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ABSTRACT
Defeasible reasoning is a form of non-classical reasoning that for-
malises common sense patterns of dealing with exceptions to ex-
plicit information. Reasoning systems developed for classical propo-
sitional logics have been studied extensively in the literature with
many efficient implementations having been developed. On the
other hand, comparatively fewer approaches to developing defeasi-
ble reasoning systems have been attempted and implemented. We
therefore review the current approaches to computing defeasible
entailment through the lens of one the most prominent frameworks
- the KLM framework. Our review elicits a gap in the literature
for the design and feasibility of novel ‘bottom-up’ model-based
methods for implementing defeasible reasoning.

CCS CONCEPTS
• Theory of computation→ Automated reasoning; • Comput-
ing methodologies → Nonmonotonic, default reasoning and
belief revision.

KEYWORDS
Artificial Intelligence, Knowledge Representation and Reasoning,
Defeasible Reasoning, Propositional Logic, Rational Closure, Lexi-
cographic Closure

1 INTRODUCTION AND MOTIVATION
Knowledge Representation and Reasoning (KRR) is a subfield of
Artificial Intelligence (AI) that takes a formal and at times philo-
sophical approach to the problem of simulating intelligence. At the
heart of this subfield is the notion of a knowledge-based system,
where information is syntactically encoded in the form of a sym-
bolic structure or knowledge base that allows for the development of
reasoning services or mechanical operations to derive conclusions
from said structure.

Approaches to KRR can be both logic-based and non-logic based
[1]. Our work will build on other logic-based approaches. A logic or
logical system consists of two parts, its language consisting of both
a syntax and a semantics, as well as a method of reasoning [11].
There are a number of logical systems that one can choose from that
vary in terms of their expressivity and complexity. Our work utilises
propositional logic as the foundation for both representation and
reasoning. In terms of reasoning, wewill focus on the aspects of how
new information or knowledge is derived from existing knowledge
- how implicit inferences are drawn from explicit information. This
is often referred to simply as the notion of entailment or logical
consequence.

Classical logics are monotonic and therefore lack the ability to
explicitly express typicality or reason with uncertainty as humans
do. Thus we turn to a class of logics referred to as nonmononotic

logics that have the ability to retract certain conclusions upon the
addition of new knowledge. We refer to their associated reasoning
services as defeasible reasoning. Unlike classical entailment, there
is no single answer for what defeasible entailment should look like
or how it ought to behave. Thus there are many patterns of defeasi-
ble reasoning. Kraus, Lehmann and Magidor (KLM), proposed a set
of properties as a thesis for how to define a ‘sensible’ or ‘rational’
notion of defeasible entailment. The focus of this review will there-
fore be to look at the framework proposed by KLM, its extensions
and current KLM-style approaches to defeasible reasoning due to
their desirable theoretical and computational properties [12].

2 PROPOSITIONAL LOGIC
2.1 Motivation
Propositional logic is sometimes referred to as zeroth-order logic,
which adequately conveys its position as the foundation of many
other logic systems. Hence, it often serves as a useful testing ground
for ideas within KRR as results can be easily extended to more ex-
pressive logics such as first order logic, modal logics and description
logics.

2.2 Syntax
The language of propositional logic consists of atomic propositions
or just atoms [2], which are combined together using logical con-
nectives to form what are referred to as formulas. Each atom at a
fundamental level represent indivisible facts about the world or
domain one is attempting to represent and can be either true or
false. P is used to denote a set, {𝑝, 𝑞, 𝑟, . . . }, of meta-variables for
such atomic propositions. For example, we may represent the atom,
‘the sun is shining’, with 𝑠 .

There are a number of logical connectives, one unary, negation
(¬), and four binary: conjunction (∧), disjunction (∨), material im-
plication (→) and bi-implication (↔). The logical connectives from
highest to lowest precedence are: ¬,∧,∨,→ and ↔. Greek letters
𝛼, 𝛽, . . . are typically used to represent formulas, which can be
recursively defined by the following grammar [2]:

⟨formula⟩ ::= 𝑝 ∈ P | ⊤ | ⊥
⟨formula⟩ ::= ¬ ⟨formula⟩
⟨formula⟩ ::= ⟨formula⟩ ⟨op⟩ ⟨formula⟩

⟨op⟩ ::= ∨ | ∧ | → | ↔
We will use, L, to refer to the set of all well-formed formulas.

Note, we also include the constants ⊤ and ⊥ in L, which denote
a formula that is always true and a formula that is always false,
respectively. We refer to a finite set of formulas as a knowledge
base, often denoted by K .

Now consider a small example of how we can use propositional
logic to represent knowledge about the world:
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Example 2.1. We have the following meta-variables,

P = {𝑚, 𝑙, 𝑝},

that represent the atomic propositions “being a mammal" , “giving
birth to live young" and "primates" respectively.We can then encode
the knowledge:

(1) Mammals give birth to live young (𝑚 → 𝑙 )
(2) Primates are mammals (𝑝 →𝑚)

in a knowledge base K = {𝑚 → 𝑙, 𝑝 →𝑚}.

