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ABSTRACT
Defeasible reasoning attempts to formalize aspects of human rea-
soning in which prior conclusions can be retracted with the addition
of new information. Classical forms of reasoning are limited in ex-
pressing uncertainty and do not produce reasonable conclusions
for exceptional knowledge. Although much work has been done
in defining algorithms for computing several forms of defeasible
consequence, these approaches are primarily based on the ranking
of formulas in a knowledge base. Recent work has shown that par-
ticular models of a knowledge base characterize reasonable forms
of defeasible entailment. However, there is work to be done in
constructing, representing and using such models for defeasible
entailment checking. In this review, we provide a brief history of,
and motivation for, defeasible reasoning and its current trajectory,
followed by an analysis of two principle patterns of reasoning (ratio-
nal and lexicographic closure). Our focus, in defining these, will be
on their model-based semantics, noting how this relates to existing
formula-based approaches.

CCS CONCEPTS
• Theory of computation→ Automated reasoning; • Comput-
ing methodologies → Nonmonotonic, default reasoning and
belief revision.

KEYWORDS
artificial intelligence, knowledge representation and reasoning,
defeasible reasoning, rational closure, lexicographic closure

1 INTRODUCTION AND MOTIVATION
At its core, knowledge representation can be understood as the ex-
pression of information about an environment through some lan-
guage [5]. “It is sunny today" is a simple example of how knowl-
edge is expressed via natural language. The manipulation of such
knowledge for the purposes of deriving new knowledge defines the
notion of reasoning. As humans, the ability to reason with existing
knowledge comes naturally, however, in the context of artificial
intelligence, we require more rigorous and structured methods
to represent and manipulate knowledge. As such, knowledge is
typically encoded symbolically and manipulated to produce new
symbolic representations (conclusions) [10].

A simple, yet expressive means of achieving this is through clas-
sical propositional logic. Propositions (simple statements about the
world) are assigned truth values and are combined using several
operators to form more complex logical statements [1]. Seman-
tics for several reasoning services allow for the conclusion of new
propositional statements from a set of existing statements. Known
as knowledge bases, these sets represent a collection of knowledge
with which to reason.

Propositional logic has a number of desirable characteristics,
some of which include its simplicity and ties to Boolean algebra
[11]. However, it has limited expressively on account of its straight-
forward syntax and semantics. In particular, propositional logic
cannot express the notion of typicality, where it is understood that
a particular implication usually holds, but that there are possibly
exceptions to this.

Another issue worth considering is that of monotonicity. The
semantics of propositional logic define entailment (a fundamental
reasoning service) which allows for reasonable conclusions to be
drawn from existing knowledge. Entailment resolves what should
follow as conclusions from a set of statements. Its definition, in
propositional logic, is said to be monotonic, meaning that conclu-
sions drawn from some knowledge will never be retracted with the
addition of new knowledge [7]. This property, while desirable in
certain contexts, imposes limitations on the capabilities of proposi-
tional logic. Consequently, defeasible approaches to reasoning have
been, and continue to be, explored as nonmonotonic alternatives
to the classical approaches.

Defeasible reasoning is a term coined and used in the field of
philosophy and refers to nondeductive forms of reasoning in which
conclusions are not final (as in propositional logic). These contin-
gent assertions may, therefore, be retracted in certain circumstances.
This is consistent with aspects of how humans reason. For example,
suppose one sees an object which appears red. A natural conclusion
is that the object is red. However, upon learning that the object is
being illuminated by red lights, one may retract the prior conclu-
sion that the object is red. Roughly speaking, defeasible reasoning
is the same as nonmonotonic reasoning in artificial intelligence
[12].

There are many approaches to defeasible reasoning as there
is simply not one clear way in which to reason defeasibly. This
has produced a number of competing formalisms, some of which
have been shown to be equivalent in terms of expressivity and
represent different perspectives of the same underlying pattern of
reasoning[6].

Our focus in this review will be on forms of defeasible reasoning
which are part of the framework proposed by Kraus, Lehmann and
Magidor (henceforth referred to as KLM) [7] and its extensions. Us-
ing the preferential approach and extending, in parallel, the seman-
tics defined by Shoham [15, 16], and the associated proof-theoretic
system defined by Gabbay [3], KLM [7] defined a framework for
defeasible reasoning referred to as the KLM framework. This frame-
work is of particular interest due to its having both a model and
proof theory, as well as computationally efficient algorithms for
the associated reasoning services. [6].

The KLM framework extends the language of propositional logic
by adding a preferential consequence relation at the meta-level and
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defining satisfaction and entailment using preferential interpreta-
tions [7]. This consequence relation is defined by several postulates
which are formulated such that if a pair (𝛼, 𝛽) is in the relation,
this could be understood as meaning that “from 𝛼 , I am willing to
jump to conclude 𝛽 unless I have information to the contrary" [6].
Lehmann and Magidor, in their paper titled “What does a condi-
tional knowledge base entail?" [9], went on to further refine this
framework, defining a more restricted class of “reasonable" con-
sequence relations termed rational consequence relations. They
defined these relations semantically using ranked interpretations
(a subclass of preferential interpretations). There is also a shift to
using an object-level connective to represent defeasible implication
with a focus on entailment using propositional logic extended with
this new connective [2]. They define a key form of entailment in
rational closure and argue that a reasonable pattern of defeasible
entailment should at least permit any assertion that rational clo-
sure endorses [9]. Rational closure can be viewed as a formalism
of prototypical reasoning, a conservative form of reasoning that,
intuitively, only makes assertions of typicality in “normal" cases
(such assertions would not apply to abnormal cases) [8, 9, 14].

