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ABSTRACT
Well-known forms of KLM-style defeasible entailment can be de-
�ned syntactically, via formula-based manipulations, and semanti-
cally, using ranked models. While entailment algorithms based on
such syntactic characterisations have been developed, algorithms
that directly manipulate the underlying models have not been ex-
plored. We present and analyse several algorithms based on ranked
model semantics for computing a core form of rational defeasi-
ble entailment: rational closure. For each algorithm, we de�ne an
abstract representation of the ranked model, an algorithm for its
construction, and a suitable adaptation of existing entailment algo-
rithms compatible with the representation. We develop a software
toolkit for their implementation and compare the run-time perfor-
mance of these new approaches to their theoretical analysis and
existing formula-based counterparts.

CCS CONCEPTS
• Theory of computation! Automated reasoning; • Comput-
ing methodologies ! Nonmonotonic, default reasoning and
belief revision.

KEYWORDS
Arti�cial Intelligence, Knowledge Representation and Reasoning,
Defeasible Reasoning, Propositional Logic, Rational Closure, Lexi-
cographic Closure

1 INTRODUCTION
Knowledge Representation and Reasoning (KRR) is a sub�eld of
Arti�cial Intelligence (AI) that takes a formal and, at times, philo-
sophical approach to the problem of simulating intelligence. At
the heart of this sub�eld is the notion of a knowledge-based sys-
tem, where information is encoded symbolically and collated in a
structure referred to as a knowledge base. Reasoning services are
then de�ned to facilitate drawing conclusions from such knowledge
bases.

A simple, yet expressive logic-based approach to KRR is de�ned
in classical propositional logic (or propositional logic). While exhibit-
ing several desirable characteristics, propositional logic has two
fundamental limitations in its ability to mimic human reasoning.

Classical logics, including propositional logic, cannot explicitly
express typicality whereby speci�c implications usually hold but
may have exceptions. It is also monotonic, meaning conclusions
drawn from some knowledge base cannot be retracted with the
addition of new knowledge [8]. Such retractions are crucial in for-
malising the idea that new knowledgemay require a re-examination
of past conclusions.

In order to address these shortcomings, defeasible approaches
to reasoning have been proposed as non-monotonic alternatives to

classical forms of entailment. However, unlike classical entailment,
there is no obvious way defeasible entailment ought to behave.

Kraus, Lehmann and Magidor (KLM) [8], proposed a set of prop-
erties as a thesis for how to de�ne a ‘sensible’ or ‘rational’ notion
of defeasible entailment. Two such examples are rational closure
[11] and lexicographic closure [10], each representing distinct, valid
patterns of human reasoning. The primary focus of this paper being
on rational closure.

Both rational and lexicographic closure are characterised seman-
tically from several distinct but equivalent perspectives. Currently,
approaches to computing entailment, i.e. answering entailment
queries, are based on semantics that involves ranking knowledge
base formulas and classical entailment checking [11].

However, alternative model-based semantic characterisations of
rational and lexicographic closure exist for which corresponding
algorithms have not yet been explored and formalised in KLM [8]
extensions of propositional logic.

Regarding answering entailment queries, both the formula-based
algorithms proposed by Casini et al. in [3] and the model-based
algorithms proposed within this paper can be characterised as
having two distinct phases. A primary, once-o� phase constructs
a representation of the underlying knowledge and a secondary,
repeatable phase in which the representation produced by the initial
phase is used to answer the given query. We thus classify these
phases as ‘construction’ and ‘entailment’, respectively.

Centrally, due to how rational defeasible entailment [3] is de�ned,
having a model-based representation of the underlying knowledge
allows one to answer entailment queries straightforwardly as part
of this second phase. Thus a motivation for this work is the expec-
tation that the challenges of constructing model-based represen-
tations of the underlying knowledge will precipitate overarching
e�ciency bene�ts to be reaped by the algorithms that form part of
the entailment phase.

Hence, this paper attempts to �ll this gap in the literature by fo-
cusing on the problem of algorithmically constructing model-based
representations as part of rational closure entailment checking.

Additionally, we compare these newly developed approaches’
computational and implementation e�ciency against the existing
algorithms and their implementations in [6]. In doing so, we develop
an extension to the TweetyProject library collection [13] that we
claim will bene�t future work in KLM-style defeasible reasoning.

In section 2, we cover the necessary background material for
this work. In section 3, we present our newly developed algorithms
inspired by the model-based semantics of rational closure. We mo-
tivate the choices for their design and discuss their characteristics.
In section 4, we analyse our proposed algorithms. In section 5, we
discuss our extensions to the TweetyProject that underpins the im-
plementations we provide. In section 6, we present the experiments
conducted to compare the performance of particular algorithms
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from section 3 against the implementations from [3]. Finally, in
section 7, we discuss the theoretical �ndings from section 4 and the
results from the experiments in section 6.

2 BACKGROUND
2.1 Propositional Logic
2.1.1 Syntax. We de�ne a set P containing all atomic propositions,
representing the most basic units of knowledge [1]. Several con-
nectives are de�ned to construct expressive formulas from these
atoms.

Formulas can consist of a single atom, the negations (¬) of other
formulas, or the combination of two other formulas using one of
the binary connectives {^,_,!,$}. The set of all well-formed
formulas is often referred to as L (the language of propositional
logic). Note, we also include the constants > and ? in L, which
denote a formula that is always true and a formula that is always
false, respectively.

2.1.2 Semantics. The formulas described assume truth values in-
ductively through the assigning of truth values to the atoms in the
formulas and via the semantics of the connectives. This assignment
is ful�lled by interpretations.

De�nition 2.1. An interpretation I is de�ned as a function I :
P 7! {) , � } which maps each propositional atom to a value of )
or � (true and false respectively).

The values of a formula are derived using the usual semantics
for propositional logic connectives [1]. We denote the value of a
formula U under a given interpretation I (of the atoms in P) as E

I(U). In most cases, we are interested in interpretations that
satisfy a particular formula or set of formulas (such a set is termed
a knowledge base). We de�ne satisfaction using the symbol � as
follows:

De�nition 2.2. I � K (where I is an interpretation of the for-
mulas in the knowledge base K) if and only if E

I(U) = ) for every formula U 2 K .

The de�nition for satisfaction of a single formula corresponds
to the case of a singleton knowledge base.

Interpretations that satisfy a knowledge base are referred to as
models of that knowledge base. We use the notation Mod(K) (or
JKK) to refer to the set of models of a knowledge base K (similarly
for a single formula).

2.1.3 Entailment. Using the above model-based semantics, entail-
ment (or logical consequence), denoted using the |= symbol, can be
de�ned.

De�nition 2.3. A knowledge base K entails a formula U , written
as K |= U , if and only if Mod(K) ✓ Mod(U).

Intuitively, whenever all the formulas inK are true under a given
interpretation, such will be the case for U and so we are able to
conclude U whenever we have K .

Example 2.1. We have the following meta-variables

P = {<, ;, ?}

that represent the atomic propositions “being a mammal" , “giving
birth to live young" and “being a platypus" respectively. We can
encode the knowledge:

(1) Mammals give birth to live young (< ! ; )
(2) Platypuses are mammals (? !<)

in a knowledge base K = {< ! ;, ? !<}.
Using this knowledge, we can conclude using classical entail-

ment that platypuses give birth to live young. However this is not
an accurate re�ection of reality since platypuses are exceptional
mammals that lay eggs. Thus, we can add the formula

? ! ¬;
toK to re�ect the fact they do not give birth to live young. Unfortu-
nately, classical reasoning will force us to conclude that platypuses
cannot exist, since any model of K will require the atom ? to be
false.

In theory, one can adjust the knowledge base to speci�cally
address platypuses as being exceptional, but this quickly becomes
impractical as each further exception, for example the echidna,
would warrant such a remodelling of the knowledge base. There
is no convenient mechanism for an agent using classical logic to
reconcile its ‘beliefs’ about the world when it is presented with new
information inconsistent with its prior ‘beliefs’ [7].

2.2 KLM-Style Defeasible Reasoning
Initially, KLM [8] extended propositional logic by de�ning a ‘con-
sequence relation’ |⇠ representing defeasible implications in an
attempt to reasonably represent typicality. Extensions of this frame-
work instead de�ne |⇠ as an additional connective (where U |⇠ V ,
with propositional formulas U, V , is read as ‘typically, if U , then V’
[3]). This extended language is de�ned as L% B L [ {U |⇠ V |
U, V 2 L} [7].

Let us refer to the agent analogy, where a knowledge base rep-
resents an agent’s explicit knowledge about how its world works.
In the case of propositional logic, each atom, thought to represent
some atomic fact about the world, can be in one of two states:
true or false. The formulas constructed from these atoms using the
various logical connectives are, in some sense, an encoding of the
mechanics and relationships between these atomic facts.