2.3 Semantics
In much the same way that an arithmetic expression, such as 𝑎2 +
𝑏2 = 𝑐2, is true or false depending on the values assigned to the
variables𝑎, 𝑏 and 𝑐 , the truth of a propositional formula is dependent
on the values assigned to its constituent atoms [2]. An interpretation
is a function I : P ↦→ {𝑇, 𝐹 }, which assigns the values of T (true)
and F (false) to every atom in P withU being used to denote the
set of all interpretations. We tend to represent interpretations as a
sequence of atoms where an atom with a bar above (e.g. 𝑝) is read
as being false and true otherwise. For example, 𝑝𝑞 represents the
interpretation where 𝑝 is true and 𝑞 is false.

We can then recursively evaluate the truth of a formula using
the notion of satisfaction. An interpretation I satisfies a formula 𝛼 ,
denoted I ⊩ 𝛼 , if 𝛼 recursively evaluates to true using the Boolean
semantics of the operators it is composed of, in which case I is
said to be a model of 𝛼 . Formally, I ⊩ 𝛼 if and only if one of the
following conditions holds:

• 𝛼 ∈ P and I(𝛼) = 𝑇
• 𝛼 = ¬𝛽 and I does not satisfy 𝛽
• 𝛼 = 𝛽 ∧ 𝛾 and both I ⊩ 𝛽 and I ⊩ 𝛾

• 𝛼 = 𝛽 ∨ 𝛾 and at least one of I ⊩ 𝛽 or I ⊩ 𝛾

• 𝛼 = 𝛽 → 𝛾 and at least one of I ⊩ ¬𝛽 or I ⊩ 𝛾

• 𝛼 = 𝛽 ↔ 𝛾 and either both I ⊩ 𝛽 and I ⊩ 𝛾 or I satisfies
neither 𝛽 nor 𝛾

We denote the set of models of a given formula 𝛼 as 𝑀𝑜𝑑 (𝛼)
or ⟦𝛼⟧. Similarly, an interpretation I is a model of a knowledge
base K if it is a model of every formula in K , that is 𝑀𝑜𝑑 (K) =
∩{𝑀𝑜𝑑 (𝛼) |𝛼 ∈ K}.

We illustrate these concepts with another example:

Example 2.2. Consider Example 2.1 from before. A possible in-
terpretation for the meta-variables in P is

𝑚𝑙𝑝 ∈ U,

and we can see that 𝑚𝑙𝑝 ⊩ 𝑚 → 𝑙 , i.e. 𝑚𝑙𝑝 ∈ 𝑀𝑜𝑑 (𝑚 → 𝑙).
Furthermore, we can see that𝑚𝑙𝑝 ⊩ K , i.e.𝑚𝑙𝑝 ∈ 𝑀𝑜𝑑 (K).

We briefly note the distinction between what are referred to as
the object-language and the meta-language. The object-language
essentially refers to the formulas used to represent knowledge
itself, i.e. L, while the meta-language is a separate set of symbols
with which we use to reason about the knowledge on the object-
level. Satisfaction (⊩) and entailment (⊨) are therefore meta-level
concepts, whilst material implication (→) for example is an object-
level connective.

2.4 Classical Reasoning
We are now ready give amodel-theoretic definition of themeta-level
notion of entailment (or logical consequence) for classical proposi-
tional logic. We say that a formula, 𝛼 , entails a formula, 𝛽 , denoted
𝛼 |= 𝛽 , if and only if𝑀𝑜𝑑 (𝛼) ⊆ 𝑀𝑜𝑑 (𝛽). Intuitively, this says that
knowing that 𝛼 is true is enough to conclude that 𝛽 is true as well.
For example, 𝛼 ∧ 𝛽 |= 𝛼 .

By extension, for a knowledge base, K , K |= 𝛼 if and only if
𝑀𝑜𝑑 (K) ⊆ 𝑀𝑜𝑑 (𝛼). In the case that K does not entail 𝛼 , that is
𝑀𝑜𝑑 (K) ⊈ 𝑀𝑜𝑑 (𝛼), we represent this as 𝐾 ⊭ 𝛼 . Consider the
following small example:

Example 2.3. Let K = {𝑝 → 𝑞,¬𝑝}. Therefore K |= ¬𝑝 since

𝑀𝑜𝑑 (K) = {𝑝𝑞} ⊆ {𝑝𝑞, 𝑝𝑞} = 𝑀𝑜𝑑 (¬𝑝).

In the context of Example 2.1, we can sensibly conclude using
the provided definition of entailment, that primates give birth to
live young (𝑝 → 𝑙 ) since K = {𝑚 → 𝑙, 𝑝 →𝑚} ⊨ 𝑝 → 𝑙 .