With this in mind, Lehmann [8] formalizes a default pattern
of reasoning termed lexicographic closure based on Reiter’s work
on default logics [13]. Lexicographic closure, a subsumption of
rational closure, is consistent with the description of presumptive
reasoning. This represents a less conservative form of entailment
which permits assertions, even in abnormal cases, unless there is
evidence to the contrary [8].

Suppose, for example, we have that “birds fly", “birds have wings",
“penguins are birds" and “penguins do not fly" [7]. The conserva-
tive approach, characterized by prototypical reasoning, would sug-
gest that it cannot be concluded that “penguins have wings", since
penguins are clearly atypical birds (and so we do not assume of
penguins any typical characteristics of birds). On the other hand, a
presumptive approach would have us conclude that indeed “pen-
guins have wings" since we know penguins are birds, albeit atypical
birds, and have no evidence that would suggest penguins do not
have wings [8]. It is also important to notice that in the case of
propositional logic, we would have that penguins cannot exist due
to the contradiction that birds fly and penguins, which are birds, do
not fly (recall that we have no means of expressing typicality as we
have in defeasible approaches). In such cases, classical entailment
would permit any penguin-based conclusions (since there would
never exist a penguin to disprove any such assertions).

In [9], Lehmann and Magidor provides an algorithm for comput-
ing rational closure that involves ranking knowledge base state-
ments in terms of their exceptionality (and hence specificity). Gior-
dano et al. [4] provide a semantic characterisation of rational closure
usingminimal ranked entailment. It is shown that for a given knowl-
edge base, there is a unique ranked interpretation (specifically the
minimal model) that is able to completely define entailment with
respect to this knowledge base as stipulated by rational closure.

Finally, rational defeasible entailment, a further refinement of
the KLM framework [7] was proposed by Casini et al. [2]. This
framework, in line with the conclusions of [9], has rational closure
as its most conservative form of entailment and includes lexico-
graphic closure. Importantly, it is shown that any form of rational
defeasible entailment can be characterized by a ranked model that

respects the corresponding ranking for rational closure. This pro-
vides a different perspective on computing entailment for a given
knowledge base, compared to the provided algorithms in [2]. Such
model-based approaches will form a significant part of our work, in
defining algorithms to represent and construct ranked models cor-
responding to rational and lexicographic closure for the purposes
of entailment checking.

2 PROPOSITIONAL LOGIC
2.1 Language
We define a set P containing all atomic propositions (represented
using lower-case letters) [1]. These represent the most basic form of
knowledge (they are indivisible).Wemay attribute somemeaning to
each propositional atom (for example, we may want p to represent
whether a particular bird is a penguin) but propositional logic
allows for the analysis of statements independent of their intuitive
meaning [6].

In propositional logic, the meaning of these atoms is enriched
via the addition of several logical operators in order to construct
formulas (which define what can be expressed in the logic). These
include {¬,∧,∨,→,↔} with ¬, a unary operator and the rest, bi-
nary operators.

Formulas can now be defined using the following grammar [1]:

𝑓𝑚𝑙 ::= 𝑝 ∈ P
𝑓𝑚𝑙 ::= ¬𝑓𝑚𝑙

𝑓𝑚𝑙 ::= 𝑓𝑚𝑙 𝑜𝑝 𝑓𝑚𝑙

𝑜𝑝 ::= ∧ | ∨ | → | ↔

This says that formulas can be atoms, the negations (¬) of other
formulas, or the combination of two other formulas using one of
the binary connectives. The set of all possible formulas is often
referred to as L (the language of propositional logic).

2.2 Semantics
2.2.1 Interpretations. The formulas described have not yet been
assigned truth values. A formula such as p ∧ q is neither true nor
false, until truth values are assigned to the atoms of which the
formula is comprised. This is analogous to the idea that the value
of 𝑎 + 𝑏 can only be determined once values have been assigned to
𝑎 and 𝑏 [1]. In propositional logic, the assignment of truth values
to atoms is fulfilled by interpretations.

An interpretation I is defined as a function I : P ↦→ {𝑇, 𝐹 }
which maps each propositional atom to a value of 𝑇 or 𝐹 (true
and false respectively). For example, if we had P = {p, q}, a valid
interpretation may map p to true and q to false. That is: I(p) = 𝑇

and I(q) = 𝐹 .
We are now able to define the semantics of the logical operators,

which will allow us to assign truth values to formulas.

