. We define similar

tuples based on the refinement criteria of the Casini et al. lexico-

graphic ordering [3] to include the rational closure rank and the

number of formulas violated in K (as the ordering favours valua-

tions with a lower rational closure rank, violating fewer formulas

in K). Both valuations, in this case, have the same rational closure

rank of two and violate three formulas inK . Hence the correspond-

ing tuple associated with these valuations is ⟨2, 3⟩. Noting that both
partial orders can be defined by comparing the corresponding tuples

using the natural lexicographic ordering of tuples, the Lehmann

ordering places the valuations on different ranks while the Casini

et al. ordering places them on the same rank.

Example 4.1 demonstrates that refining the rational closure

model ranks by count alone does not necessarily produce the

Lehmann lexicographic closure ranked model. The rational clo-

sure model separates valuations according to the number of trailing

zeroes in their formula violation tuples or, equivalently, the highest

base rank among the formulas each violates (based on the connec-

tion between the base rank of a formula and the rank of its minimal

world in the minimal ranked model [6]). Therefore, to refine such

to produce the Lehmann lexicographic closure model, valuations

on the same rational closure rank must be separated, not based on

the number of formulas violated in total [3], but rather by consid-

ering each of the remaining violation counts in turn (essentially

completing the lexicographic tuple comparison).

Nonetheless, the ordering defined in [3] still represents a valid

form of lexicographic closure in which the tuples used to compare

valuations are of order two, consisting of a valuation’s rational

closure rank and formula violation count. Notably, the ranked mod-

els corresponding to each ordering constitute refinements of the

rational closure model and will, therefore, fall within the rational

defeasible entailment framework described in [3].

While it would be possible to construct a cumulative version

of the LexicographicFormulaRank algorithm by instead refining

cumulative rational closure ranks without the negation of prior

ranks (much like in the CumulativeFormulaRank algorithm), we

would need to show that such represents the cumulative model.

The output of the CumulativeFormulaRank algorithm is cumula-

tive as the formulas on each rank become strictly weaker as the

rank increases. While such is also the case for iterations of the

LexicographicClosure algorithm, it may not hold for the modi-

fied LexicographicFormulaRank, as described above. Therefore,

our cumulative algorithm explicitly includes the prior cumulative

rational closure rank when constructing a rank’s representative

formula, as it is possible for a lower-ranked valuation to violate

more formulas than a higher-ranked valuation.

5 ALGORITHM ANALYSIS
We consider each of the developed approaches’ worst-case run-time

and space complexity for an input defeasible knowledge base of

size 𝑛 with 𝑝 unique propositional atoms.

5.1 LexicographicModelRank
5.1.1 Time Complexity. The LexicographicModelRank algorithm
refines each of the ranks produced by the ModelRank algorithm.

In the worst case, the rational closure ranked model has 𝑛 + 1

finite ranks and an infinite rank, totalling 𝑛 + 2 ranks. This upper

bound is a consequence of the worst-case output of the BaseRank
algorithm for the knowledge base, in which each rank contains a

single formula corresponding to a ranked model with at most 𝑛 + 1

finite ranks.

Each rational closure rank is refined by placing, and removing

from the set of remaining worlds, those worlds which violate an

incrementally increasing number of formulas in the knowledge

base. In the worst case, this number, starting from 0, reaches the

size of the knowledge base 𝑛 before the termination condition is

satisfied. For a particular violation count, we need to consider each

of the, at most, 2
𝑝
worlds in the remaining worlds. For a given

valuation, the algorithm performs a satisfaction (⊩) check for each

of the 𝑛 formulas in the knowledge.

Therefore, a conservative upper bound on the number of satis-

faction checks is (𝑛 + 1) × (𝑛 + 1) × 2
𝑝 × 𝑛 ≈ 𝑛3 × 2

𝑝
(excluding

those performed in the ModelRank algorithm).

We note that this represents a conservative upper bound on the

number of satisfaction checks. The estimated operation count in-

cludes repeated operations performed when placing worlds. Noting

that all worlds will be considered at some iteration of the algorithm,

precomputing and storing the violation counts for each world re-

duces this complexity to 𝑂 (𝑛 × 2
𝑝 ) (we will see that this does not

impact space complexity).