3 DEFEASIBLE REASONING
3.1 Motivation
In terms of the AI concept of an intelligent agent, and particularly a
knowledge-based agent as described by Craik [7], we are concerned
with its ability to make rational or sensible actions based on some
internal representation of knowledge. Classical logics and the their
reasoning services, based on Tarksian notions of consequence [16],
obey the property of monotonicity, which simply states that adding
information or new knowledge to a knowledge base cannot result
in the retraction of any conclusions that could have been entailed
before such information was added. As a result, classical logics
are impractical for representing and reasoning with exceptional
knowledge since they have no means of explicitly expressing the
notion of typicality. We illustrate this with a similar mammalian
example:

Example 3.1. We have the following meta-variables

P = {𝑚, 𝑙, 𝑝}
that represent the atomic propositions “being a mammal" , “giving
birth to live young" and “being a platypus" respectively. We can
encode the knowledge:

(1) Mammals give birth to live young (𝑚 → 𝑙 )
(2) Platypuses are mammals (𝑝 →𝑚)

in a knowledge base K = {𝑚 → 𝑙, 𝑝 →𝑚}.
Using this knowledge, we can conclude using classical entail-

ment that platypuses give birth to live young. However this is not
an accurate reflection of reality since platypuses are exceptional
mammals that lay eggs. Thus, we can add the formula

𝑝 → ¬𝑙
toK to reflect the fact they do not give birth to live young. Unfortu-
nately, classical reasoning will force us to conclude that platypuses
cannot exist, since any model of K will require the atom 𝑝 to be
false.

In theory, one can adjust the knowledge base to specifically
address platypuses as being exceptional, but this quickly becomes
impractical as each further exception, for example the echidna,
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would warrant such a remodelling of the knowledge base. There
is no convenient mechanism for an agent using classical logic to
reconcile its ‘beliefs’ about the world when it is presented with new
information inconsistent with its prior ‘beliefs’ [12].

Example 3.1 illustrates the inability to express the notion of typ-
icality with classical logic alone. In essence, we wanted to express
the notion that mammals typically give live birth and still have the
ability to reason about the existence of platypuses.

Whereas classical logics have a unique and well-defined notion
of entailment, there are many forms of defeasible entailment across
many different nonmonontonic formalisms. An overview of some
of these competing formalisms can be found in [12]. Defining a
notion of defeasible entailment is often contentious in practice
and there is likely no one-size-fits-all solution, however as we will
describe in the next section, KLM introduced a set of properties
that they felt sensible defeasible entailment relations should satisfy.

3.2 The KLM Framework
Shoham introduced preferential semantics for nonmonotonic rea-
soning in [18–20] with the idea being that an agent performing a
form of nonmontonic reasoning would have a preference for inter-
pretations that assign more ‘typical’ values to the atoms in question.
The seminal KLM paper [13] set out to characterise the preferential
model-theoretic approach to nonmonotonic entailment taken by
Shoham in proof-theoretic terms applied to consequence relations,
inspired by the work of Gabbay in [9].

Consequence Relations (CRs) provide an abstract mathemati-
cal view of the notion of entailment or logical consequence and
correspond to the implicit information an intelligent agent may
have [15]. Hence, KLM initially introduced, |∼, in [13] as a binary
relation on a language L, i.e. |∼ ⊆ L × L, to consider nonmono-
tonic reasoning in terms of CRs on the meta-level atop classical
logics. CRs are flexible by design in order to define many patterns
of reasoning. Although there are many CRs for a given language,
not every CR corresponds to a sensible form of reasoning.

It proves necessary to consider restricted subsets of CRs that
have desirable properties. As such, KLM did not initially propose a
specific form of nonmonotonic reasoning, but in fact explored five
logical systems and their corresponding CRs that satisfy varying
properties. Most notably is the preferential logical system P, for
which they give an axiomatic description and refine the semantics
initially proposed by Shoham in [19]. This was done to elucidate
the various closure properties that |∼ should satisfy, of which six
properties, often referred to as the KLM postulates were presented
for the logical system P. It is this very preferential approach that
forms the basis of what is referred to as the KLM framework.

KLM originally proposed preferential semantics for |∼ in the
form of preferential interpretations and proved a representation
theorem linking preferential interpretations to preferential conse-
quence relations in [13]. These were general enough to capture the
preferential ordering intuitions proposed by Shoham but were not
restrictive enough to define all reasonable defeasible entailment
relations [15].

Lehmann andMagidor later extended propositional logic with, |∼,
as a now more familiar object-level connective in [15] and elicited
a seventh property to incorporate the idea that such CRs should be

‘rational’ and obey the property of Rational Monotonicity. They also
refined preferential interpretations to consider a restricted family of
preferential interpretations referred to as ranked interpretations and
proved a similar representation theorem linking them to rational
consequence relations [15]. In this context, two entailment relations
were initially explored, preferential entailment and ranked entail-
ment. Both of which, were based on Tarskian notions of logical
consequence and were shown to be equivalent and still monotonic
- thus not sufficient for true defeasible reasoning [12].