2.2.2 Logical Operators. Let 𝐴, 𝐵 be any formulas containing only
atoms from a set P. We denote the value of each formula under
a given interpretation I (of the atoms in P) as 𝑣I (𝐴) and 𝑣I (𝐵)
respectively. The way in which 𝑣I assigns truth values can be
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defined inductively as follows [1]:

𝑣I (𝐴) = I(𝐴) if 𝐴 is an atom

𝑣I (¬𝐴) =
{
𝑇 𝑣I (𝐴) = 𝐹

𝐹 otherwise

𝑣I (𝐴 ∧ 𝐵) =
{
𝑇 𝑣I (𝐴) = 𝑇 and 𝑣I (𝐵) = 𝑇

𝐹 otherwise

𝑣I (𝐴 ∨ 𝐵) =
{

𝐹 𝑣I (𝐴) = 𝐹 and 𝑣I (𝐵) = 𝐹

𝑇 otherwise

𝑣I (𝐴 → 𝐵) =
{

𝐹 𝑣I (𝐴) = 𝑇 and 𝑣I (𝐵) = 𝐹

𝑇 otherwise

𝑣I (𝐴 ↔ 𝐵) =
{
𝑇 𝑣I (𝐴) = 𝑣I (𝐵)
𝐹 𝑣I (𝐴) ≠ 𝑣I (𝐵)

For example, sayP = {p, q}. Consider the formula (p∨q) → ¬q and
the interpretation I where I(p) = 𝑇 and I(q) = 𝐹 . 𝑣I (p ∨ q) = 𝑇

since 𝑣I (p) = I(p) = 𝑇 . 𝑣I (¬q) = 𝑇 since 𝑣I (q) = 𝐹 . Finally,
𝑣I ((p ∨ q) → ¬q) = 𝑇 since 𝑣I (p ∨ q) = 𝑇 and 𝑣I (¬q) = 𝑇 .

2.2.3 Satisfaction. Given any interpretation for any formula, we
are now able to evaluate the formula with respect to the interpre-
tation. In most cases, we are interested in interpretations which
satisfy a particular formula or set of formulas, meaning that the for-
mula, or each formula in the set, evaluates to true under the given
interpretation. Formally, we define satisfaction using the symbol ⊩
as follows: I ⊩ 𝐴 (where I is an interpretation of a formula𝐴 ∈ L)
if and only if 𝑣I (𝐴) = 𝑇 . This is extended to sets of formulas (also
known as knowledge bases): I ⊩ K (where I is an interpretation
of the formulas in the set K) if and only if 𝑣I (𝐴) = 𝑇 for every
formula 𝐴 ∈ K . Interpretations which satisfy a formula or knowl-
edge base are referred to as models of that formula or knowledge
base. We use the notation Mod(𝐴) (sometimes ⟦𝐴⟧) and Mod(K)
to refer to the set of models of a formula 𝐴 and knowledge base
K , respectively. If this set is non-empty, we say the corresponding
formula or knowledge base is satisfiable (i.e. that there is at least
one interpretation which satisfies it).

Returning to the previous example, we notice thatI ⊩ (p∨q) →
¬q and so I ∈ Mod((p ∨ q) → ¬q).

2.2.4 Entailment. Using the above model-based semantics, we de-
fine entailment (or logical consequence), denoted using the |= sym-
bol. A formula 𝐴 entails a formula 𝐵, written as 𝐴 |= 𝐵, if and only
if Mod(𝐴) ⊆ Mod(𝐵). Intuitively, whenever 𝐴 is true under a given
interpretation, such will be the case for 𝐵 and so we are able to
conclude 𝐵 whenever we have 𝐴. This is extended to knowledge
bases as expected: K |= 𝐴 if and only if Mod(K) ⊆ Mod(𝐴).

Consider a knowledge base K = {p ∨ q,¬p}. We have that
Mod(K) = {pq} (pq is shorthand for an interpretation that maps
p to false and q to true). Consequently, we have that K |= p → q
since pq ⊩ p → q and so every model of K is also a model of
p → q.

2.2.5 Object and Meta Levels. Worth noting is the distinction be-
tween two key levels in the logic, the object level and the meta level.
The object level refers to anything that is used to explicitly model
knowledge (e.g. the propositional formulas), whereas the meta level
refers to those things which operate above the object level [6].

An example of this distinction is highlighted in the differences
between the→ connective and the |= operator. While both suggest
that the truth of the left argument implies the truth of the right hand
argument (representing an “if then" relationship), the→ connective
achieves this by relating formulas on the object level as knowledge
(and hence its truth may vary between interpretations). Entailment,
on the other hand, suggests that this relationship holds across all
interpretations (and hence operates on the meta level). In this case,
there is a simple connection between these two operators: 𝐴 |= 𝐵 if
and only if 𝐴 → 𝐵 is true in every interpretation.

3 DEFEASIBLE REASONING
3.1 Motivation
Consider, again, the penguin triangle example [7]: “birds fly", “birds
have wings", “penguins are birds" and “penguins do not fly". We
may represent this as a knowledge base K in propositional logic
with K = {b → f, b → w, p → w, p → ¬f}. The issue here is than
there are no models ofK in which p is true (penguins cannot exist)
and so we cannot meaningfully reason about penguins. We would
rather have some means of handling the fact that penguins do exist
but are an exceptional type of bird that does not fly, and allow for
reasonable forms on entailment in such cases.