If we assume that an entailment check corresponds to 𝑂 (2𝑝 )
satisfaction checks for the given knowledge base, then we have

that the algorithm is 𝑂 (𝑛) for the entailment operation. Noting

that the ModelRank algorithm performs 𝑂 (𝑛2) such entailment

operations, as shown by Cohen, the LexicographicModelRank
algorithm performs 𝑂 (𝑛 + 𝑛2) = 𝑂 (𝑛2) classical entailment checks.

5.1.2 Space Complexity. Irrespective of the input knowledge base
size and whether we choose to precompute and store violation

counts for each world, the space complexity of the algorithm is

𝑂 (2𝑝 ) corresponding to the number of possible valuations. These

must be stored as the output of the ModelRank algorithm, poten-

tially stored with the number of formulas each violates, and re-

turned in the output.

5.2 LexicographicFormulaRank
5.2.1 Time Complexity. Similarly, in the LexicographicFormula-
Rank algorithm, there are at most 𝑛 + 1 finite ranks, each requiring

at most 𝑛 + 1 refinements. Of interest is the number of entailment

checks performed. In this case, the algorithm performs 2 per refine-

ment (firstly, in the inner while loop condition, and secondly, in

the if statement condition). Therefore, the total classical entailment

checks performed is (𝑛 + 1) × (𝑛 + 1) × 2 ≈ 2 × 𝑛2, and so the
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time complexity is 𝑂 (𝑛2) in entailment operations. Including the

time complexity of the FormulaRank algorithm initially invoked,

we obtain a final time complexity of 𝑂 (𝑛2 + 𝑛2) = 𝑂 (𝑛2).

5.2.2 Space Complexity. Themodels’ formula representations store

one formula per rank. Therefore, there will be at most 𝑛 + 2 such

formulas produced by the FormulaRank algorithm, and (𝑛 + 1) ×
(𝑛 + 1) ≈ 𝑛2 produced during rank refinement. This results in a

space complexity of 𝑂 (𝑛2 + 𝑛) = 𝑂 (𝑛2) for representative rank

formulas.

However, it is not sufficient to consider the number of rank

formulas in isolation. We note that these formulas may differ sub-

stantially in length and complexity and may affect space complexity.

Such will likely impact run-time performance but should not affect

the run-time complexity class.

We consider the length of the representative formulas produced

in the algorithm in terms of the number of knowledge base for-

mulas each syntactically comprises. For example, a representative

formula that is the conjunction of 4 knowledge base formulas will

be considered to comprise 4 knowledge base formulas. The pri-

mary assumption is that knowledge base formulas have similar

complexity and size.

Any given representative formula comprises the formula repre-

senting the remaining worlds on the current rank and the formulas

from all the possible subsets of a given size. In the worst case, the

remaining world’s formula comprises 𝑂 (𝑛 × 2
𝑛) knowledge base

formulas, as Cohen discusses. Subsets approximately half the size

of the knowledge yield the worst case in terms of formula count.

Therefore the total number of formulas in the subset portion of the

representative formula is 𝑂 (⌊𝑛
2
⌋ × 2

𝑛) = 𝑂 (𝑛 × 2
𝑛), as each subset

contains ⌊𝑛
2
⌋ formulas. There are more accurate approximations of( 𝑛

⌊ 𝑛
2
⌋
)
, but for simplicity, we use 2

𝑛
as an upper bound.

Therefore, we have at most each formula consists of 𝑂 (𝑛 × 2
𝑛 +

𝑛 × 2
𝑛) = 𝑂 (𝑛 × 2

𝑛) formulas. With 𝑂 (𝑛2) such formulas, a more

representative space complexity is 𝑂 (𝑛2 × 𝑛 × 2
𝑛) = 𝑂 (𝑛3 × 2

𝑛) in
the number of knowledge base formulas.

5.3 LexicographicCumulativeFormulaRank
5.3.1 Time Complexity. As is the case in the LexicographicFor-
mulaRank algorithm, the LexicographicCumulativeFormulaRank
requires at most𝑂 (𝑛2) classical entailment checks and stores𝑂 (𝑛2)
formulas.

5.3.2 Space Complexity. However, the formulas no longer include

the negation of prior rank formulas. The cumulative formulas are

shown to comprise 𝑂 (𝑛) knowledge base formulas, while the sub-

set conjunction-disjunction still requires 𝑂 (𝑛 × 2
𝑛) space. Space

complexity adjusted for knowledge base formula count is, therefore,

𝑂 (𝑛2×(𝑛+𝑛×2𝑛)) = 𝑂 (𝑛3×2𝑛). Despite the reduction in formulas,

the space complexity class is unchanged from the Lexicographic-
FormulaRank algorithm, due to the disjunctively-combined subsets.