The first true nonmonotonic entailment relation, Rational Clo-
sure (RC), was also proposed by Lehmann and Magidor in [15] as a
foundational form of rational defeasible entailment alongside the
thesis that any reasonable defeasible entailment relation should
entail at least as many conclusions as RC. Hence, RC is consistent
with a conservative form of reasoning known as prototypical rea-
soning where in linguistic terms, objects that are typical examples
inherit properties by default.

Lehmann expands on this notion in [14] and proposed Lexico-
graphic Closure (LC) partially to address the final thesis presented
by Lehmann and Magidor in [15] but also to construct a defeasible
entailment relation capturing the intuitive ideas from Reiter’s De-
fault Logic in [17]. As such, LC is superset of RC and corresponds
to a bolder form of reasoning referred to as presumptive reasoning
that grants properties to an object as long as there is nothing to
contradict such a conclusion [6, 14].

Consider Example 3.1, where we have that “mammals give birth
to live young”, “platypuses are mammals” and “platypuses do not
give birth to live young”. If we then added that “mammals are typi-
cally warm-blooded”, one would not prototypically conclude that
platypuses are warm-blooded since they are an atypical mammal,
whereas one could presumptively conclude that they are since there
is no current information to suggest otherwise.Wewill demonstrate
that this is indeed the case when we describe RC and LC.

3.3 KLM-style Syntax and Semantics
Casini et al. presented a systematic approach for extending the
KLM framework for defeasible entailment in [6]. In this approach,
Casini et al. enrich the language of propositional logic with an
additional object-level connective, |∼, and propose rational defea-
sible entailment as the refinement needed to characterise sensible
defeasible entailment relations that uphold rational closure as the
nonmonotonic core of defeasible entailment [6].

3.3.1 Syntax. Given 𝛼 and 𝛽 from the language of propositional
logic, L, we now allow for formulas of the form 𝛼 |∼ 𝛽 and refer to
them as KLM-style defeasible implications (DIs) [6]. The connective,
|∼, can be interpreted as the defeasible complement to material
implication→ and read as saying “𝛼 typically implies 𝛽”. We clarify
that nesting of the connective, |∼, is not allowed. More formally, we
can define this extension of L as LP = L ∪ {𝛼 |∼ 𝛽 | 𝛼, 𝛽 ∈ L}
[12].

We briefly note that ideas of increasing the expressivity of typ-
icality on the object-level have been explored in the context of
Propositional Typicality Logic (PTL) [3], which builds on the same
KLM approach to defeasible reasoning.

Example 3.2. Consider Example 3.1 from earlier, we are now
able to express that mammals typically give live birth (𝑚 |∼ 𝑙 ), that
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platypuses are mammals (𝑝 → 𝑚) and that platypuses typically
do not give birth to live young (𝑝 |∼ ¬𝑙), on the object-level, in a
knowledge base K = {𝑚 |∼ 𝑙, 𝑝 →𝑚, 𝑝 |∼ ¬𝑙}.

3.3.2 Semantics. We provide semantics for KLM-style DIs through
structures referred to as ranked interpretations. A ranked interpre-
tation, is a function R ↦→ N ∪ {∞}, such that R(𝑢) = 0 for some
𝑢 ∈ U, and satisfying the convexity property: for every 𝑖 ∈ N, if
𝑅(𝑣) = 𝑖 , then, for every 𝑗 s.t. 0 ≤ 𝑗 < 𝑖 , there is a 𝑢 ∈ U for
which 𝑅(𝑢) = 𝑗 [6]. We sometimes use RK to refer to all the ranked
interpretations w.r.t. a knowledge base K [6]. Intuitively, a ranked
interpretation is an ordering of all the interpretations, U, in order
of their ‘typicality’, from rank 0 to rank 𝑛, with a reserved infinite
rank, ∞. Those interpretations assigned a ranking of 0 therefore
correspond to the most typical interpretations in the eyes of an
agent with interpretations of rank ∞ being deemed ‘impossible’.
Hence, we sometimes useUR := {𝑢 ∈ U | 𝑅(𝑢) < ∞} to represent
the ‘possible’ interpretations w.r.t R [6]. Given a DI, 𝛼 |∼ 𝛽 , we say
that R satisfies 𝛼 |∼ 𝛽 , denoted as expected R ⊩ 𝛼 |∼ 𝛽 , if in the
lowest rank in which 𝛼 is satisfied, 𝛽 holds in all such models of 𝛼
within this rank. In which case, R is said to be a model of 𝛼 |∼ 𝛽

[6]. Intuitively, we have that R ⊩ 𝛼 |∼ 𝛽 iff 𝛼 → 𝛽 holds in all the
‘best’ or most typical worlds of 𝛼 .

Given some formula 𝛼 ∈ L, we say that R satisfies 𝛼 , denoted
R ⊩ 𝛼 , if 𝛼 is satisfied by all the possible interpretations w.r.t. R,
that is ∀𝑢 ∈ UR ,𝑢 ⊩ 𝛼 . Intuitively, this is reasonable since classical
propositional formulas do not express any degree of typicality.