3.2 The KLM Framework and Extensions
Initially, KLM [7] extended propositional logic to include a meta-
level consequence relation |∼ to represent defeasible implications
(where 𝛼 |∼ 𝛽 , with propositional formulas 𝛼, 𝛽 , is read as “typi-
cally, if 𝛼 , then 𝛽" [2]). They provide several postulates defining
this relation in an attempt to reasonably represent the notion of
typicality. The semantics of |∼ are then defined using preferential
interpretations, however, for the purposes of this review, we are
more interested in a subclass of preferential interpretations termed
ranked interpretations [9].

3.2.1 Ranked Interpretations. A ranked interpretation is a function
R : U ↦→ N ∪ {∞}, such that for every 𝑖 ∈ N , if there exists
a 𝑢 ∈ U such that R(𝑢) = 𝑖 , then there must be a 𝑣 ∈ U such
that R(𝑣) = 𝑗 with 0 ≤ 𝑗 < 𝑖 , where U is the set of all possible
propositional interpretations [6]. Ranked interpretations, therefore,
assign to each propositional interpretation, a rank (with lower ranks
corresponding, semantically, with more typical interpretations and
higher ranks with less typical “worlds"). Worlds with a rank of∞,
according to the ranked interpretation, are impossible, whereas
worlds with finite ranks are possible.

For P = {p, q, r}, a possible ranked interpretation would be:

∞ pqr
2 pqr pqr
1 pqr pqr pqr
0 pqr pqr

The fact that R(pqr) = 0 < 1 = R(pqr), intuitively represents
that, under this ranking of interpretations, pqr is a more typical
world than pqr. SinceR(pqr) = ∞, this world is deemed impossible
by R.
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In line with the refinements made by Lehmann and Magidor [9],
we add |∼ to the object level, allowing formulas of the form 𝛼 |∼ 𝛽

with 𝛼, 𝛽 ∈ L, in addition to the usual set of propositional formulas.
This extended language is defined asL𝑃 B L∪{𝛼 |∼ 𝛽 | 𝛼, 𝛽 ∈ L}
[6]. Defeasible knowledge (that which may contain exceptions) can
be modelled explicitly in the language with this extension, allow-
ing for the formulation of nonmonotonic entailment at the meta
level [6]. What remains is to define how formulas in this extended
language are satisfied with respect to ranked interpretations, as
well as the semantics of defeasible entailment.

3.2.2 Satisfaction. Given that ranked interpretations indicate the
relative typicality of worlds, it makes sense to define whether a
ranked interpretation satisfies a defeasible implication based on the
most typical worlds in that interpretation. In order to define the
“most typical worlds", a definition of minimal worlds with respect
to a formula in L is required.

Given a ranked interpretation R and any formula 𝛼 ∈ L, it holds
that 𝑢 ∈ ⟦𝛼⟧R (the models of 𝛼 in R) is minimal if and only if there
is no 𝑣 ∈ ⟦𝛼⟧R such that R(𝑣) < R(𝑢) [6]. This defines the concept
of the “best 𝛼 worlds" (i.e. the lowest ranked, or most typical, of the
worlds in which 𝛼 is true).

Given a ranked interpretation R and a defeasible implication
𝛼 |∼ 𝛽 , R satisfies 𝛼 |∼ 𝛽 , written R ⊩ 𝛼 |∼ 𝛽 if and only if for
every 𝑠 minimal in ⟦𝛼⟧R , 𝑠 ⊩ 𝛽 . If R ⊩ 𝛼 |∼ 𝛽 then R is said to be
a model of 𝛼 |∼ 𝛽 [6].

This says that in order for a ranked interpretation R to satisfy
a defeasible implication 𝛼 |∼ 𝛽 , it need only satisfy 𝛼 → 𝛽 in the
most typical (lowest ranked) 𝛼 worlds of R. The intuition here is
that 𝛼 typically implies 𝛽 , if the best 𝛼 worlds also satisfy 𝛽 .

In the case of a propositional formula 𝛼 ∈ L, it is required that
every finitely-ranked interpretation in R satisfies 𝛼 in order for R
to satisfy 𝛼 . This is consistent with idea that propositional formulas,
which do not permit exceptionality, should be satisfied in every
plausible world of a ranked interpretation, if such a ranking is to
satisfy the formula. A useful result is that R ⊩ 𝛼 ∈ L if and only if
R ⊩ ¬𝛼 |∼ ⊥ (⊥ represents a contradiction such as p ∧ ¬p). This
corresponds to the case in which all the best¬𝛼 worlds have infinite
rank, which must mean that there are no ¬𝛼 worlds with finite
rank, and so all finitely-ranked worlds are 𝛼 worlds. In this way,
it is possible to express propositional statements using defeasible
implications and so it is not necessary to discriminate between these
two cases (we may deal, exclusively, with defeasible implications
knowing that these subsume propositional formulas).

3.2.3 Entailment. It is now possible to model knowledge that ex-
presses typicality, and thus handles exceptional cases more rea-
sonably, however, there remains the concern of monotonicity with
respect to entailment. We seek a reasonable form of entailment that
permits the retraction of conclusions in cases where knowledge is
added that contradicts these conclusions. There is no set way of
defining such a form of defeasible entailment, however, it is argued
that certain entailment relations are more reasonable than others.