Propositional interpretations, therefore, correspond to the ‘global
state’ of the agent’s world - a unique combination of assignments
of true and false values to all the atomic facts. Thus from this point
onwards, we refer to these classical propositional interpretations
as worlds.

It is reasonable to think that an agent is likely to deem particular
worlds more typical than others. An agent would likely prefer
more typical worlds over others that are less so. This is exactly the
intuition behind the structure referred to as a ranked interpretation
[11].

De�nition 2.4. A ranked interpretation is a function R : U 7!
N [ {1}, such that for every 8 2 N, if there exists a D 2 U such
that R(D) = 8 , then there must be a E 2 U such that R(E) = 9
with 0  9 < 8 , where U is the set of all possible propositional
interpretations [7].

Ranked interpretations, therefore, assign to each world a rank
(with lower ranks corresponding, semantically, with more typical
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worlds and higher ranks with less typical worlds). According to
the ranked interpretation, worlds with a rank of 1 are impossible,
whereas worlds with �nite ranks are possible.

2.2.1 Satisfaction. Given that ranked interpretations indicate the
relative typicality of worlds, it makes sense to de�ne whether a
ranked interpretation satis�es a defeasible implication based on the
most typical worlds in that interpretation. In order to de�ne the
‘most typical worlds’, a de�nition of minimal worlds concerning a
formula in L is required.

De�nition 2.5. Given a ranked interpretation R and any formula
U 2 L, it holds that D 2 JUKR (the models of U in R) is minimal if
and only if there is no E 2 JUKR such that R(E) < R(D) [7].

The previous de�nition de�nes the concept of the ‘best U worlds’
(i.e. the lowest ranked, or most typical, of the worlds in which U is
true).

De�nition 2.6. Given a ranked interpretation R and a defeasible
implication U |⇠ V , R satis�es U |⇠ V , written R � U |⇠ V if and
only if for every E minimal in JUKR , E � V . If R � U |⇠ V then R is
said to be a model of U |⇠ V [7].

The previous de�nition says that for a ranked interpretation R
to satisfy a defeasible implication U |⇠ V , it need only satisfy U ! V
in the most typical (lowest-ranked) U worlds of R.

In the case of a classical propositional formula U 2 L, it is re-
quired that every �nitely-ranked world in R satis�es U in order
for R to satisfy U [3]. This de�nition is consistent with the idea
that classical propositional formulas, which do not permit excep-
tionality, should be satis�ed in every plausible world of a ranked
interpretation if such a ranking is to satisfy the formula.

We de�ne the materialisation of a defeasible knowledge base, K ,
as

�!K := {U ! V | U |⇠ V 2 K} [3]. With this de�nition, we say that
a propositional formula U 2 L is exceptional w.r.t. K i�

�!K |= ¬U .

Example 2.2. Consider Example 2.1 from earlier, we are now able
to express that mammals typically give live birth (< |⇠ ;), that
platypuses are mammals (? ! <) and that platypuses typically
do not give birth to live young (? |⇠ ¬;) in the knowledge base
K = {< |⇠ ;, ? !<, ? |⇠ ¬;}.

Then we have that platypuses (?) are exceptional while mammals
(<) are not. This aligns with our intuitions of platypuses being
exceptional or atypical mammals. Another takeaway is that one
can only reason about the implications of exceptional formulas by
disregarding the formulas concerning more general knowledge.

It is now possible to model knowledge that expresses typicality
and thus handles exceptional cases more reasonably.

Note that for the algorithms we de�ne, we consider only defeasi-
ble knowledge bases in which all formulas are normalised in terms
of defeasible implications and note that any classical statement, U ,
can be written as the defeasible implication ¬U |⇠ ? (simply note
that for a given ranked interpretation, R, R � U i� R � ¬U |⇠ ?)
[3].

2.2.2 Entailment. Asmentioned, defeasible entailment is not unique.
We seek reasonable forms of non-monotonic entailment that permit
the retraction of conclusions in cases where knowledge is added

that contradicts these conclusions. Such entailment relations are
de�ned by a set of postulates [8] which is extended to de�ne more
speci�c classes of entailment [3, 11]. Defeasible entailment relations
that satisfy the KLM postulates are said to be LM-rational [3].

Two notable forms of LM-rational defeasible entailment are the
aforementioned rational and lexicographic closure. As mentioned,
this paper focuses on rational closure, a prototypical pattern of de-
feasible reasoning (one that is extremely conservative in abnormal
cases)[3, 10], which is said to be the non-monotonic core of rational
defeasible entailment relations [3].

2.3 Rational Closure
Consider the agent analogy again; it is fair to assume that di�erent
agents might have di�erent ideas of what worlds are more typical
than others and produce di�ering ranked interpretations. This also
captures the idea that some agents are likely less adventurous (or
more conservative) than others. Hence, de�ning a partial ordering,
�K , over the ranked interpretations was reasonable, such that more
‘typical’ or conservative ranked interpretations are preferred over
less typical ones.

De�nition 2.7. Given a knowledge base, K , and RK the set of
all ranked models of K (those ranked interpretations which satisfy
K), it holds for every RK

1 ,RK
2 2 RK that RK

1 �K RK
2 if and only

if for every D 2 U , RK
1 (D)  RK

2 (D). [7]

Intuitively, this partial order favours ranked models that have
their worlds ‘pushed down’ as far as possible [7] - corresponding
to the most preferred and most conservative ranked interpretation.
It has a unique minimal element, RK

'⇠ , as shown by Giordano et al.
[5]. We now de�ne minimal ranked entailment using this minimal
element as follows:

De�nition 2.8. Given a defeasible knowledge baseK , the minimal
ranked interpretation satisfying K , RK

'⇠ , de�nes an entailment
relation, |⇡'⇠ , called minimal ranked entailment, such that for
any defeasible implication U |⇠ V , K |⇡'⇠ U |⇠ V if and only if
RK
'⇠ � U |⇠ V . [7]

We clarify that minimal ranked entailment is just another name
for the rational closure of a knowledge base. Furthermore, any
defeasible entailment relation, |⇡, is said to be LM-rational i� it
can be generated from a ranked interpretation, R. In the sense that
K |⇡ U |⇠ V i� R � U |⇠ V [3, 11].

Thus, our work focuses on designing algorithms to produce
representations ‘compatible’ with minimal ranked entailment as
de�ned above or more generally the mechanics of satisfaction for
ranked interpretations.

Although the original focus of this paper was purely on the se-
mantics of rational closure and its model-theoretic construction, it
is necessary to address its syntactic/algorithmic characterisation
as the two are closely related. Furthermore, the natural progres-
sion of this investigation arrives at an algorithm that bares strong
connections to these pre-existing approaches.

As mentioned, the current algorithmic approach proposed by
Casini et al. in [3] for answering rational closure entailment queries
is split into two phases that take the form of two algorithms: BaseR-
ank, included as Algorithm 1, and RationalClosure, included as
Algorithm 2.
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Algorithm 1 BaseRank

1: Input: A knowledge base K
2: Output: An ordered tuple ('0, ...,'=�1,'1,=)
3: i := 0;
4: ⇢0 :=

�!K ;
5: while ⇢8�1 6= ⇢8 do
6: ⇢8+1 := {U ! V 2 ⇢8 | ⇢8 |= ¬U};
7: '8 := ⇢8 \ ⇢8+1;
8: 8 := 8 + 1;
9: end while
10: '1 := ⇢8�1;
11: = := 8 � 1;
12: return ('0, ...,'=�1,'1,=)

BaseRank takes as input a knowledge base K and de�nes a se-
quence of subsets, ⇢0, . . . , ⇢=�1, ⇢1 that is used to partition

�!K into
a sequence of levels '0, . . . ,'=�1,'1. The intuition being that the
levels represent a ranking of the materialised formulas of the knowl-
edge base according to their ‘speci�city’ with lower ranks corre-
sponding to more general or defeasible information [7].

Algorithm 2 RationalClosure

1: Input: A knowledge baseK , and a defeasible implication U |⇠ V
2: Output: true, if K |⇡ U |⇠ V , and false otherwise
3: ('0, ...,'=�1,'1,=) := BaseRank(K);
4: 8 := 0
5: ' :=S9<=

9=0 ' 9 ;
6: while '1 [ ' |= ¬U and ' 6= ; do
7: ' := ' \ '8 ;
8: 8 := 8 + 1;
9: end while
10: return '1 [ ' |= U ! V ;

RationalClosure, then uses the ranking provided by BaseRank
to answer the given query. The algorithm does this by combining
the sequence of ranks together and iteratively removing the most
general information (i.e. lowest rank) until either the antecedent
is no longer exceptional or there are no more �nite ranks left to
remove. At which point, the algorithm returnswhether the resulting
subset of the knowledge base classically entails the materialised
query. A result by Freund in [4], guarantees that RationalClosure
returns true i�  ⌫ |⇡'⇠ U |⇠ V .