5.4 ModelSatisfaction
For the ModelSatisfaction and FormulaModelSatisfaction, we
take note of the time complexity, ignoring the space complexity of

the input as this is accounted for in the ranked model construction

Model Formula Cumulative

Time 𝑂 (𝑛2) 𝑂 (𝑛2) 𝑂 (𝑛2)
Space 𝑂 (2𝑝 ) 𝑂 (𝑛3 × 2

𝑛) 𝑂 (𝑛3 × 2
𝑛)

Figure 6: Algorithm Time and Space Complexities

Model Formula

Time 𝑂 (1) 𝑂 (𝑛)

Figure 7: Entailment Algorithm Time Complexities

algorithms. In both cases, no additional space is required when

answering an entailment query.

In determining the minimal worlds, the ModelSatisfaction
algorithm implicitly uses satisfaction checks on the valuations in

the input ranked interpretation. Should any exist on the current

rank, a second satisfaction check performed implicitly, in computing

the algorithm output, verifies whether all are consistent with the

query.

In the worst case, all worlds are minimal and consistent with the

query antecedant, requiring a total of 2 × 2
𝑝
or 𝑂 (2𝑝 ) satisfaction

checks. Using the same assumption in 5.1.1, this is equivalent to

𝑂 (1) entailment checks.

5.5 FormulaModelSatisfaction
At each iteration, an entailment check is performed, followed by

one final check in the return statement. Therefore, in the worst case,

the representation has 𝑛 + 1 finite ranks, all of which are checked,

for a total of 𝑛 + 2 or 𝑂 (𝑛) entailment checks.

6 RESULTS AND DISCUSSION
In all three cases, we observe that the time complexity for each

model construction algorithm is the same (𝑂 (𝑛2) in classical en-

tailment). Using the resulting model representations, entailment

requires a 𝑂 (1) entailment checks per query in the case of Model-
Satisfaction, and𝑂 (𝑛) checks in the case of FormulaModelRank.

Noting that the problem of boolean satisfiability for propositional

logic is solvable in non-deterministic polynomial time (NP) [13],

our time complexity results for the various algorithms suggest that

the decision problem of whether a query is in the count-based lexi-

cographic closure of a knowledge base is not much more complex

than that of classical entailment. Combining model construction

with a single defeasible entailment query check requires 𝑂 (𝑛2)
classical entailment checks in all cases.

However, LexicographicModelRank is a member of a space

complexity class distinct from the formula representation-based

algorithms.

It is essential to note the distinction between the quoted space

complexity classes. The LexicographicModelRank space complex-

ity refers to the number of atoms, whereas that of the remaining

algorithms refers to the number of knowledge base formulas. It is

not easy to directly compare these space complexity measures as

the extent to which these correlate depends on the knowledge base.
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Therefore, the choice of algorithm for a given knowledge base will

depend on the knowledge base size and unique atom count. Further,

there does not seem to be a canonical data set from which to derive

a general relationship between these variables.

Suppose we assume that knowledge bases generally have more

formulas than atoms, representing the case where we have rich,

defeasible information about a few entities and that the size of

valuations stored is not much more than the formulas themselves.

In that case, we can safely conclude that LexicographicModelRank
is the optimal choice of algorithm.

Implementations of these algorithms using the Tweety Project

libraries [18] and Sat4j [11] classical reasoner in Java confirm our

space complexity results as the constraining factor on algorithm

scalability. In each case, space complexity is exponential or super-

exponential, leading to out-of-memory errors during model con-

struction. We find that the LexicographicModelRank was able to

handle a knowledge base size of 38 formulas (20 unique atoms)

while LexicographicFormulaRank and LexicographicCumula-
tiveFormulaRank only managed 4 and 13 formulas, respectively.

In these cases, construction times were in the order of minutes,

likely too time-consuming for any substantial practical application.

Entailment times significantly favoured model representations com-

pared to the formula representations, owing to the distinct time

complexity classes in figure 7, strengthening the case for the purely

model-based algorithms.