KLM [7], as part of their framework for defeasible reasoning,
first proposed 6 postulates defining what they argued to be a class
of reasonable consequence relations (based on semantics defined by
Shoham [15, 16]). Lehmann and Magidor [9] then define a class of

entailment relations based on these postulates, with the addition of
a 7th, to produce the postulates which define LM-rational entailment
relations:

(1) (LLE) Left logical equivalence: K |≈𝛼↔𝛽, K |≈𝛼 |∼𝛾
K |≈𝛽 |∼𝛾

(2) (RW) Right weakening: K |≈𝛼→𝛽, K |≈𝛾 |∼𝛼
K |≈𝛾 |∼𝛽

(3) (Ref) Reflexivity: K |≈ 𝛼 |∼ 𝛼

(4) And: K |≈𝛼 |∼𝛽, K |≈𝛼 |∼𝛾
K |≈𝛼 |∼𝛽∧𝛾

(5) Or: K |≈𝛼 |∼𝛾, K |≈𝛽 |∼𝛾
K |≈𝛼∨𝛽 |∼𝛾

(6) (CM) Cautious Monotonicity: K |≈𝛼 |∼𝛾, K |≈𝛼 |∼𝛽
K |≈𝛼∧𝛽 |∼𝛾

(7) (RM) Rational Monotonicity: K |≈𝛼 |∼𝛾, K ∤≈𝛼 ̸ |∼𝛽
K |≈𝛼∧𝛽 |∼𝛾

KLM defined preferential entailment using the semantics of pref-
erential interpretations [7] and Lehmann and Magidor, similarly,
defined ranked entailment with ranked interpretations [9]. The se-
mantics in both cases are very similar to that of classical entailment.
Consider the definition of ranked entailment:

Given a knowledge base K , and a defeasible implication 𝛼 |∼ 𝛽 ,
K |≈R 𝛼 |∼ 𝛽 , read as K rank entails 𝛼 |∼ 𝛽 , if and only if for
every ranked interpretation, R, such that R ⊩ K , it is the case that
R ⊩ 𝛼 |∼ 𝛽 [9].

It was shown [9] that preferential and ranked entailment (while
defined, originally, using different semantics) represent the same
entailment relation and are both LM-rational (conform to the 7
postulates).

While this seems a reasonable way of defining entailment (re-
quiring that all models satisfy a formula), it is still monotonic and
hence does not address the issue at hand. We will now define mini-
mal ranked entailment and show how it is a potential solution to
our problem of monotonic entailment.

A partial order over all ranked models of a knowledge base K ,
denoted ⪯K , is defined as follows [2]:

Given a knowledge base, K , and RK the set of all ranked inter-
pretations ofK , it holds for every RK

1 ,RK
2 ∈ RK that RK

1 ⪯K RK
2

if and only if for every 𝑢 ∈ U , RK
1 (𝑢) ≤ RK

2 (𝑢).
Intuitively, this partial order favours ranked interpretations that

have their worlds “pushed down" as far as possible [6].
This partial order has a unique minimal element, RK

𝑅𝐶
, as shown

by Giordano et al. [4]. We now define minimal ranked entailment
using this minimal element as follows:

Given a defeasible knowledge base K , the minimal ranked in-
terpretation satisfying K , RK

𝑅𝐶
, defines an entailment relation, |≈,

called minimal ranked entailment, such that for any defeasible
implication 𝛼 |∼ 𝛽 , K |≈ 𝛼 |∼ 𝛽 if and only if RK

𝑅𝐶
⊩ 𝛼 |∼ 𝛽

[6]. Minimal ranked entailment is not only LM-rational, but also
nonmonotonic.

In this form of entailment, a particular ranked interpretation
is used to characterize the behaviour of the entailment relation.
That is, the formulas that a specific ranked interpretation satisfies
are precisely those entailed by the relation. It is worth noting that
such an entailment relation defined by a ranked interpretation
will exhibit the 7 KLM postulates (and is thus part of the KLM
framework) [9]. More refined classes of entailment can be defined
by referring to subsets of ranked interpretations which provide the
semantics for these relations.
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One such refinement of the KLM framework is rational defeasible
entailment [2]. We will see that minimal ranked entailment is one
formalism of a conservative reasoning pattern and, as argued by
Casini et al. [2], should be the “nonmonotonic core" of any reason-
able entailment relation. Rational deafeasible entailment relations
are thus, much like LM-rational entailment relations, defined by ex-
tending the original KLM postulates as well as via a class of ranked
interpretations. We will look at two specific patterns of entailment
which fall within this extension of the KLM framework, namely
rational closure and lexicographic closure. In particular, we focus on
their model-based semantics as our work will involve computing
entailment from this perspective.

3.3 Rational Closure
Rational closure was first described as a potential answer to the
question of what a defeasible knowledge base should entail [9]. It
represents a prototypical pattern (one that is extremely conservative
in abnormal cases) of defeasible reasoning in the KLM framework
and is defined in terms of what assertions may follow from a given
knowledge base K . Lehmann and Magidor [9] conclude that ra-
tional closure represents a reasonable solution to the problem of
defeasible entailment and that it represents the most conservative
form of reasonable entailment. As such, they propose that any other
reasonable form of entailment, while possibly being more “adven-
turous" in its conclusions, should endorse at least those assertions
in the rational closure of the corresponding knowledge base.