2.4 Related Work
2.4.1 Model-based Representations. Booth et al. [2] provide an
algorithm for constructing the ranked model for Rational Closure
in the context of Propositional Typicality Logic (PTL), which serves
as inspiration for our foundational approach for our model-based
algorithms within KLM-style Propositional Logic [3].

2.4.2 KLM-Style Defeasible Reasoning Implementations. Few soft-
ware logic systems exist that support defeasible reasoning ser-
vices. In particular, until last year’s Scalable Defeasible Reasoning
(SCADR) project [6], there did not exist implementations of rational
and lexicographic closure for propositional logic consistent with the

extended framework proposed by Casini et al [3]. Furthermore, the
performance and scalability of rational and lexicographic closure
in a software setting were not known. Thus, SCADR conducted
preliminary investigations into the scalability of rational and lexi-
cographic closure through their implementation and optimisation.
SCADR implemented rational and lexicographic closure in Java
using the TweetyProject - a collection of various Java libraries that
implement approaches to di�erent areas of arti�cial intelligence
[13]. Although SCADR laid the foundations for implementing these
algorithms, there was still the need for a platform or extension of
the TweetyProject that provided abstract representations of the
logical structures, such as ranked interpretations and defeasible
knowledge bases, consistent with the literature to streamline future
work.

3 MODEL-BASED ALGORITHMS
As alluded to earlier, the motivation for this investigation into
devising algorithms based on the model-based semantics of ratio-
nal closure is that possession of the minimal ranked model, RK

'⇠ ,
theoretically provides a straightforward and e�cient means of an-
swering entailment queries. As a reminder, answering whether K
entails a query, U |⇠ V , requires �nding the minimal (with respect to
the ranks in the minimal ranked model) U-world and then checking
only whether all the U-worlds on such rank are also V worlds.

3.1 ModelRank

Algorithm 3 ModelRank

1: Input: A defeasible knowledge base K
2: Output: A ranked interpretation ('0, ...,'=�1,'1) and the num-

ber of ranks, =
3: 8 := 0;
4: PK := {? | ? is a propositional letter occurring in K};
5: U8 := universe of worlds for vocabulary PK ;
6: K8 :=

�!K ;
7: repeat
8: '8 := {E 2 U8 | E � K8 };
9: U8+1 := U8 \ '8 ;
10: K8+1 := {U ! V 2 K8 | @E 2 '8 s.t. E � U};
11: 8 := 8 + 1;
12: until '8�1 = ;
13: = := 8 � 1;
14: '1 = U8 ;
15: R⇤ = ('0, ...,'=�1,'1)
16: return R⇤,=

3.1.1 Motivation. The next question to ask is: how does one ac-
quire or construct the minimal ranked model for any given defeasi-
ble knowledge base?

The preference ordering over ranked interpretations in de�nition
2.7 characterises the minimal model with respect to other models
of the knowledge base. We seek to develop an algorithm that con-
structs a representation of the minimal model directly, without the
need to compare models.

A way to view this problem is to consider starting with all the
worlds as most preferred as possible and then performing only the

4



Model-Based Defeasible Reasoning

most necessary ‘bumping up’ of worlds. The intuition is to place as
many worlds as possible on each rank to produce not only a model
but the minimal ranked model with all the worlds as ‘pushed down’
as the knowledge permits [7].

3.1.2 Overview. We start with all the possible worlds for the propo-
sitional vocabulary of the knowledge base. Then, at each step of the
algorithm, we place all the worlds that are models of the remaining
materialised formulas from our knowledge base on the current
rank. All such worlds are then removed from the collection of to-
be-placed worlds to ensure they cannot be placed on more than
one rank. Finally, we remove all the formulas whose antecedents
are satis�ed by a world we have just placed on the current rank
from our collection of to-be-considered formulas. Together these
two steps construct the minimal ranked model, RK

'⇠ , de�ned in
de�nition 2.7.

We show that: (i) the ModelRank algorithm terminates given a
�nite defeasible knowledge base, (ii) R⇤ returned by ModelRank is
a ranked model of K , and (iii) R⇤ is the minimal ranked model for
K , i.e. R⇤ = RK

'⇠ .
The complete proofs of all the subsequently mentioned lemmas

and propositions are included in appendix B.
We show (i) in terms of proposition B.1. Termination follows

from the fact that the knowledge base is �nite and that the sequence
of remaining worlds is decreasing.

We show (ii) in terms of proposition B.2. This is done by showing
that the representation the algorithm produces is both a ranked
interpretation and a model of the given knowledge base.

The proof of (iii) was more challenging and required Lemmas
B.3, B.4, B.5 and B.6.

In lemma B.3, we show that for all formulas in the set di�erence
between any two sets of remaining formulas, K8�1 \ K8 , that there
exists a world on rank 8 �1 that satis�es both U and V . The intuition
behind the set di�erence K8�1 \ K8 is that these are the formulas
whose best U-worlds must have been placed on rank 8 � 1. Lemma
B.4 is related to the previous lemma in that we now show there
cannot exist an U-world any lower than rank 8 � 1. Together, these
two lemmas allow us to conclude that for all the formulas in the
previously mentioned set di�erence, there are no U ^ V-worlds any
lower than rank 8 � 1. Finally, with lemma B.6 we show that for
any world on a given rank 8, 8 > 0, it must violate some formula in
K8�1 \ K8 . Given that the sequence of remaining formula sets is
decreasing by de�nition, we �nd that the formula violated inK8�1 \
K8 must be in all the previous (i.e. within K9 ,89 < 8) remaining
formula sets. Thus if one were to move any world to a lower rank
than the one it has been placed on by ModelRank, it would produce
a ranked interpretation that is no longer a model of the knowledge
base.

Example 3.1. Consider the knowledge base from Example 2.2:
K = {m |⇠ l, p ! m, p |⇠ ¬l} = {m |⇠ l,¬(p ! m) |⇠ ?, p |⇠ ¬l}.

The corresponding universe of worlds is:

U = {lmp, lmp, lmp, lmp, lmp, lmp, lmp, lmp}.

We brie�y overview how ModelRank constructs the minimal
ranked model, RK

'⇠ . First, we consider which worlds in U0 := U

are models of K0 :=
�!K . These worlds are pml, pml, pml, which we

now place on rank 0. Hence we remove them from U0 to produce
U1. We then see that one of the worlds we have just placed on'0 is a
<-world. Thus we remove m |⇠ l fromK0 to produceK1. We repeat
this process by continuing to place worlds that are models of the
remaining formulas, removing theworlds we place and the formulas
for which the placed worlds are models of their antecedents. The
resulting minimal ranked model is shown in �gure 1 (we ignore
the in�nite rank for compactness).

'2 lmp
'1 lmp, lmp
'0 lmp, lmp, lmp

Figure 1: Representation of RK
'⇠ for Example 3.1

3.1.3 Entailment. Given that the representation produced by Mod-
elRank is exactly RK

'⇠ , answering entailment queries is carried out
as de�ned for minimal ranked entailment. We do however formalise
the mechanics of how this is done as algorithm 6 in appendix A,
which we refer to as ModelSatisfaction.

3.2 FormulaRank
3.2.1 Motivation. The previous algorithm directly produces the
minimal ranked model in a representation consistent with its ab-
stract de�nition in the literature [2, 3, 7]. As we discuss in section
4, there is a clear exponential relationship between the cardinality
of the propositional vocabulary of a given knowledge base and
the cardinality of the corresponding universe of worlds. Thus the
space-complexity of the ModelRank algorithm is also exponential.

This challenge precipitated further investigation into new ways
of representing ranked interpretations that are still compatible
with the model-theoretic properties of minimal-ranked entailment
but are still tractable alternatives to the current formula-based
approaches.

Our �rst approach is then to construct formulas in correspon-
dence with the ranks of the minimal ranked model such that the
models of each formula correspond exactly with the worlds situated
on the corresponding level in the minimal ranked interpretation.
That is, for a knowledge base, K , and its corresponding minimal
ranked model, RK

'⇠ = ('0, . . . ,'=�1,'1), we seek to construct a
representation of the form (�0, . . . , �=�1, �1), where each �8 is a
propositional formula satisfying the condition:">3(�8 ) = '8 .