As we show that the count-based lexicographic ordering is dis-

tinct from the Lehmann ordering, these results represent a scala-

bility baseline for future comparison. Noting the reasonably per-

formant nature of formula-based algorithms for rational closure

in [8], we attribute the poor performance of our formula-based

representations to the difficulty of concisely expressing cardinali-

ties syntactically in propositional logic. We use the disjunction of

knowledge base subsets of size 𝑘 to express the notion of ‘satisfying

at least 𝑘 formulas’ (despite being a rather verbose representation).

7 RELATEDWORK
In collaboration with Cohen, we propose the foundational algorith-

mic strategies and model representations for computing rational

and lexicographic closure. Cohen details the approaches for ratio-

nal closure, each of which is refined in the proposed count-based

lexicographic closure algorithms in this paper.

The count-based lexicographic ordering used to define the form

of lexicographic closure in this paper is first introduced in [3]. It

is part of a broader framework of rational defeasible entailment

relations represented by specific knowledge base ranked models

that constitute refinements of rational closure.

Lehmann first defined lexicographic closure using the natural

ordering of violation tuples consisting of ordered formula base rank

counts [12]. While we show that the ordering defined by [3] differs

from that of Lehmann, it is still important to note the similarities

between the two orderings. It is also important to note that the

ranked model derived from the Lehmann ordering is part of the

rational defeasible entailment framework in [3].

Scalability of the syntax-based approaches for computing ratio-

nal closure and the Lehmann lexicographic closure are explored in

[8].

8 CONCLUSIONS
We defined three new algorithms for constructing abstract represen-

tations of the count-based lexicographic modular partial ordering

defined in [3]. The first of these constructs precisely the ranked

model corresponding to this ordering via the direct manipulation of

valuations. The second algorithms represents the rank valuations

syntactically. Similarly, the third approach represents the cumula-

tive rank valuations using more concise syntax.

We formulate a straightforward algorithm, based on the def-

inition for ranked interpretation satisfaction, for computing the

entailment relation associated with a ranked interpretation. We

adapt this approach to be compatible with both of our formula-

based representations.

In attempting to formulate a cumulative algorithm for lexico-

graphic closure, corresponding to the original formula-based ap-

proaches, we find that the ordering defined in [3] for lexicographic

closure differs from that originally defined in [12]. While both con-

stitute refinements of the rational closure model, they represent

distinct forms of rational defeasible entailment [3].

Analysing the theoretical performance of our approaches, we

find that all suffer from intractable space complexities attributable

to the difficulty of enforcing the count-based refinement criterion

of the ordering. While we initially aimed to compare these results to

existing approaches, showing potential improvements, the newly-

discovered difference in lexicographic orderings means that our

results represent a baseline for the count-based lexicographic clo-

sure in [3].

9 FUTUREWORK
In light of the distinction made between the two lexicographic

orderings in this paper, further exploration of the count-based or-

dering is required. The philosophical pattern of reasoning, if any,

to which this ordering corresponds, is not yet known. Additionally,

exploration of its cumulative properties may facilitate the develop-

ment of a formula-based algorithm and an associated cumulative

model-based algorithm similar to LexicographicCumulativeFor-
mulaRank.

Future work could include the development of similar semantic

algorithms for computing the Lehmann lexicographic closure, as

was the original aim of this paper. We would expect corresponding

algorithms for the Lehmann ordering to mirror the findings by

Cohen for rational closure, in particular the relationship between

the cumulative model and LexicographicClosure algorithm.

Finally, there is room to explore whether these algorithms, those

developed for rational closure by Cohen, and their corresponding

model representations, may be generalised for the purposes of

computing any rational defeasible entailment relation [3].
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A LEXICOGRAPHICMODELRANK PROOFS
Proposition A.1. The LexicographicModelRank algorithm terminates.

Proof. The outermost while loop executes exactly 𝑛 times and should not affect termination. Therefore, termination will depend entirely

on whether the inner while loop terminates for each value of 𝑖 .

For any 𝑖 < 𝑛:

Since {𝐿𝑖 𝑗 | 0 ≤ 𝑗 ≤ #K} \ {∅} partitions U𝑖0,
⋃

#K
𝑗=0

𝐿𝑖 𝑗 = U𝑖0 = 𝑅𝑅𝐶
𝑖

.