There are 2 principle ways in which to compute the rational
closure of a given knowledge base. The first, which has been pre-
viously described, is minimal ranked entailment. This approach
defines rational closure and the semantics of the associated en-
tailment relation using a unique ranked interpretation for a given
knowledge base. The second, which was described in [9] when
Lehmann and Magidor first defined rational closure, is an algorith-
mic approach involving the ranking of statements in the knowledge
base. Of these two methods, we will focus on the first due to its
model-based approach.

3.3.1 Minimal Ranked Entailment. As discussed, minimal ranked
entailment involves finding the minimal ranked model of a given
knowledge base, where minimal refers to the property of having its
worlds “pushed down" as far as possible [6]. Consider the following
example which illustrates how such a model can be used to compute
entailment.

Consider the following knowledge base: K B {bird |∼ fly,
bird |∼ wings,¬(kiwi → bird) |∼ ⊥}.

Intuitively, K suggests that birds usually fly, birds usually have
wings, and kiwis are birds (note that kiwi here refers to the national
bird of New Zealand). At this point, the only information in K
directly concerning kiwis, is that they are birds (and so, reason-
ably, they are assumed to be typical birds). Using the partial order
of ranked interpretations defined previously, the minimal ranked
model, RK

𝑅𝐶
, of K is:

∞ bfkw bfkw bfkw bfkw

1 bfkw bfkw bfkw bfkw bfkw bfkw

0 bfkw bfkw bfkw bfkw bfkw bfkw

For brevity, the propositions have been shortened: b is bird, f
is fly, w is wings and k is kiwi. Notice that moving any world
in this ranked interpretation to a lower rank would result in an
interpretation that is no longer a model (i.e. all worlds have been
assigned the lowest possible rank while preserving the truth of
each statement in the knowledge base).

We see that RK
𝑅𝐶

⊩ kiwi |∼ wings since the circled minimal
kiwi world has that wings is true, i.e. it follows that kiwis typically
havewings (since it is known that kiwis are birds, and birds typically
have wings).

Suppose the statement ¬(kiwi → ¬fly) |∼ ⊥ (that kiwis do
not fly) was added to K . The minimal ranked model (RK′

𝑅𝐶
) of K ∪

{¬(kiwi → ¬fly) |∼ ⊥}, is:

∞ bfkw bfkw bfkw bfkw bfkw bfkw

1 bfkw bfkw bfkw bfkw bfkw

0 bfkw bfkw bfkw bfkw bfkw

Now, notice that RK′
𝑅𝐶

⊮ kiwi |∼ wings, since the circled mini-
mal kiwi worlds do not both have wings being true. This demon-
strates that minimal ranked entailment, and hence rational closure,
is indeed nonmonotonic, since a previous conclusion was retracted
with the addition of new information. Importantly, it also demon-
strates the conservative nature of prototypical reasoning, formal-
ized in rational closure. In K ′, kiwis are atypical birds since they
are birds that do not fly. Since kiwis, therefore, no longer conform
to the prototype of birds, prototypical reasoning would not assume
of kiwis any typical characteristics of typical birds. In this case, the
conclusion kiwi |∼ wings is retracted, as a result.

3.3.2 RationalClosure. The other approach will be described as
an algorithm, RationalClosure [2], which assigns a rank to each
statement in a knowledge base, representing the defeasibility of that
statement [6]. A lower rank corresponds to a more general state-
ment and so, in the case of queries involving exceptional statements,
these are the statements that are more readily ignored.

In order to rank statements in a knowledge base K , the ma-
terialization

−→
K of the knowledge base is first defined such that

−→
K = {𝛼 → 𝛽 | 𝛼 |∼ 𝛽 ∈ K}. Secondly, exceptionality of a statement
𝛼 |∼ 𝛽 with respect to a knowledge base K , is defined according
to whether

−→
K |= ¬𝛼 . Such a statement is exceptional since the

opposite of its antecedent can be derived from the knowledge base
(analogous to the penguin example, in which the propositional
knowledge base would resolve that no penguins can exist).

The BaseRank [2] algorithm starts with 𝐸0 =
−→
K and determines

which statements are exceptional in 𝐸0. The exceptional statements
are carried forward and placed in a set 𝐸1. This is then repeated un-
til there is no change between 𝐸𝑖−1 and 𝐸𝑖 . A statement is assigned
the rank 𝑖 corresponding to the the last 𝐸𝑖 in which it appears (this
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is termed the base rank of the formula with respect to the knowl-
edge base and is notated 𝑏𝑟K (𝛼) - note 𝑏𝑟K (𝛼 |∼ 𝛽) ≡ 𝑏𝑟K (𝛼).
The last set of exceptional statements is assigned a rank of∞ (i.e.
those statements which would appear in every subsequent 𝐸𝑖 if the
algorithm was allowed to continue). Any propositional formulas in
the original knowledge base are also assigned rank∞ since these
are maximally specific.

Finally, for a given query 𝛼 |∼ 𝛽 , the RationalClosure [2]
algorithm checks if

−→
K |= ¬𝛼 and removes the statements having

the lowest finite rank until this is no longer holds (i.e. until it is
possible for 𝛼 to be true). The answer to the query is provided by
checking whether this final set of statements entails 𝛼 → 𝛽 .