Hence, instead of enumerating the entire universe of worlds
for the propositional vocabulary of the knowledge base and then
determining whether such worlds satisfy speci�c criteria to place
them on ranks, we instead place the ‘criteria’ itself on the ranks of
the new representation.
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Algorithm 4 FormulaRank

1: Input: A defeasible knowledge base K
2: Output: A ranked formula interpretation (�0, ..., �=�1, �1) and

the number of ranks, =
3: 8 := 0;
4: K8 :=

�!K ;
5: repeat
6: �8 := (VK8 ) ^ ¬(W9<8 � 9 );
7: K8+1 := {U ! V 2 K8 | �8 |= ¬U};
8: 8 := 8 + 1;
9: until K8 = K8�1
10: = := 8;
11: �1 := �8 ;
12: � ⇤ := (�0, ..., �=�1, �1)
13: return � ⇤,=

3.2.2 Overview. FormulaRank produces what can be seen as a
declarative ranked model in the sense that, during a given iter-
ation of each algorithm, where ModelRank determines which of the
remaining worlds, U8 , are models of our remaining knowledge, K8 ,
FormulaRank instead constructs a declarative formula, �8 , whose
models are precisely those of the remaining knowledge and not of
any of the previous formulas (�0, . . . , �8�1).

Thus each FormulaRank representative rank formula is com-
prised of the conjunction of all the remaining formulas and the
negation of the disjunction of all the previous representative rank
formulas:

�8 := (
^

K8 ) ^ ¬(
_
9<8

� 9 )

The negation of the disjunction of all the previous representative
rank formulas,

¬(
_
9<8

� 9 ),

essentially asserts that wewish to excludeworlds that are already
associated with the previous representative rank formulas.

We prove that88,">3(�8 ) = '8 and that FormulaRank terminates
at the same point as ModelRank in the proof of proposition C.2 in
appendix C.

Example 3.2. Again, consider the knowledge base from Example
2.2: K = {m |⇠ l,¬(p ! m) |⇠ ?, p |⇠ ¬l}.

We include the corresponding ranked formula interpretation
produced by FormulaRank forK as Figure 2 (we ignore the in�nite
rank for compactness).

�2 (¬(p ! m) |⇠ ?) ^ ¬�0 ^ ¬�1
�1 ((¬(p ! m) |⇠ ?) ^ (p |⇠ ¬l)) ^ ¬�0
�0 (m |⇠ l) ^ (¬(p ! m) |⇠ ?) ^ (p |⇠ ¬l)

Figure 2: Representation of � ⇤ for Example 3.2

3.2.3 Entailment. The representation produced by FormulaRank is
not immediately compatible with the mechanics of minimal ranked
entailment, which is de�ned in terms of worlds and not formu-
las. Therefore, we provide a modi�ed version of the entailment

algorithm for ModelRank that formalises the mechanics of how en-
tailment queries are answered using this new representation. The
aforementioned algorithm is included as algorithm 7 in appendix
A and we refer to this algorithm as FormulaModelSatisfaction.

3.3 CumulativeFormulaRank
3.3.1 Motivation. After implementing the FormulaRank algorithm
using our extension of the Tweety Project Library, we encountered
severe performance issues. We determined the cause to be the
interaction between the implementation of the Sat4j SAT solver [9]
provided by the TweetyProject library [13] and the construction of
the representative formulas on each rank (�8 ).

When implementing FormulaRank, we reformulated the entail-
ment query of step seven of the FormulaRank algorithm to a satis-
�ability query that we can present to the SAT solver. For example,
U |= V , ">3(U ^ ¬V) ✓ ;. Or in other words, i� U ^ ¬V is
unsatis�able.

We discovered that the SAT solver then converts the given query
to Conjunctive Normal Form (CNF) as part of its implementation.
Due to the recurrence relation between the representative rank
formulas, the number of nested negated disjunctions increases
as the rank index increases. Consequently, when the SAT solver
attempts to convert the representative formula to CNF, there is an
exponential explosion in the length of the converted formula that
results in heap memory issues within the runtime environment.

To solve this problem we had to determine whether it was pos-
sible to produce a more compact formula representation than the
one produced by FormulaRank, that was still compatible with the
mechanics of minimal ranked entailment.

Algorithm 5 CumulativeFormulaRank

1: Input: A defeasible knowledge base K
2: Output: A cumulative ranked formula interpretation

(� 00, ..., �
0
=�1, �

0
1) and the number of ranks, =

3: 8 := 0;
4: K0

8 :=
�!K ;

5: repeat
6: � 08 := (VK0

8 );
7: K0

8+1 := {U ! V 2 K0
8 | � 08 |= ¬U};

8: 8 := 8 + 1;
9: until K0

8 = K0
8�1

10: = := 8
11: � 01 := >
12: � ⇤⇤ := (� 00, ..., �

0
=�1, �

0
1)

13: return � ⇤⇤,=

3.3.2 Overview. On closer inspection of the properties of the rep-
resentative formulas produced by FormulaRank, we realised that it
is in fact possible to disregard the negation of the disjunction of all
the previous representative rank formulas. The resulting sequence
of formulas now represents an accumulation of worlds whereby
the following property holds: 88 , ">3(� 08 ) =

S8
9=0 ' 9 where each

� 08 is from the sequence of formulas produced by CumulativeFor-

mulaRank and each '8 is a rank from RK
'⇠ produced by ModelRank.

We prove this result as part of proposition D.1 in appendix D.
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We term this new representation the ‘cumulative ranked formula
model’ of a knowledge base. Signi�cantly, this new representation
does not a�ect our ability to answer entailment queries using mini-
mal ranked entailment since satisfaction only takes into account the
minimal alpha worlds and this new representation neither a�ects
the point at which they are found nor our ability to reason with
them correctly. Furthermore, this new representation avoids the
complexity issues relating to the conversion to CNF.

This new representation is intimately related to the original
BaseRank and RationalClosure algorithms. The BaseRank ranks
are constructed from the di�erence between successive sets of
exceptional formulas. RationalClosure e�ectively reconstructs
the sequence of exceptional sets initially produced by BaseRank
from the BaseRank ranks to answer the entailment query.

We also note that the representative formula on a given �nite
rank of the cumulative ranked model is, in fact, the conjunction of
the formulas in the exceptional set produced by BaseRank of the
same index. Simply note the de�nition of ⇢8 in BaseRank and the
de�nitions of � 08 and K0

8+1 in CumulativeFormulaRank.
Thus, not only does the cumulative ranked formula model pro-

vide a syntactic representation of the models of a given knowledge
base in a cumulative sense, it functions as a cache of the information
used by RationalClosure to answer entailment queries. Hence
answering entailment queries using the cumulative ranked model
is similar to the RationalClosure algorithm.

Example 3.3. Once more, consider the knowledge base from Ex-
ample 2.2: K = {m |⇠ l,¬(p ! m) |⇠ ?, p |⇠ ¬l}.

For completeness, we include the corresponding cumulative
ranked formula interpretation produced by CumulativeFormula-
Rank forK as Figure 3 (we ignore the in�nite rank for compactness).

�2 (¬(p ! m) |⇠ ?)
�1 (¬(p ! m) |⇠ ?) ^ (p |⇠ ¬l)
�0 (m |⇠ l) ^ (¬(p ! m) |⇠ ?) ^ (p |⇠ ¬l)

Figure 3: Representation of � ⇤⇤ for Example 3.3

3.3.3 Entailment. CumulativeFormulaRank uses the same entail-
ment query algorithm, termed FormulaModelSatisfaction, as
FormulaRank, which again is included as algorithm 7 in appen-
dix A.

4 MODEL-BASED ALGORITHMS ANALYSIS
4.1 Construction Algorithms
4.1.1 ModelRank. We present an estimation of the time and space
complexity of the algorithm using Big O notation. We consider the
number of classical satisfaction checks executed as our basic unit
of computation for our time-complexity analysis of this algorithm.

The algorithm keeps track of the remaining worlds and formulas
as part of two decreasing sequences, U8 and K8 , respectively. The
U8 sequence begins with the entire universe of worlds for the
propositional vocabulary of the knowledge base. Thus if there are
? atoms in the vocabulary, there will be a total of 2? worlds. The
K8 sequence begins with the materialisation of all the formulas
in the knowledge base. Thus suppose there are = formulas in the

knowledge base. Then, using a result by Giordano et al. [5] that
links the base ranks of formulas concerning a given knowledge base,
K , to the ranks of worlds within the corresponding minimal ranked
model, RK

'⇠ , we can conclude there can be at most = + 1 ranks in
the corresponding ranked model. Thus the repeat until loop will
execute at most = + 1 times. Hence as a worst-case approximation,
there will be 2? · (= +1) satisfaction checks at line 8 of the algorithm.
Furthermore, there will be, at most, 2? · (= + 1) satisfaction checks
at line 10 of the algorithm. Thus in total, we have = · (2 · 2? (= + 1))
satisfaction checks, which results in a time-complexity of$(=2 · 2? ).