Now, the algorithm recursively defines U𝑖 𝑗 as U𝑖 ( 𝑗−1) \ 𝐿𝑖 ( 𝑗−1) , resulting in the following derivation:

U𝑖 𝑗 = U𝑖0 \ 𝐿𝑖0 \ ... \ 𝐿𝑖 ( 𝑗−1)

=⇒ U𝑖 𝑗 = U𝑖0 \
𝑗−1⋃
𝑘=0

𝐿𝑖𝑘

=⇒ U𝑖 𝑗 = 𝑅𝑅𝐶𝑖 \
𝑗−1⋃
𝑘=0

𝐿𝑖𝑘

But for 𝑗 = #K + 1, we have

⋃
#K
𝑘=0

𝐿𝑖𝑘 = U𝑖0 = 𝑅𝑅𝐶
𝑖

, since the 𝐿𝑖𝑘 ’s partition the rank.

Thus, U𝑖 𝑗 = 𝑅𝑅𝐶
𝑖

\ 𝑅𝑅𝐶
𝑖

= ∅, the required condition for termination of the inner loop.

Therefore, we have that the innermost loop will terminate after at most #K + 1 iterations, for each value of 𝑖 , and hence the algorithm

terminates. □

Proposition A.2. The LexicographicModelRank algorithm produces the lexicographic [3] ranked model of K .

Proof. Suppose LexicographicModelRank produces
R∗ = (𝑅0, ..., 𝑅𝑛−1, 𝑅∞).

We will prove the above in two parts:

(1) R∗
is a ranked interpretation:

We show that all worlds are assigned a unique rank, and that there are no empty ranks in the model.

We have that R𝑅𝐶
K = (𝑅𝑅𝐶

0
, ..., 𝑅𝑅𝐶

𝑛−1, 𝑅
𝑅𝐶
∞ ) produced by ModelRank is a ranked interpretation.

Consider 𝑢 ∈ 𝑅𝑅𝐶
𝑖

:

There is some 𝑗 such that 𝑢 ∈ 𝐿𝑖 𝑗 , since
⋃

#K
𝑘=0

𝐿𝑖𝑘 = 𝑅𝑅𝐶
𝑖

.

Since 𝐿𝑖 𝑗 ≠ ∅, there is some 𝑘 such that 𝑅𝑘 = 𝐿𝑖 𝑗 and hence R∗ (𝑢) = 𝑘 .

This rank is unique since ∄𝐿𝑖′ 𝑗 ′ : 𝑢 ∈ 𝐿𝑖′ 𝑗 ′ , 𝑖
′ ≠ 𝑖 𝑜𝑟 𝑗 ′ ≠ 𝑗 .

This follows from the fact that the rational closure ranks partition U and each 𝑅𝑅𝐶
𝑖

is partitioned by the 𝐿𝑖 𝑗 ’s (ignoring potentially

empty 𝐿𝑖 𝑗 ’s).

And so, ∄𝑘′ : R∗ (𝑢) = 𝑘′ 𝑎𝑛𝑑 𝑘′ ≠ 𝑘 , since 𝑅𝑘 = 𝐿𝑖 𝑗 .

Consider 𝑅𝑖 for some 𝑖:

∃ 𝑗, 𝑘 : 𝑅𝑖 = 𝐿𝑗𝑘 𝑎𝑛𝑑 𝐿𝑗𝑘 ≠ ∅, by construction, and such 𝐿𝑗𝑘 ’s are placed consecutively.

Therefore, there cannot be an empty rank in the interpretation, which is sufficient in satisfying the required convexity property of

ranked interpretations.

(2) R∗
conforms to the lexicographic ordering [3] defined on K :

We consider the 3 cases in the defined ordering:𝑚 ≺K
𝐿𝐶

𝑛 if and only if RK
𝑅𝐶

(𝑛) = ∞, or RK
𝑅𝐶

(𝑚) < RK
𝑅𝐶

(𝑛), or RK
𝑅𝐶

(𝑚) = RK
𝑅𝐶

(𝑛)
and𝑚 satisfies more formulas than 𝑛 in K .

Consider arbitrary 𝑢, 𝑣 ∈ U :

(a) RK
𝑅𝐶

(𝑣) = ∞:

Since 𝑅∞ = 𝑅𝑅𝐶∞ , R∗ (𝑣) = ∞, and hence 𝑢 ≺R∗ 𝑣 .