We note that, by virtue of these semantics, any 𝛼 ∈ L can be
expressed as an equivalent DI ¬𝛼 |∼ ⊥ [5, 6]. As such, a knowledge
base, K , will now be said to contain a set of DIs. Since these are
somewhat interchangeable syntactic forms, we will not enforce this
constraint for the sake of readibility in our examples.

Example 3.3. By the convexity property of the order on ranked
interpretations, we can graphically represent them in the form of a
table with no empty rows. For example, here is a ranked interpreta-
tion for K in Example 3.2:

∞ 𝑝𝑚𝑙 𝑝𝑚𝑙

2 𝑝𝑚𝑙 𝑝𝑚𝑙

1 𝑝𝑚𝑙 𝑝𝑚𝑙 𝑝𝑚𝑙

0 𝑝𝑚𝑙

Figure 1: Ranked Interpretation for Example 3.3

In this particular ranked interpretation, we can see that 𝑝𝑚𝑙 and
𝑝𝑚𝑙 are impossible since R(𝑝𝑚𝑙) = R(𝑝𝑚𝑙) = ∞, whilst R(𝑝𝑚𝑙) =
0 and therefore 𝑝𝑚𝑙 is most preferred and represents the most
typical world.

3.4 KLM-style Defeasible Entailment
Although the original six KLM postulates proposed by KLM in
[13], together with the seventh proposed by Lehmann and Magi-
dor in [15], were used to characterise a restricted class of rational
consequence relations using |∼ on the meta-level, we now present

a reformulation of the seven postulates by Casini et al. in [6] to
characterise defeasible entailment on the meta-level, denoted by |≈:

(Ref) K |≈ 𝛼 |∼ 𝛼 And K |≈𝛼 |∼𝛽,K |≈𝛼 |∼𝛾
K |≈𝛼 |∼𝛽∧𝛾

(LLE) K |≈𝛼↔𝛽,K |≈𝛼 |∼𝛾
K |≈𝛽 |∼𝛾 Or K |≈𝛼 |∼𝛾,K |≈𝛽 |∼𝛾

K |≈𝛼∨𝛽 |∼𝛾

(RW) K |≈𝛼→𝛽,K |≈𝛾 |∼𝛼
K |≈𝛾 |∼𝛽 (CM) K |≈𝛼 |∼𝛾,K |≈𝛼 |∼𝛽

K |≈𝛼∧𝛽 |∼𝛾

(RM) K |≈𝛼 |∼𝛾,K |0𝛼 |∼¬𝛽
K |≈𝛼∧𝛽 |∼𝛾

We refer to a defeasible entailment relation, |≈, that satisfies
these properties as being LM-rational. Rational Closure and Lexi-
cographic Closure are both LM-rational defeasible entailment re-
lations [6]. For completeness sake, Relevant Closure proposed by
Casini et al. in [4] for description logics, but easily extened to propo-
sitional logic, is an example of a sensible form of defeasible entail-
ment that is stronger than Rational Closure but not LM-rational
[4, 6].

3.5 Rational Closure
We first give a semantic characterisation of RC by ranking the
ranked interpretations themselves and showing that RC can be
defined according to the ranked interpretation that is minimal ac-
cording to this ordering. Thereafter, we give a syntactic characteri-
sation of RC that assigns ranks to the DIs within a given knowledge
base, which allows for the definition of an algorithm to compute
defeasible entailment queries.

3.5.1 Semantic Definition - Minimal Ranked Entailment. Given a
knowledge base,K , Casini et al. [6] define a partial order, ⪯K , over
all its ranked models as follows: for R1,R2 ∈ 𝑀𝑜𝑑 (K), we say
R1 ⪯K R2 if and only if ∀𝑣 ∈ U, R1 (𝑣) ⪯K R2 (𝑣). Intuitively,
the ranked models themselves are partially ordered in terms of
their overall typicality, with the unique minimal ranked model,
i.e. the most conservative, being used to define RC. Giordano et
al. [10] showed that such a unique ⪯K -minimal model, denoted
R𝑅𝐶
K , exists. We are then able to define the entailment relation for

RC, denoted |≈𝑅𝐶 , as follows: K |≈𝑅𝐶 𝛼 |∼ 𝛽 if and only if R𝑅𝐶
K ⊩

𝛼 |∼ 𝛽 [6]. In other words, the rational closure of a knowledge
base is defined as the set of formulas satisfied by a single ranked
interpretation, R𝑅𝐶

K . By the representation theorem for rational
defeasible entailment relations and ranked interpretations proven
by Lehmann and Magidor in [15], we can conclude that RC is LM-
rational.