We clarify that these estimates are conservative upper bounds
because they do not consider that the sequences of remaining for-
mulas and remaining worlds are strictly decreasing. There are many
factors to consider when estimating complexity due to the interac-
tions between the varied characteristics of the particular knowledge
base one is considering. For example, there can be situations where
the knowledge base contains many defeasible formulas but has a
relatively small vocabulary and vice versa.

We also claim that 2? satisfaction checks can be considered to
be approximately equivalent to a single entailment check in that,
in the worst case, checking whether a particular entailment holds,
say U |= V , can be evaluated by determining whether U ^ ¬V is
unsatis�able, as mentioned in section 3.3.1.

Thus, we can say that the worst case time complexity is $(=2),
where = now represents classical entailment checks. We also note
that this shows that computing the minimum ranked model via
ModelRank is no harder than checking classical entailment since
each classical entailment check reduces to the Boolean satis�ability
problem, which is NP-complete.

Finally, the space complexity of the algorithm is primarily dic-
tated by the number of worlds needed to be stored in memory,
which is determined by the cardinality of the propositional vocabu-
lary of the knowledge base, say ? . Hence the space complexity is
$(2? ).

4.1.2 FormulaRank and CumulativeFormulaRank. Both algorithms
keep track of the remaining formulas as part of the decreasing
sequence ofK8 sets. Again, for a knowledge base of size = formulas,
they will perform at most = + 1 iterations. Each algorithm will
perform a single entailment check for each remaining formula
in each iteration’s current K8 set. Thus the time complexity is
$(= · (= + 1)) = $(=2).

However, this does not give the complete picture of the algo-
rithm’s performance from an implementation perspective. The com-
plexities or lengths of the formulas themselves have a signi�cant
impact on the complexity of the entailment check. This discrepancy
is evident when we consider FormulaRank and CumulativeFor-
mulaRank together. Both algorithms perform the same number of
classical entailment checks. However, the representative formulas
used by FormulaRank are far longer and more complex than the
ones used by CumulativeFormulaRank and in practice, Formula-
Rank is entirely infeasible.

We estimate the space complexity of the FormulaRank and Cumu-
lativeFormulaRank algorithms regarding the number of syntactic
knowledge base formulas their resulting representations comprise.
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This decision is motivated by the fact that the representative formu-
las on each rank are entirely comprised of combinations of formulas
from the original knowledge base.

Suppose there are = formulas in the knowledge base, K . Then
since �0 :=

VK0 =
V�!K , we have that �0 contains = formulas. If we

ignore that the sequence ofK8s is decreasing, thenwe have an upper
bound for each �8 of 28 · 8 formulas. Thus since there are at most
= +1 ranks, we have a worst-case estimate for the space-complexity
of $(2= · =2), where = represents the number of formulas in the
knowledge base. On the other hand, for CumulativeFormulaRank,
since we do not negate the disjunction of all the previous rank
formulas, if we again make the simplifying assumption that the
K8s are constant, we have that the space complexity is$(=2) in the
number of formulas in K .

In summary:

Time Space
ModelRank $(=2) $(2? )
FormulaRank $(=2) $(2= · =2)
CumulativeFormulaRank $(=2) $(=2)

4.2 Entailment Algorithms
ModelSatisfaction implicitly performs satisfaction checks to lo-
cate the minimum alpha world for a given query. Hence for a given
knowledge base, K , with a propositional vocabulary of cardinal-
ity, ? , ModelSatisfaction has a worst-case time-complexity of
$(2? ) satisfaction checks. Using the same argument regarding the
relationship between satisfaction and entailment checks, we can
claim that worst-case time-complexity is $(1) in the number of
entailment checks.

On the other hand, FormulaModelSatisfaction performs at
most = entailment checks resulting in a worst-case time-complexity
is $(=) in the number of entailment checks.

5 SYSTEM DEVELOPMENT AND
IMPLEMENTATION

Although the contributions of this work are primarily theoretical,
we felt there was merit in developing a cohesive minor software
component that could aid not only the conceptual development of
the algorithms presented within this paper but also assist future
researchers within this area.

The software developed, therefore, primarily performed the role
of a companion testing ground for the ideas we explored during
the algorithms’ development. The secondary role of the software
developed was to acquire baseline comparisons between the newly
developed algorithms’ implementations and implementations of
the pre-existing algorithms found in [3, 6].

5.1 Defeasible Extensions to the TweetyProject
The decision to utilise Java and the TweetyProject library was
primarily motivated by the decision to build upon the work done
in [6].

We provide parsing utilities for reading text �les containing
knowledge bases represented in a formula-per-line format. Further-
more, we implement class interfaces for all the relevant structures

such as defeasible knowledge bases, ranked interpretations and
ranked formula interpretations. In addition, all the model-based al-
gorithms implement a generic or parameterised ‘RankConstructor’
interface for consistency and ease of use. Finally, we provide two
minimal ranked entailment reasoners (one for ranked interpreta-
tions and one for ranked formula interpretations) that implement
the ‘DefeasibleReasoner’ interface.

Regarding the algorithms themselves, we provide implementa-
tions of the pre-existing algorithms found in [3, 6] as well as all the
model-based algorithms presented within this paper.

6 EXPERIMENT METHODOLOGY
One of the initial aims of this project was to compare the algo-
rithms’ theoretical and execution-time performance with that of
the corresponding ranked-formula-based approaches in [6].

Related to this aim was the research question: how does the
performance of the foundational and optimised model-based algo-
rithms for rational closure compare to the corresponding ranked-
formula-based implementations in [6] with respect to computa-
tional complexity and execution time, measured across knowledge
bases and query sets of varying size (number of formulas) and
structure (number and distribution of ranks)?

We hypothesised that performing entailment query checks using
minimal ranked entailment on model-based knowledge representa-
tions would perform better than the pre-existing approaches based
on ranked-formula semantics in terms of execution time.

Due to time constraints and the signi�cant theoretical compo-
nent of this paper, we conducted experiments intending to get a
preliminary answer to our research question, leaving a more pro-
found investigation to a future experimental continuation of this
work.

6.1 Evaluation metrics
We developed a benchmark testbed using the Java Microbenchmark
Harness (JMH) to perform accurate millisecond benchmarks of
the algorithms on the evaluation data. The JMH handles warmup
and records precise measurements by interfacing with the Java
Virtual Machine (JVM). The metric used for the experiments is the
average execution time across the measurement iterations (after
the warmup iterations).

6.2 Evaluation Data Generation
[6] developed a Knowledge Base Generation Tool (KBGT) to gener-
ate the knowledge base sets used in testing their implementations.
The KGBT accepts several parameters that control the structure
of the knowledge bases it produces. For example, such parameters
control the number of base ranks, the total number of formulas and
the distribution of those formulas across the ranks.

6.2.1 Knowledge Bases. Wewrote a small script to use the KBGT to
deterministically produce all possible combinations of knowledge
bases whose number of ranks and formulas per rank ranged over
set intervals. The belief is that these two parameters are likely
to have the most signi�cant impact on the performance of the
algorithms, and by trying all combinations over a reasonable range
of values, we will be able to elicit the performance characteristics
of the algorithms.

8



Model-Based Defeasible Reasoning

6.2.2 �ery Sets. We then wrote a second script to select ten for-
mulas randomly from each knowledge base to produce a corre-
sponding query set, which we used to evaluate the entailment
performance of the algorithms.

6.3 Experiments
Given the previously discussed implementation ine�ciencies of
FormulaRank, only ModelRank and CumulativeFormulaRank lend
themselves to further investigation from an experimental or imple-
mentation perspective.

A taxonomy of the experiments that were conducted is as fol-
lows:

(1) Construction Experiments
(a) ModelRank vs BaseRank
(b) CumulativeFormulaRank vs BaseRank

(2) Entailment Experiments
(a) ModelRank + ModelSatisfaction vs BaseRank + Ra-

tionalClosure
(b) CumumlativeFormulaRank + FormulaModelSatisfac-

tion vs BaseRank + RationalClosure

Each construction experiment has a corresponding test set of
knowledge bases, generated as described in 6.2. For each knowledge
base in the test set, we record the average execution time taken by
each algorithm to construct its corresponding representation.