In our kiwi example, the following ranking of formulas would
be computed:

0 bird → fly, bird → wings
∞ kiwi → bird, kiwi → ¬fly

In answering the query of kiwi |∼ wings, the algorithm finds
that {bird → fly, bird → wings, kiwi → bird, kiwi → ¬fly} |=
¬kiwi and removes the statements with the lowest rank (i.e. rank
0). {kiwi → bird, kiwi → ¬fly} |= ¬kiwi does not hold and so
the algorithm checks whether {kiwi → bird, kiwi → ¬fly} |=
kiwi → wings. The answer here, as expected, is no and thus it is
not that case that K |≈ kiwi |∼ wings.

An essential observation, which links these two approaches,
is that 𝑏𝑟K (𝛼) =min{𝑖 | ∃𝑢 ∈ Mod(𝛼) with RK

𝑅𝐶
(𝑢) = 𝑖} [4].

Therefore, it is possible to compute the base rank of any formula
with respect to a knowledge base using the minimal model of that
knowledge base. Consequently, minimal ranked entailment and
the RationalClosure algorithm compute the same entailment re-
lation.

3.4 Lexicographic Closure
Another approach to defeasible entailment within the KLM frame-
work, lexicographic closure, is described by Lehmann [8]. This is a
formalism of the presumptive pattern of reasoning introduced by
Reiter [13] in the context of default logics. Presumptive reasoning,
unlike prototypical reasoning, is more “adventurous" and willing to
conclude statements so long as their is no evidence to the contrary
(even in atypical cases). The semantics of lexicographic closure
depends on a “seriousness" ordering that is defined based on two
criteria: specificity and cardinality.

In defining lexicographic closure for a knowledge base, Lehmann
defines a basis for a formula as a subset of the knowledge that has a
material counterpart consistent with the formula and maximal with
respect to the seriousness ordering [8]. We will, instead, focus on
how the seriousness order can be used to define a model-based se-
mantics for lexicographic closure (as was done for rational closure).
A formula-based approach will also be outlined.

3.4.1 Ranked Model. Given a knowledge base K , the seriousness
ordering associated with lexicographic closure can be defined on
the subsets of K . The first of the seriousness criteria, specificity,
is determined by the base rank of the formulas in the subset (a
higher base rank is considered more specific, as discussed in ra-
tional closure). The second, cardinality, is, naturally, determined

by the number of statements. Combining these two criteria lexico-
graphically, we obtain a partial order <𝑆 in which 𝐴 <𝑆 𝐵 if 𝐴 has
statements with lower specificity than 𝐵, and in the case that both
have statements of the same specificity, if 𝐴 has fewer such state-
ments. Associated with 𝐴, 𝐵 are tuples containing the number of
statements of each base rank in the respective subset of K , starting
with the ∞ base rank and then working down through the finite
ranks (e.g. (1, 0, 2) and (1, 1, 4)). Comparing these tuples using the
natural lexicographic ordering of natural numbers in tuples defines
formally the seriousness ordering.

Constructing the ranked model corresponding to lexicographic
closure can be done as follows [2, 8]:

For a knowledge base K , and worlds𝑚,𝑛 ∈ U , the preference
order ≺𝐿𝐶 over U is defined as:𝑚 ≺𝐿𝐶 𝑛 if and only if 𝑉 (𝑚) ≺𝑆
𝑉 (𝑛) where𝑉 (𝑚) ⊆ K is the set of defeasible implications violated
by𝑚 ∈ U. ≺𝐿𝐶 is a modular partial order over U , and so defines
a ranked interpretation, denoted RK

𝐿𝐶
[6]. Hence, worlds violating

fewer specific formulas in K are preferred and considered more
typical.

Casini et al. define this preference order similarly but in terms
of formulas satisfied as opposed to violated. Thus,𝑚 ≺K

𝐿𝐶
𝑛 if and

only if RK
𝑅𝐶

(𝑛) = ∞, or RK
𝑅𝐶

(𝑚) < RK
𝑅𝐶

(𝑛), or RK
𝑅𝐶

(𝑚) = RK
𝑅𝐶

(𝑛)
and𝑚 satisfies more formulas than 𝑛 in K [2]. This definition also
highlights the fact that lexicographic closure is a refinement of
rational closure, in that it respects the ranking of rational closure
but refines preference for statements with the same rank.

Returning to our kiwi example where K B {bird |∼ fly,
bird |∼ wings,¬(kiwi → bird) |∼ ⊥,¬(kiwi → ¬fly) |∼ ⊥},
we can construct the model RK

𝐿𝐶
corresponding to lexicographic

closure by “lifting up" worlds that satisfy fewer statements while
preserving the original rational closure ordering.