Example 3.4. We now consider a small example to illustrate
how one is able to use R𝑅𝐶

K to answer a defeasible entailment
query. Consider the knowledge base K from Example 3.2, with
the addition that mammals are typically warm-blooded (𝑚 |∼ 𝑤 ):
K = {𝑚 |∼ 𝑙, 𝑝 → 𝑚, 𝑝 |∼ ¬𝑙,𝑚 |∼ 𝑤}. It is then possible to
find its, unique ⪯K -minimal model, R𝑅𝐶

K , for which we include its
graphical representation below (we leave out the infinite rank for
compactness).
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2 𝑝𝑚𝑙𝑤 𝑝𝑚𝑙𝑤

1 𝑝𝑚𝑙𝑤 𝑝𝑚𝑙𝑤 𝑝𝑚𝑙𝑤 𝑝𝑚𝑙𝑤 𝑝𝑚𝑙𝑤

0 𝑝𝑚𝑙𝑤 𝑝𝑚𝑙𝑤 𝑝𝑚𝑙𝑤 𝑝𝑚𝑙𝑤 𝑝𝑚𝑙𝑤

Figure 2: Representation of R𝑅𝐶
K for Example 3.4

Now suppose we wanted to confirm whether platypuses are
typically warm-blooded (𝑝 |∼ 𝑤 ). Then we must consider all the
best 𝑝 worlds inR𝑅𝐶

K and check whether they are worlds in which𝑤
is true as well. We circle such worlds on Figure 2. After doing so, we
can conclude that R𝑅𝐶

K ⊮ 𝑝 |∼ 𝑤 , which means that 𝑝 |∼ 𝑤 is not in
the rational closure ofK , orK |0𝑅𝐶 𝑝 |∼ 𝑤 , and can be interpreted
as saying that platypuses are not typically warm-blooded.

3.5.2 Syntactic Definition - Base Ranks. First we must define some
preliminary terminology. Given a DI, 𝛼 |∼ 𝛽 , we refer to 𝛼 → 𝛽 as
its material counterpart. Hence, given a defeasible knowledge base,
K , its material counterpart or materialisation,

−→
K , can be defined as:

−→
K := {𝛼 → 𝛽 | 𝛼 |∼ 𝛽 ∈ K}.

A propositional formula, 𝛼 ∈ L, is said to be exceptional w.r.t.
a defeasible knowledge base, K , if and only if

−→
K |= ¬𝛼 [6, 15].

In other words, 𝛼 is false in the most preferred or typical (rank 0)
interpretations (but may be true in others) in every ranked model of
K [6, 12]. Hence we can define a function, 𝜀, that maps a knowledge
base to its subset of exceptional formulas:

𝜀 (K) := {𝛼 |∼ 𝛽 ∈ K | such that
−→
K |= ¬𝛼}.

This allows us to recursively define a non-increasing sequence
of knowledge bases, EK

0 , . . . , E
K
𝑛 , by defining EK

0 := K and then
setting EK

𝑖
= 𝜀 (EK

𝑖−1) for 0 < 𝑖 < 𝑛, with EK
∞ := EK

𝑛 , where 𝑛 is
the smallest 𝑖 such that EK

𝑖
= EK

𝑖+1 [5].
The base rank, 𝑏𝑟K (𝛼), of a propositional formula 𝛼 or the an-

tecedent of a DI 𝛼 |∼ 𝛽 , can then be defined as the minimal index 𝑖
such that 𝛼 is not exceptional w.r.t. the sequence EK

𝑖
[5]. Formally:

𝑏𝑟K (𝛼) :=𝑚𝑖𝑛{𝑖 |
−−→
EK
𝑖 ⊭ ¬𝛼}

Giordano et al. proved in [10] an alternative definition for the
Rational Closure in terms of base ranks: Given 𝛼 |∼ 𝛽 ,

K |≈𝑅𝐶 𝛼 |∼ 𝛽 iff 𝑏𝑟K (𝛼) < 𝑏𝑟K (𝛼 ∧ ¬𝛽) or 𝑏𝑟K (𝛼) = ∞.

3.5.3 Algorithm. Wenow are in a position to define an algorithm in
two parts, BaseRank and RationalClosure, that is able to answer
defeasible entailment queries of the form 𝛼 |∼ 𝛽 as described by
Casini et al. in [6].

BaseRank takes as input a knowledge base K and defines a se-
quence of materialisations, 𝐸0, . . . , 𝐸𝑛−1, 𝐸∞ that are used to par-
tition

−→
K into a sequence of levels 𝑅0, . . . , 𝑅𝑛−1, 𝑅∞ such that 𝑅𝑖

corresponds to all the material counterparts of the DIs inK of base
rank 𝑖 . We can define the sequence of 𝐸𝑖s using our earlier sequence

as follows: ∀𝑖, 𝐸𝑖 :=
−−→
EK
𝑖
. Using this sequence, we can inductively

define the sequence of 𝑅𝑖s: 𝑅𝑖 := 𝐸𝑖 \ 𝐸𝑖+1 for 0 ≤ 𝑖 ≤ 𝑛 − 1 with
𝑅∞ := 𝐸∞.