Each entailment experiment has a corresponding test set of
knowledge bases in correspondence with companion query sets,
again generated as described in 6.2. For each knowledge base and
query set pair, we record the average execution time taken by each
algorithm to answer all the queries in the test set using their respec-
tive representations (ignoring the time taken to construct those
representations).

6.3.1 Experiments Involving ModelRank. The space-complexity is-
sues with ModelRank mentioned in section 4 constrain the size of
the propositional vocabulary we can use when generating knowl-
edge bases. More speci�cally, large vocabulary sizes result in heap
memory issues in the runtime environment. Thus, due to time and
technical constraints, we limited our construction experiments for
comparing ModelRank and BaseRank on knowledge bases whose
number of base ranks ranges from 1 to 15 with only a single for-
mula on each base rank. For entailment, we generate query sets as
described in 6.2 for the knowledge bases whose number of ranks
ranges from 10 to 15.

6.3.2 Experiments involving CumulativeFormulaRank. Cumulative-
FormulaRank does not su�er from such space complexity issues.
Therefore we generated knowledge bases according to section 6.2
with the following characteristics: number of ranks from 10 to 100
in intervals of 10 and numbers of formulas per rank from 2 to 10,
resulting in 90 distinct knowledge bases. For entailment, we used
the script mentioned in section 6.2 to produce 90 corresponding
query sets of 10 queries each.

6.3.3 Experiment Execution. All experiments were run on a ma-
chine with the following speci�cations:

• CPU: Apple M1 Pro, 10 cores
• Memory: 32GB
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Figure 4: Experiment Results

As mentioned, the benchmarking testbed uses the JMH to record
accurate benchmark results. However, due to the time constraints of
performing 90 complete benchmarks for each algorithm, we set the
JMH parameters as follows: Fork=1, Measurement=2, Warmup=1.

The warmup value controls the number of discarded executions
performed to allow the JVM to perform any necessary procedures
that may a�ect the measurement results. The measurement value
determines how many benchmark iterations are measured and
averaged together. Finally, Fork controls the number of times the
complete warmup and measurement sequence is repeated.

6.3.4 Replicability. All the experiments conducted are easily repro-
ducible. The code for all the implemented algorithms and KLM-style
defeasible extensions to the TweetyProject will be open-sourced
and made available on GitHub.

7 RESULTS AND DISCUSSION
Due to space limitations, we include a single �gure for each ex-
periment conducted to isolate a particular characteristic worth
mentioning in the discussion. Additional results are included in
Appendix E.

Figure 4a shows the results for comparing ModelRank and BaseR-
ank in terms of execution time across the test set described in 6.3.1.
Predictably, BaseRank is relatively e�cient in producing its repre-
sentation of the knowledge in terms of base ranks, given that the
resulting representation is comprised of only the formulas from
the knowledge base itself. Unfortunately, the theoretical analysis
of ModelRank in section 4 does not give a complete picture of its
performance in practice. For example, the graph shows an exponen-
tial relationship between execution time and the number of ranks
of the knowledge bases for the ModelRank algorithm despite the
claimed time complexity of $(=2). The cause of this discrepancy is
likely the additional implementational overhead of enumerating the
entire universe of worlds prior to the ranking process, which was
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assumed to be immediately available during theoretical analysis.
Hence, one should bare that in mind for future implementations.

On the other hand, if we now consider the results from Figure 4b,
the bene�ts of using a ranked model representation with minimal
ranked entailment are evident. As the number of ranks increases,
the execution time of the implementation of ModelSatisfaction
remains virtually constant. This result aligns with the computa-
tional complexity of the ModelSatisfaction algorithm ($(1)) and
provides evidence that the theoretical performance bene�ts a�orded
by minimal ranked entailment carry over to implementation.

Figure 4c shows how the performance of the CumulativeFormu-
laRank algorithm scales across di�erent combinations of numbers
of ranks and formulas per rank. It is clear from the surface plot
that rank size and rank count equally contribute to the execution
times observed, which indicates that a better metric to consider
is the total number of formulas within a given knowledge base.
Although we do not plot the results for BaseRank, we note that
its results produce a surface identical in shape to that of Cumula-
tiveFormulaRank, except achieving slightly lower execution times
- this is expected given the similarities between the operations both
algorithms perform.

Finally, Figure 4d compares the entailment performance of the
implementation of FormulaModelSatisfaction using the repre-
sentation produced by CumulativeFormulaRank against BaseRank
and RationalClosure. It is clear that they achieve similar perfor-
mance, but that BaseRank and RationalClosure generally outper-
form FormulaModelSatisfaction and CumulativeFormulaRank.
The initial intuition was that the reverse would be true, given that
the representation produced by CumulativeFormulaRank caches
the information used by RationalClosure. This result is poten-
tially a consequence of representing each rank as a conjunction
of formulas instead of a set. We suspect that the Sat4j SAT solver
implementation is more amenable to queries represented in terms
of sets. We leave this as an investigation for future work.

Regarding model-based representations in general, one can view
them from the perspective of a space-time trade-o� because, at
the cost of storing much more information, one can ideally answer
entailment queries faster. ModelRank is an obvious example of this,
in that the representation it constructs stores as much information
as possible about the underlying knowledge and allows for almost
constant time defeasible entailment query checking. We argue that
it may be a worthwhile trade-o� for situations where the proposi-
tional vocabulary size is relatively small, but the knowledge base
contains many formulas.

8 CONCLUSIONS
This work represents an avenue largely unexplored in the literature:
the design of model-based algorithms for computing forms of KLM-
style defeasible entailment, namely rational closure.

We present three new algorithms for constructing representa-
tions of the rational closure ranked models of a given defeasible
knowledge base. The �rst algorithm, ModelRank, constructs a rep-
resentation consistent with its abstract de�nition in the literature.
The second and third algorithms construct new compact represen-
tations for the ranked models using representative formulas. The
�nal algorithm, CumulativeFormulaRank, produces a new class

of representation that we term cumulative due to the cumulative
nature in which worlds are associated with each rank. With all
algorithms following the same bottom-up pattern of construction,
based on the initial model ranking algorithm, we prove these pro-
duce the desired ranked models for computing the rational closure
of a given knowledge base.

Finally, we implement and compare the performance of these
proposed algorithms against existing approaches. In doing so, we
provide a software foundation for future work.

9 FUTUREWORK
This work naturally leads to future theoretical as well as experi-
mental work. For example, one direction is the extension of these
model-based algorithms to general forms of rational defeasible
entailment as de�ned in [3].

Another direction to consider is updating an already constructed
representation of the underlying knowledge base if the knowledge
base is updated itself. Furthermore, one can consider forms of entail-
ment that allow for syntax-splitting, which refers to the restriction
of attention to only the parts of the knowledge base that share
atoms with a given query. One can also consider exploring these
results for more expressive logics such as in [12].

Concerning the implementations of these algorithms, there are
many optimisations and heuristics that can be explored. In particu-
lar, representing the ranks as sets of formulas instead of conjunc-
tions is to be explored. Finally, we suggest that there is potentially
pedagogical value in further extensions to the implementations we
provide.
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A ENTAILMENT ALGORITHMS

Algorithm 6 ModelSatisfaction

1: Input: A ranked interpretation '⇤ := ('0, ...,'=�1,'1), the
number of ranks, =, and a query defeasible implication, U |⇠ V .

2: Output: true if '⇤ � U |⇠ V , otherwise false
3: 8 := 0;
4: while '8 \ JUK = ; and 8 < = do ù No U worlds found
5: 8 := 8 + 1;
6: end while
7: return '8 \ JUK ✓ JVK; ù All minimal U worlds are V worlds

Algorithm 7 FormulaModelSatisfaction

1: Input: A formula-based representation of a ranked interpreta-
tion � ⇤ := (�0, ..., �=�1, �1), the number of ranks, =, and a query
defeasible implication, U |⇠ V .

2: Output: true if '⇤ � U |⇠ V where ' is the ranked interpreta-
tion associated with � , otherwise false

3: 8 := 0;
4: while �8 ^ U |= ? and 8 < = do ù No U worlds found
5: 8 := 8 + 1;
6: end while
7: return �8 ^ U |= V ; ù All minimal U worlds are V worlds

B MODELRANK ALGORITHM PROOFS
P���������� B.1. The ModelRank algorithm terminates.

P����. We assume that
�!K is consistent. Thus, we want to show

that '8 = ; for some 8 .
By de�nition, we have that 89,' 9 := U9 \">3(K9 ) and U9+1 ✓

U9 .
Thus for arbitrary 8 , either:
(1) U8+1 ⇢ U8
(2) U8+1 = U8

Since U is �nite, (1) can only occur a �nite number of times. If
U8+1 = U8 , then '8 = ; since U8+1 := U8 \ '8 and '8 ✓ U8 .