(b) RK
𝑅𝐶

(𝑢) < RK
𝑅𝐶

(𝑣):
Then 𝑢 ∈ 𝐿𝑖 𝑗 and 𝑣 ∈ 𝐿𝑘𝑙 for some 𝑖, 𝑗, 𝑘, 𝑙 such that 𝑖 < 𝑗 . Since 𝑅𝑚 = 𝐿𝑖 𝑗 and 𝑅𝑛 = 𝐿𝑘𝑙 for some 𝑚 < 𝑛, we have that
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𝑅∗ (𝑢) < 𝑅∗ (𝑣) and therefore than 𝑢 ≺R∗ 𝑣 .

(c) RK
𝑅𝐶

(𝑢) = RK
𝑅𝐶

(𝑣) and 𝑢 satisfies more formulas than 𝑣 in K :

Let 𝑖 = RK
𝑅𝐶

(𝑢) = RK
𝑅𝐶

(𝑣). Then, 𝑢 ∈ 𝐿𝑖 𝑗 and 𝑣 ∈ 𝐿𝑖𝑘 for some 𝑗 < 𝑘 , since 𝑢 satisfies more formulas and hence violates fewer

formulas than 𝑣 in K . Since 𝑅𝑚 = 𝐿𝑖 𝑗 and 𝑅𝑛 = 𝐿𝑖𝑘 with 𝑗 < 𝑘 , we have𝑚 < 𝑛, and hence that 𝑅∗ (𝑢) < 𝑅∗ (𝑣) and 𝑢 ≺R∗ 𝑣 .

We now have that ≺R∗ satisfies all the properties of the lexicographic closure modular ordering, and since it is a ranked

interpretation, it must be the unique ranked interpretation obeying such an ordering. From [3], we know that the ranked

interpretation corresponding to lexicographic closure is a model of K , and hence R∗
is the lexicographic ranked model of K , as

defined by the ordering in [3].

□

B LEXICOGRAPHICFORMULARANK PROOFS
Proposition B.1. For each rank 𝐿′

𝑘
in the output of the LexicographicFormulaRank algorithm,Mod(𝐿′

𝑘
) = 𝐿𝑘 where 𝐿𝑘 is the corresponding

rank in the output of the LexicographicModelRank algorithm, with both algorithms returning the same number of ranks.

Proof. We will first show, inductively, that for each refined rank 𝐿′
𝑖 𝑗
in the LexicographicFormulaRank algorithm, for any arbitrary 𝑖 ,

is such that Mod(𝐿′
𝑖 𝑗
) = 𝐿𝑖 𝑗 where 𝐿𝑖 𝑗 is defined in the LexicographicModelRank algorithm, and similarly, that Mod(U ′

𝑖 𝑗
) = U𝑖 𝑗 . We also

show that U ′
𝑖 𝑗
is defined if and only if U𝑖 𝑗 is defined.

We first note that𝑀𝑜𝑑 (𝐿′∞) = 𝑀𝑜𝑑 (𝐹𝑅𝐶∞ ) = 𝑅𝑅𝐶∞ = 𝐿∞ (we explicitly assign the infinite rank in both algorithms, ensuring correspondence).

Let 𝑖 < 𝑛 be any finite rank in any rational closure model with 𝑛 − 1 finite ranks.

Base Case:

(1) Mod(U ′
𝑖0
) = Mod(𝐹𝑅𝐶

𝑖
) = 𝑅𝑅𝐶

𝑖
= U𝑖0

(2) U𝑖0 ≠ ∅, since the rational closure ranks are non-empty, therefore U𝑖1 and 𝐿𝑖0 will be defined. Similarly, U ′
𝑖0

⊭ ⊥, since U ′
𝑖0

⊭
⊥ ⇐⇒ Mod(U ′

𝑖0
) = U𝑖0 ≠ ∅. Therefore, U ′

𝑖1
and 𝐿′

𝑖0
will be defined.