RationalClosure, then answers the given query, using the se-
quence of 𝑅𝑖s produced by BaseRank. The algorithm does this by
first checking whether 𝑅0∪· · ·∪𝑅𝑛−1∪𝑅∞ |= ¬𝛼 holds (i.e. whether
the antecedent, and by extension the query itself, is exceptional
w.r.t. the entire knowledge base). If this is indeed the case, the algo-
rithmwill repeatedly remove the lowest level, each time performing
the same check with the remaining ranks, until an 𝑖 is found such
that 𝑅𝑖 ∪ · · · ∪𝑅𝑛−1 ∪𝑅∞ |= ¬𝛼 holds or until only R∞ remains. At
which point, the algorithm then checks whether the materialisation
of the query, i.e. 𝛼 → 𝛽 , is entailed by these remaining ranks -
returning true if it is and false if it is not. A result by Freund in [8],
guarantees that RationalClosure returns true iff 𝐾𝐵 |≈𝑅𝐶 𝛼 |∼ 𝛽 .

We finally note that computing RationalClosure is not compu-
tationally harder than classical entailment, since its implementation
will make use of classical entailment checkers a polynomial number
of times in the size of K [6].

Example 3.5. Suppose again we wanted to answer the query
whether platypuses are typically warm-blooded (𝑝 |∼ 𝑤 ) for the
knowledge base K = {𝑚 |∼ 𝑙, 𝑝 →𝑚, 𝑝 |∼ ¬𝑙,𝑚 |∼ 𝑤} to corrobo-
rate our result from earlier.

Upon giving K as input to the BaseRank algorithm, we will
receive the following ranking of formulas according to their base
ranks:

𝑅∞ 𝑝 →𝑚

𝑅1 𝑝 → ¬𝑙
𝑅0 𝑚 → 𝑙 𝑚 → 𝑤

Figure 3: Partition of K by Base Ranks

The algorithm RationalClosure will then check whether 𝑅0 ∪
𝑅1 ∪ 𝑅∞ |= ¬𝑝 . Since it does, which means that 𝑝 is exceptional
w.r.t.

−→
K , we throw away 𝑅0 and check whether 𝑅1∪𝑅∞ |= ¬𝑝 holds,

which it does not. Hence, we now answer the query by checking
whether 𝑅1 ∪ 𝑅∞ |= 𝑝 → 𝑤 holds, which it also does not, thus we
reach the same conclusion as in Example 3.4 that K |0𝑅𝐶 𝑝 |∼ 𝑤 .

3.6 Lexicographic Closure
Lexicographic Closure was initially described in terms of normal
defaults. We will instead describe Lexicographic Closure using the
more familiar notation we have used up until this point i.e. knowl-
edge bases containing DIs. Lehmann defines Lexicographic in two
ways in [14]: a semantic or model-theoretic definition in terms of a
ranked interpretation and another using bases. The model-theoretic
definition being more relevant to our work. Both aforementioned
definitions utilise the idea of imposing a ‘seriousness’ ordering on
subsets of the knowledge base. Lehmann proposes to order subsets
of the knowledge base by two criteria that in theory give an indica-
tion of its ‘seriousness’: its size or cardinality, and the specificity
of the elements it contains in terms of base ranks. Each criterion
defines its own modular order, hence the two are combined lexico-
graphically with the specificity criterion being used as the major
criterion [14].

3.6.1 Semantic Definition. The seriousness ordering, once defined
for subsets of the defeasible knowledge base, is used to define a
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modular ordering of the propositional interpretations themselves,
resulting in the ranked interpretation that corresponds to Lexico-
graphic Closure. Intuitively, each subset is associated with its own
‘characteristic’ numeric tuple that is then lexicographically ordered
against the ‘characteristic’ numeric tuples of other subsets.

We define the order of a defeasible knowledge base K to be the
maximum base rank assigned to a formula in the knowledge base
excluding formulas of rank ∞. Thus, given a knowledge base of
order 𝑘 , we define for each 𝐷 ⊆ K , a 𝑘 + 1 tuple of natural numbers
denoted 𝑛𝐷 , (𝑛0, ..., 𝑛𝑘 ), where

𝑛0 = |{𝛼 |∼ 𝛽 ∈ 𝐷 | 𝑏𝑟K (𝛼) = ∞}|, and
𝑛𝑖 = |{𝛼 |∼ 𝛽 ∈ 𝐷 | 𝑏𝑟K (𝛼) = 𝑘 − 𝑖}| for 1 ≤ 𝑖 ≤ 𝑘.

[12, 14]

Hence, we can now define the seriousness modular ordering,≺𝑆 ,
of subsets ofK as follows: given𝐷1, 𝐷2 ⊆ K , we say that𝐷1 ≺𝑆 𝐷2
iff 𝑛𝐷1 ≺ 𝑛𝐷2 where ≺ denotes the natural lexicographic ordering
of tuples of natural numbers.

It is now straightforward to define a modular order on the propo-
sitional interpretations themselves that corresponds to the ranked
interpretation defining LC. Intuively, we are defining a preference
ordering of the propositional interpretations that favours interpreta-
tions that ‘violate’ less serious subsets of DIs [14]. Lehmann defines
such a modular order, ≺𝐿𝐶 in [14] as: given𝑚,𝑛 ∈ U,𝑚 ≺𝐿𝐶 𝑛

iff 𝑉 (𝑚) ≺𝑆 𝑉 (𝑛) where 𝑉 (𝑚) ⊆ K is the set of DIs violated by
𝑚 ∈ U. We note that the ranked interpretation defined by this
modular order is closely related to the ranked interpretation that
defines rational closure.