⇤

P���������� B.2. The ModelRank algorithm produces a ranked
model of the given defeasible knowledge base, K .

P����. Suppose ModelRank produces R⇤ = ('0, · · · ,'=�1,'1).
We therefore wish to show that R⇤ is a ranked model of K .
We show this in two parts:
(1) R⇤ a ranked interpretation:

We show that R⇤ is a function fromU toN[{1} such that
R⇤(D) = 0 for some D 2 U , and satisfying the following
convexity property: 88 2 N, if R⇤(E) = 8 , then, for 89 such
that 0  9 < 8 , 9D 2 U for which R⇤(D) = 9 .

We assume that
�!K is consistent.

Hence,">3(
�!K ) 6= ;. Thus '0 := U0 \">3(K0) 6= ;.

Thus, 9D 2 U such that R⇤(D) = 0.
Take arbitrary D 2 U .

11

https://doi.org/10.1007/BF01535841
https://doi.org/10.1007/BF01535841
https://doi.org/10.1016/0004-3702(92)90041-U
https://doi.org/10.1016/0004-3702(92)90041-U


Jaron Cohen

Either D 2 ' 9 or D 62 ' 9 for some 9 2 N.
If D 2 ' 9 , then D 2 U9 and D 2 ">3(K9 ).

D 2 U9 and D 2 ' 9
) D 62 U9+1

) 8< > 0,D 62 U9+1+< , since 88 > 0,U8+1 ⇢ U8

) 8< > 0,D 62 R9+1+<

If D 62 ' 9 for some 9 2 N, then D 2 U8 for 8  =. But
'1 := U= , thus D 2 '1.
Thus, as soon as a world is placed on a rank, it can no
longer be placed on any subsequent ranks. We note that
the stopping condition of the algorithm is that the current
rank is empty, and that this empty rank is excluded from
the output. Thus, there can never be any empty ranks.

(2) R⇤ is a model of K:
We want to show that 8U |⇠ V 2 K ,<8=�JUKR⇤ ✓ JVKR⇤

.
We note that<8=�JUKR⇤

is just alternative notation for the
minimal U-worlds with respect to the interpretation R⇤.
Take arbitrary U |⇠ V 2 K .
(a) If JUKR⇤

= ;, we are done.
(b) If JUKR⇤ 6= ;, then take arbitrary E 2 JUKR⇤

.
Suppose R⇤(E) = 8 .
Note that R9 := U9 \">3(K9 ) and

K9 := {W ! X 2 K9�1 | @E 2 ' 9�1 s.t. E � W}.

Since E 2 JUKR⇤
and R⇤(E) = 8 , we must have that

89 < 8 , @D 2 ' 9 such that D � U .
Note that U ! V 2 K0 :=

�!K .
Hence, U ! V 2 K9 , 89  8 .
Since E 2 JUKR⇤

and E 2 '8 := U8 \ ">3(K8 ) and
U ! V 2 K8 , we have that E 2 JVKR⇤

.
⇤

L����B.3. Suppose ModelRank producesR⇤ = ('0, · · · ,'=�1,'1).
Take arbitrary E 2 '8 for 8 > 0.
8U ! V 2 K8�1 \ K8 , 9F 2 '8�1, s.t.F � U ^ V .

P����. Take arbitrary U ! V 2 K8�1 \ K8

) U ! V 2 K8�1 \ K8 = K8�1 \K8

= K8�1 \ {U ! V 2 K8�1 | @E 2 '8 s.t. E � U}

= K8�1 \ (K8�1 \ {U ! V 2 �!K | @E 2 '8 s.t. E � U})

= K8�1 \ (K8�1 [ {U ! V 2 �!K | @E 2 '8 s.t. E � U})

= K8�1 \ {U ! V 2 �!K | @E 2 '8 s.t. E � U}

= K8�1 \ {U ! V 2 �!K | 9E 2 '8 s.t. E � U}
= {U ! V 2 K8�1 | 9E 2 '8 s.t. E � U}

Since U ! V 2 {U ! V 2 K8�1 | 9E 2 '8 s.t. E � U}, take
arbitrary D 2 '8�1 such that D � U .

But D 2 '8 ) D 2 ">3(K8�1) ✓ ">3(K8�1 \ K8 ).

Hence,D � U andD 2 ">3(K8�1\K8 ) andU ! V 2 K8�1\K8 )
D � V . ⇤

L����B.4. Suppose ModelRank producesR⇤ = ('0, · · · ,'=�1,'1).
Let 8 > 0.
8U ! V 2 K8�1 \ K8 ,89 < 8 � 1, @F 2 ' 9 , s.t.F � U .

P����. Take arbitrary U ! V 2 K8�1 \ K8 .
Suppose for the sake of contradiction that 9F 2 ' 9 with 9 < 8�1

and thatF � U .
By de�nition, ' 9 = U9 \">3(K9 ).
) F 2 ">3(K9 )
By de�nition, 8< > 0, K<+1 ⇢ K< .
By assumption, U ! V 2 K8�1 \ K8 ✓ K8�1
) U ! V 2 K8�1 ⇢ · · · ⇢ K9 ⇢ K9�1 ⇢ · · · ⇢ K1 ⇢ K0 :=

�!K .
Note that K9+1 := {U ! V 2 K9 | @E 2 ' 9 s.t. E � U}.
Now, U ! V 2 K9 andF 2 ' 9 andF � U .
Hence, U ! V 62 K9+1 ) U ! V 62 K8�1 ) U ! V 62 K8�1 \K8 .
Which is clearly a contradiction. Thus no suchF exists. ⇤

L����B.5. Suppose ModelRank producesR⇤ = ('0, · · · ,'=�1,'1).
Take arbitrary E 2 '8 for 8 > 0.
8U ! V 2 K8�1 \ K8 ,<8=�JU ^ VKR⇤ ✓ '8�1.

P����. This follows from Lemma B.3 and Lemma B.4 since
Lemma B.3 shows that there exists a world with the speci�ed prop-
erty and Lemma B.4 shows that there does not exist a world with
such property on any lower rank.

⇤

L����B.6. Suppose ModelRank producesR⇤ = ('0, · · · ,'=�1,'1).
Take arbitrary E 2 '8 for 8 > 0.
9U ! V 2 K8�1 \ K8 such that E 1 U ! V

P����. Suppose for the sake of contradiction that E 2 '8 and
8U ! V 2 K8�1 \ K8 , E � U ! V .

Hence, E 2 ">3(K8�1 \ K8 ).
By de�nition, '8 = U8 \">3(K8 ) ✓ ">3(K8 ).
) E 2 U8 and E 2 ">3(K8 ).
Take arbitrary G 2 K8�1.
Since K8 ⇢ K8�1, we have that K8�1 = K8 [ (K8�1 \ K8 ).
Hence, either G 2 K8 or G 2 K8�1 \ K8 .
If G 2 K8 , then since E 2 ">3(K8 ), E � G .
If G 2 K8�1 \ K8 , then since E 2 ">3(K8�1 \ K8 ), E � G .
Thus E 2 ">3(K8�1).
Hence, E 2 U8�1 and E 2 ">3(K8�1) ) E 2 '8�1.
This is a contradiction since we assumed that E 2 '8 and we

have shown that R⇤ is a ranked interpretation.

⇤

Consider the ordering �K on all ranked models of a knowledge
base K , which is de�ned as follows: R1 �K R2 if for every E 2 U ,
R1(E)  R2(E).

P����������B.7. Suppose ModelRank producesR⇤ = ('0, · · · ,'=�1,'1).
R⇤ is the minimal ranked model of K with respect to �K .

P����. Suppose ModelRank produces R⇤ = ('0, · · · ,'=�1,'1).
Take arbitrary E 2 '8 for 8 > 0.

12
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We want to show that if we remove E and place it on any rank
lower than 8 , that the resulting ranked interpretation, is no longer
a model of K .

To do this, we use Lemma B.5 and Lemma B.6.
Lemma B.5 shows that all the best alpha worlds, that are also

beta worlds, for any formula inK8�1 \K8 , are located on rank 8 � 1.
Lemma B.6 then shows that there must be at least one formula,

say W ! X , in K8�1 \ K8 that E violates.
Hence, W ! X 2 K8�1 \ K8 ⇢ K8�1 ⇢ · · · ⇢ K0.
Thus, we can conclude that

R⇤0 := ('0, · · · ,'8�: [ {E}, · · · ,'8 \ {E}, · · · ,'=�1,'1)

for some 0 < :  8 is not a model of K . ⇤

C FORMULARANK ALGORITHM PROOFS
L���� C.1. Consider each set of remaining worlds, U8 , as de�ned

in the ModelRank algorithm as U8 := U8�1 \ '8�1,88 > 0. One can
write, 88 > 0,U8 = U \S8�1

9=0 ' 9 .