(3)

Mod(𝐿′𝑖0) = Mod
©«𝐹𝑅𝐶𝑖 ∧

©«
∨

𝑆∈{𝑇 ⊆
−→
K |#𝑇=#

−→
K−0}

∧
𝑠∈𝑆

𝑠
ª®®¬
ª®®¬

= Mod(𝐹𝑅𝐶𝑖 ) ∩
⋃

𝑆∈{𝑇 ⊆
−→
K |#𝑇=#

−→
K}

Mod(𝑆)

= 𝑅𝑅𝐶𝑖 ∩Mod(
−→
K)(the only subset of size #

−→
K is

−→
K)

= U𝑖0 ∩Mod(
−→
K)

= {𝑢 ∈ U𝑖0 | #{𝑘 ∈
−→
K | 𝑢 ⊮ 𝑘} = 0}

= 𝐿𝑖0

Inductive Step:
Assume for some 𝑗 such that 𝐿𝑖 𝑗 , 𝐿

′
𝑖 𝑗
and U𝑖 𝑗 ,U ′

𝑖 𝑗
are defined, that 𝐿𝑖 𝑗 = Mod(𝐿′

𝑖 𝑗
) and U𝑖 𝑗 = Mod(U ′

𝑖 𝑗
) ≠ ∅.

(1)

Mod(U ′
𝑖 ( 𝑗+1) ) = Mod(U ′

𝑖 𝑗 ∧ ¬𝐿′𝑖 𝑗 )

= Mod(U ′
𝑖 𝑗 ) ∩Mod(𝐿′

𝑖 𝑗
)

= U𝑖 𝑗 \ 𝐿𝑖 𝑗
= U𝑖 ( 𝑗+1)
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(2) Now,

U𝑖 ( 𝑗+1) = ∅ ⇐⇒ Mod(U ′
𝑖 ( 𝑗+1) ) = ∅

⇐⇒ U ′
𝑖 ( 𝑗+1) |= ⊥

Therefore,

𝐿𝑖 ( 𝑗+1) is defined ⇐⇒ U𝑖 ( 𝑗+1) ≠ ∅
⇐⇒ U ′

𝑖 ( 𝑗+1) ⊭ ⊥
⇐⇒ 𝐿′

𝑖 ( 𝑗+1) is defined .

(3) If U𝑖 ( 𝑗+1) = ∅, we are done (both 𝐿𝑖 ( 𝑗+1) and 𝐿
′
𝑖 ( 𝑗+1) will not be defined, with 𝐿𝑖 𝑗 , 𝐿

′
𝑖 𝑗
the last defined ranks for the refinement of

rational closure rank 𝑖 .

Else, U𝑖 ( 𝑗+1) ≠ ∅ and so 𝐿𝑖 ( 𝑗+1) , 𝐿
′
𝑖 ( 𝑗+1) are defined.

Mod(𝐿′
𝑖 ( 𝑗+1) ) = Mod

©«U ′
𝑖 ( 𝑗+1) ∧

©«
∨

𝑆∈{𝑇 ⊆
−→
K |#𝑇=#

−→
K−( 𝑗+1) }

∧
𝑠∈𝑆

𝑠
ª®®¬
ª®®¬

= Mod
©«U ′

𝑖 𝑗 ∧ ¬𝐿′𝑖 𝑗 ∧
©«

∨
𝑆∈{𝑇 ⊆

−→
K |#𝑇=#

−→
K−( 𝑗+1) }

∧
𝑠∈𝑆

𝑠
ª®®¬
ª®®¬

= Mod(U ′
𝑖 𝑗 ) ∩Mod(𝐿′

𝑖 𝑗
) ∩ {𝑢 ∈ U | #{𝑘 ∈

−→
K | 𝑢 ⊩ 𝑘} ≥ #

−→
K − ( 𝑗 + 1)}

= U𝑖 𝑗 ∩ U \ 𝐿𝑖 𝑗 ∩ {𝑢 ∈ U | #{𝑘 ∈
−→
K | 𝑢 ⊮ 𝑘} ≤ 𝑗 + 1}

= U𝑖 𝑗 \ 𝐿𝑖 𝑗 ∩ {𝑢 ∈ U | #{𝑘 ∈
−→
K | 𝑢 ⊮ 𝑘} ≤ 𝑗 + 1}

= U𝑖 ( 𝑗+1) ∩ {𝑢 ∈ U | #{𝑘 ∈
−→
K | 𝑢 ⊮ 𝑘} ≤ 𝑗 + 1}

= {𝑢 ∈ U𝑖 ( 𝑗+1) | #{𝑘 ∈
−→
K | 𝑢 ⊮ 𝑘} ≤ 𝑗 + 1}

= {𝑢 ∈ U𝑖 ( 𝑗+1) | #{𝑘 ∈
−→
K | 𝑢 ⊮ 𝑘} = 𝑗 + 1}

= 𝐿𝑖 ( 𝑗+1)
Thus, by induction, the refined ranks in each algorithm correspond as required.