∞ bfkw bfkw bfkw bfkw bfkw bfkw

2 bfkw bfkw

1 bfkw bfkw bfkw

0 bfkw bfkw bfkw bfkw bfkw

Checking if the formula, kiwi |∼ wings, is satisfied by RK
𝐿𝐶

,
and hence in the lexicographic closure of K , we find that RK

𝐿𝐶
⊩

kiwi |∼ wings and hence that K |≈𝐿𝐶 kiwi |∼ wings.
Notice that lexicographic closure endorses that kiwis have wings

whereas rational closure would not. This speaks to the presumptive
nature of lexicographic closure, as it is willing to assert that kiwis
have wings despite the fact that kiwis are atypical birds (since
there is nothing that suggests that kiwis do not have wings in the
knowledge base).

This observation also demonstrates the point made earlier that
there are multiple valid solutions to the problem of defeasible en-
tailment. In our kiwi example, the expected behaviour (based on
our understanding of kiwis) is that a defeasible entailment relation
should not conclude that kiwis typically have wings, since they are
one of the few flightless birds that do not possess wings. This form
of reasoning is most consistent with rational closure (i.e. since ki-
wis are atypical, they should not inherit other properties of typical
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birds, such as having wings). However, if kiwis were substituted for
penguins in the example (appropriate since penguins too are birds
that cannot fly), we would expect to conclude that penguins typi-
cally have wings (since we understand that penguins are flightless
birds that do have wings). In this case, lexicographic closure may
be more appropriate since it is willing to conclude that penguins
typically have wings.

3.4.2 DefeasibleEntailment. As is the case for rational closure,
there is an algorithm for computing lexicographic closure based
on ranking formulas. This algorithm, DefeasibleEntailment [2],
can be used to compute any basic defeasible entailment relation.
Defined by Casini et al., basic defeasible entailment represents a
refinement of the KLM framework. The algorithm can be thought of
as a generalisation of the RationalClosure algorithm that accepts,
as a parameter, a ranking function (in the case of rational closure,
this would be BaseRank).

For computing lexicographic closure, we can define a rank func-
tion (in the same way in which a formula’s base rank was be defined
using the rankedmodel for rational closure): The lexicographic rank
function, 𝑟𝐿𝐶K , with respect to a knowledge base K , is defined as
𝑟𝐿𝐶K (𝛼) B min{RK

𝐿𝐶
(𝑣) | 𝑣 ∈ Mod(𝛼)} [2]. This ranking func-

tion can be used for computing lexicographic closure with the
DefeasibleEntailment algorithm.

Using this algorithm, we can describe an algorithm for com-
puting lexicographic closure in terms of the ranking of formulas
computed for rational closure. Beginning with the ranked formulas
computed for rational closure of K , the algorithm starts by check-
ing whether

−→
K |= ¬𝛼 . If this holds, instead of discarding all the

statements of the lowest finite rank, the algorithm weakens this
lowest rank by replacing it with one formula logically equivalent
to the disjunction of all subsets of this lowest rank of size 𝑥 − 1
where 𝑥 is the number of formulas in the lowest finite rank. This
is achieved by combining the formulas in each of these subsets
conjunctively, and then combining all the resulting formulas dis-
junctively (e.g. {k → b, k → ¬f, k → ¬w} would be weakened to
{(k → b∧ k → ¬f) ∨ (k → b∧ k → ¬w) ∨ (k → ¬f∧ k → ¬w)}).
The motivation for this, is that instead of removing all formulas, the
algorithm weakens the formulas by considering the removal of one
formula at a time, and if it is the case that at least one such removal
prevents the entailment of ¬𝛼 , it can begin checking entailment of
the query. If the entailment still holds, the rank is weakened further
by considering the formula produced using subsets of size 𝑥−2 from
the original formulas. This is repeated until either, the entailment
doesn’t hold and so the entailment of the query can be checked, or
until the algorithm is forced to check subsets of size 0. In this latter
case, it is clear that regardless of the number of formulas removed,
the entailment still holds and so the last weakening of the rank
is discarded completely (effectively equivalent to having removed
the lowest rank entirely as in rational closure) and the process is
repeated on the next lowest rank of formulas.

Although a valid solution to computing lexicographic closure, it
should be noted that this approach has some efficiency concerns as
the size of the weakened formulas grows exponentially with each
weakening.

4 CONCLUSIONS
We have demonstrated that there exist many approaches to de-
feasible reasoning. In particular, our kiwi and penguin example
illustrates howmore conservative forms of reasoning may be prefer-
able in certain contexts, but may, in other contexts, prevent useful
conclusions from being endorsed.

It was shown that entailment with respect to a specific pattern
of reasoning, can be approached from a number of perspectives.
Specifically, both rational closure and lexicographic closure may be
computed using model- and formula-based algorithms. Our future
work will focus on the former in leveraging model-based char-
acterizations of rational and lexicographic closure to formulate
reasonable algorithms for entailment checking.

To this end, we also described the relationship between rational
and lexicographic closure as one of refinement, based on Casini et
al.’s [2] identifying rational closure as the nonmonotonic core of
rational defeasible entailment. This allowed us to describe model
construction for computing lexicographic closure based on the
model for rational closure.

An important consideration in our work will be the relative ef-
ficiency of constructing and using models for entailment and the
existing algorithms for entailment. We found that defeasible entail-
ment checking, in the case of rational closure, could be reduced
to classical entailment checking and thus may use existing, highly
efficient implementations of propositional reasoning services. What
remains is to investigate whether model-based implementations
will be able to compete with these existing solutions.
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