P����. We use induction.
• Base Case:

U1 = U0 \ '0 (by de�nition)

= U0 \
0[
9=0

' 9

• Induction Step: suppose for some : > 0,: 2 N that

U: = U \
:�1[
9=0

' 9 holds.

We wish to show that

U:+1 = U \
:[
9=0

' 9

U:+1 = U: \ ': (by de�nition)

= (U \
:�1[
9=0

' 9 ) \ ':

= U \ ((
:�1[
9=0

' 9 ) [ ': )

= U \
:[
9=0

' 9

⇤

P���������� C.2. With respect to the ModelRank and Formula-
Rank algorithms, the representative formula, �8 , on each rank of the
FormulaRank model, is related to the worlds on each rank, '8 , of the
ModelRank model by the following property: 88 , ">3(�8 ) = '8 and
K0
8 = K8 . Additionally, both algorithms terminate at the same point.

P����. Base Case:

We assume that K is consistent.
Thus we have that '0 := U0 \">3(K0) = ">3(

�!K ) is not empty.
Furthermore, for both ModelRank and FormulaRank, K0 :=

�!K and
K0
0 :=

�!K . Thus K0 = K0
0.

�0 :=
^

K0
0 ^ ¬(

_
9<0

� 9 )

=
^

K0
0 ^ ¬?

=
^

K0
0 ^ >

=
^

K0
0

=
^

K0 (by de�nition)

) ">3(�0) = ">3(
^

K0)
= ">3(K0)
= U0 \">3(K0) (since U0 := U )
= '0

We also know that both K1 and K0
1 exist.

‘Repeating Base Case’:

Suppose that for some 8 > 0, '8 6= ;, that K8 = K0
8 and that

8:  8 ,">3(�: ) = ': .

We �rst show that K8+1 = K0
8+1.

Note that

K8+1 := {U ! V 2 K8 | @E 2 '8B .C .E � U}
and
K0
8+1 := {U ! V 2 K0

8 | �8 |= ¬U}.

Since K8 = K0
8 by our induction hypothesis,

K0
8+1 = {U ! V 2 K8 | �8 |= ¬U}.

Now,

�8 |= ¬U , ">3(�8 ) ✓ ">3(¬U)
, '8 ✓ ">3(¬U) (by induction hypothesis)
, 8D 2 '8 ,D 2 ">3(¬U)
, 8D 2 '8 ,D � ¬U
, @D 2 '8 ,D � U

Thus, since K8 = K0
8 (by induction hypothesis), and �8 |= ¬U ,

@D 2 '8 s.t. D � U , we have that K8+1 = K0
8+1.

Now,

�8+1 :=
^

K0
8+1 ^ ¬(

_
9<8+1

� 9 )

=
^

K8+1 ^ ¬(
_
9<8+1

� 9 )

) ">3(�8+1) = ">3(
^

K8+1) \">3(¬(
_
9<8+1

� 9 ))

13
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Now,

">3(¬(
_
9<8+1

� 9 )) = U \">3(
_
9<8+1

� 9 )

= U \
8[
9=0

">3(� 9 )

= U \
8[
9=0

' 9 (by induction hypothesis)

= U8+1 (by lemma C.1)

Thus,

">3(�8+1) = ">3(
^

K8+1) \ U8+1

= U8+1 \">3(K8+1)
= '8+1 (by de�nition)

Now, if K0
8+1 = K0

8 , then we have that FormulaRank terminates.
We must now show that ModelRank terminates at the same index
(8 + 1).

'8+1 : = U8+1 \">3(K8+1)
= U8+1 \">3(K8 )
= (U8 \ '8 ) \">3(K8 )
= (U8 \">3(K8 )) \ ('8 \">3(K8 ))
= '8 \ '8
= ;

Thus ModelRank terminates at the same index.
⇤

D CUMULATIVEFORMULARANK ALGORITHM
PROOFS

P���������� D.1. With respect to the ModelRank and Cumula-
tiveFormulaRank algorithms, the representative formula, � 08 , on
each rank of the CumulativeFormulaRank model, is related to the
worlds on each rank, '8 , of the ModelRank model by the following
property: 88 , ">3(� 08 ) =

S8
9=0 ' 9 and K0

8 = K8 . Additionally, both
algorithms terminate at the same point.

P����. Base Case:

We assume that K is consistent.
Thus we have that '0 := U0 \">3(K0) = ">3(

�!K ) is not empty.
Furthermore, for both ModelRank and FormulaRank, K0 :=

�!K and
K0
0 :=

�!K . Thus K0 = K0
0.

� 00 :=
^

K0
0

=
^

K0 (by de�nition)

) ">3(�0) = ">3(
^

K0)
= ">3(K0)
= U0 \">3(K0) (since U0 := U )
= '0

=
0[
9=0

' 9

We also know that both K1 and K0
1 exist.

‘Repeating Base Case’:

Suppose for that for some 8 > 0, '8 6= ;, that K8 = K0
8 and that

8:  8 ,">3(� 0: ) =
S:

9=0 ' 9 .

We �rst show that K8+1 = K0
8+1.

Note that

K8+1 := {U ! V 2 K8 | @E 2 '8B .C .E � U}
and
K0
8+1 := {U ! V 2 K0

8 | � 08 |= ¬U}.

Since K8 = K0
8 by our induction hypothesis,

K0
8+1 = {U ! V 2 K8 | �8 |= ¬U}.

We show that K8+1 ✓ K0
8+1 and K0

8+1 ✓ K8+1.
If K0

8+1 6= ;, then take arbitrary U ! V 2 K0
8+1. Thus, we have

that

� 08 |= ¬U , ">3(� 08 ) ✓ ">3(¬U)

,
8[
9=0

' 9 ✓ ">3(¬U)

) '8 ✓ ">3(¬U)
) U ! V 2 K8+1

If K8+1 6= ;, then take arbitrary U ! V 2 K8+1. Thus, we have
that

@E 2 '8 , s.t. E � U ) @E 2 ' 9 ,89  8 s.t. E � U

)
8[
9=0

' 9 ✓ ">3(¬U)

) ">3(� 08 ) ✓ ">3(¬U)
, � 08 |= ¬U
) U ! V 2 K0

8+1

Thus K8+1 = K0
8+1 .

We now need to show that">3(� 08+1) =
S8+1

9=0 ' 9 .

We �rst show thatS8+1
9=0 ' 9 ✓ ">3(� 08+1).
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8+1[
9=0

' 9 =
8[
9=0

' 9 [ '8+1

= ">3(� 08 ) [ '8+1
= ">3(� 08 ) [ (U8+1 \">3(K8+1)
= ">3(K8 ) [ (U8+1 \">3(K8+1)
= (">3(K8 ) [ U8+1) \ (">3(K8 ) [">3(K8+1))
= (">3(K8 ) [ U8+1) \">3(K8+1)
✓ ">3(K8+1)
= ">3(� 08+1)

Next, we show that">3(� 08+1) ✓
S8+1

9=0 ' 9 .

Suppose for the sake of contradiction that">3(� 08+1) *
S8+1

9=0 ' 9 .

">3(� 08+1) *
8+1[
9=0

' 9 , ">3(K0
8+1) *

8+1[
9=0

' 9

, 9E 2 ">3(K0
8+1) s.t. E 62

8+1[
9=0

' 9

Now,

E 62
8+1[
9=0

' 9 , E 62 ' 9 , 89  8 + 1

) E 62 '8+1 = U8+1 \">3(K8+1)
) E 62 ">3(K8+1) = ">3(K0

8+1)

Thus, we have that ">3(� 08+1) ✓ S8+1
9=0 ' 9 and consequently,

">3(� 08+1) =
S8+1

9=0 ' 9 .
Now, ifK0

8+1 = K0
8 , then we have that CumulativeFormulaRank

terminates.
We must now show that ModelRank terminates at the same index
(8 + 1).

'8+1 : = U8+1 \">3(K8+1)
= U8+1 \">3(K8 )
= (U8 \ '8 ) \">3(K8 )
= (U8 \">3(K8 )) \ ('8 \">3(K8 ))
= '8 \ '8
= ;

Thus ModelRank terminates at the same index.
⇤
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Figure 5: Experiment (1)(a) - BaseRank Execution Time Com-
pared Against Number of Ranks and Rank Size
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Figure 6: Experiment (2)(b) - FormulaModelSatisfaction Exe-
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Figure 7: Experiment (2)(b) - RationalClosure Execution Time
Compared Against Number of Ranks and Rank Size
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