Using this result, since

𝐿𝑘 = 𝐿𝑖 𝑗 ⇐⇒ 𝐿𝑖 𝑗 ≠ ∅
⇐⇒ 𝐿′𝑖 𝑗 ⊭ ⊥
⇐⇒ 𝐿′

𝑘
= 𝐿′𝑖 𝑗

we must have that ∀𝑘 ≤ 𝑛,Mod(𝐿′
𝑘
) = 𝐿𝑘 .

□
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C EXAMPLES
We use our kiwi example to illustrate the output of each of the three construction algorithms.

Recall we have K := {𝑘 → 𝑏, 𝑏 |∼ 𝑓 , 𝑏 |∼ 𝑤,𝑘 → ¬𝑓 }.

C.1 LexicographicModelRank
The ranked model produced by ModelRank is:

∞ bfkw bfkw bfkw bfkw bfkw bfkw

1 bfkw bfkw bfkw bfkw bfkw

0 bfkw bfkw bfkw bfkw bfkw

Figure 8: Rational closure model of K

Refining this output, our LexicographicModelRank produces:

∞ bfkw bfkw bfkw bfkw bfkw bfkw

2 bfkw bfkw

1 bfkw bfkw bfkw

0 bfkw bfkw bfkw bfkw bfkw

Figure 9: Lexicographic closure model of K

C.2 LexicographicFormulaRank
The formula representation of the ranked model produced by FormulaRank is:

∞ ¬((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 ))
1 ((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 )) ∧ ¬(((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 )) ∧ ((𝑏 → 𝑓 ) ∧ (𝑏 → 𝑤))) ∧ ⊤
0 ((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 )) ∧ ((𝑏 → 𝑓 ) ∧ (𝑏 → 𝑤))

Figure 10: Formula rational closure model of K

The refined formula representation output by LexicographicFormulaRank is:

∞ ¬((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 ))
2 (¬(((𝑏 → 𝑓 ) ∨ (𝑏 → 𝑤)) ∧ (((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 )) ∧ ¬(((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 )) ∧ ((𝑏 → 𝑓 ) ∧ (𝑏 → 𝑤))) ∧ ⊤) ∧ ⊤) ∧ ⊤)∧

(((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 )) ∧ ¬(((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 )) ∧ ((𝑏 → 𝑓 ) ∧ (𝑏 → 𝑤))) ∧ ⊤) ∧ ⊤
1 ((𝑏 → 𝑓 ) ∨ (𝑏 → 𝑤)) ∧ (((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 )) ∧ ¬(((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 )) ∧ ((𝑏 → 𝑓 ) ∧ (𝑏 → 𝑤))) ∧ ⊤) ∧ ⊤
0 (((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 )) ∧ ((𝑏 → 𝑓 ) ∧ (𝑏 → 𝑤))) ∧ ⊤ ∧ ((𝑏 → 𝑓 ) ∧ (𝑏 → 𝑤))

Figure 11: Formula lexicographic closure model of K

Taking the models of each of the rank formulas yields the ranked model in figure 9.

C.3 LexicographicCumulativeFormulaRank
The cumulative formula representation of the ranked model produced by CumulativeFormulaRank is:

∞ ⊤
1 ((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 )) ∧ ⊤
0 ((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 )) ∧ ((𝑏 → 𝑓 ) ∧ (𝑏 → 𝑤))

Figure 12: Cumulative formula rational closure model of K
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The corresponding refined lexicographic cumulative formula model produced by LexicographicCumulativeFormulaRank is:

∞ ⊤
2 (((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 )) ∧ ((𝑏 → 𝑓 ) ∧ (𝑏 → 𝑤))) ∨ ((((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 )) ∧ ⊤) ∧ ⊤)
1 (((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 )) ∧ ((𝑏 → 𝑓 ) ∧ (𝑏 → 𝑤))) ∨ ((((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 )) ∧ ⊤) ∧ ((𝑏 → 𝑓 ) ∨ (𝑏 → 𝑤)))
0 ((𝑘 → 𝑏) ∧ (𝑘 → ¬𝑓 )) ∧ ((𝑏 → 𝑓 ) ∧ (𝑏 → 𝑤)) ∨ ⊥

Figure 13: Cumulative formula lexicographic closure model of K

The models of each formula in the representation correspond to the cumulative models from the model in figure 9.
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