One can view the ranked interpretation corresponding to lexi-
cographic closure as a refinement of the one that corresponds to
rational closure in the sense that the ‘levels’ may be split into a
number of ‘sub-levels’ [14] such that the overall order of levels is
maintained. Casini et al. [6] take such an approach to constructing
the ranked interpretation corresponding to Lexicographic Closure.
Assuming one has the ranked interpretation corresponding to RC,
R𝑅𝐶
K , we define the order, ⪯K

𝐿𝐶
, onU as follows: 𝑢, 𝑣 ∈ U, 𝑢 ⪯K

𝐿𝐶
𝑣

iff R𝑅𝐶
K (𝑢) = ∞, or R𝑅𝐶

K (𝑣) < R𝑅𝐶
K (𝑢), or R𝑅𝐶

K (𝑣) = R𝑅𝐶
K (𝑢) and

CK (𝑣) ≥ CK (𝑢) where

CK (𝑣) := |{𝛼 |∼ 𝛽 ∈ K | 𝑣 ⊩ 𝛼 → 𝛽}|.

The intuition behind CK being that it allows one to compare propo-
sitional interpretations within levels in R𝑅𝐶

K by their typicality in
terms of the number of DI material counterparts they satisfy with
those satisfying more being placed on a lower sub-level.

Once the ranked interpretation, RK
𝐿𝐶

, has been constructed, ei-
ther by means of the seriousness ordering or by means of the
function CK , it is straightforward to define the corresponding en-
tailment relation, |≈𝐿𝐶 as follows: given 𝛼 |∼ 𝛽 , K |≈𝐿𝐶 𝛼 |∼ 𝛽 iff
RK
𝐿𝐶

⊩ 𝛼 |∼ 𝛽 .

Example 3.6. As a means of comparison with Rational Closure,
we consider the same knowledge base from Example 3.4:K = {𝑚 |∼
𝑙, 𝑝 →𝑚, 𝑝 |∼ ¬𝑙,𝑚 |∼ 𝑤}.

Using the semantics provided above, we can construct the ranked
model ofK corresponding to Lexicographic Closure,RK

𝐿𝐶
, for which

we represent graphically below (again we leave off the infinite rank):

5 𝑝𝑏𝑓𝑤

4 𝑝𝑏𝑓𝑤

3 𝑝𝑏𝑓𝑤 𝑝𝑏𝑓𝑤

2 𝑝𝑏𝑓𝑤 𝑝𝑏𝑓𝑤

1 𝑝𝑏𝑓𝑤

0 𝑝𝑏𝑓𝑤 𝑝𝑏𝑓𝑤 𝑝𝑏𝑓𝑤 𝑝𝑏𝑓𝑤 𝑝𝑏𝑓𝑤

Figure 4: Representation of R𝐿𝐶
K for Example 3.6

Let us now turn back to our original query whether platypuses
are typically warm-blooded (𝑝 |∼ 𝑤 ) from Example 3.4. Again, we
must consider all the best 𝑝 worlds in R𝐿𝐶

K and check whether
they are worlds in which𝑤 is true as well. We circle the only such
world on Figure 4. In the case of Lexicographic Closure, we find that
R𝐿𝐶
K ⊩ 𝑝 |∼ 𝑤 , which means that 𝑝 |∼ 𝑤 is in the Lexicographic

Closure of K , or K |≈𝐿𝐶 𝑝 |∼ 𝑤 , and can be interpreted as saying
that platypuses are typically warm-blooded.

3.6.2 Bases. As mentioned briefly before, there is another charac-
terisation of Lexicographic Closure by what Lehmann terms bases
[14]. We choose not to define the specifics of such characterisation
as our work surrounds the model-theoretic definition of Lexico-
graphic Closure described above.We note that a detailed description
of this characterisation, using notation consistent with this review,
can be found in [12].

3.6.3 Lexicographic Closure Algorithm. Casini et al. [6] provide
a general algorithm capable of computing the defeasible entail-
ment relation generated by what they refer to as a K-faithful rank
function. This general algorithm is essentially a modification of
earlier algorithm described for RC, where RationalClosure has
been replaced with DefeasibleEntailment that makes a call to a
new Rank function that replaces BaseRank.

The notion of being K-faithful was first introduced to char-
acterise basic defeasible entailment relations. It was subsequently
shown that basic defeasible entailment was too permissive of a
concept since it did not enforce that such an entailment relation
endorse all the entailments of RC [6]. Hence, rational defeasible
entailment relations were defined as basic defeasible entailment
relations that did satisfy the property of extending RC - in line
with the final thesis in [15]. It was also shown that rational defea-
sible entailment relations could be characterised semantically by
requiring that K-faithful ranked models be rank preserving: a K-
faithful ranked model R is said to be rank preserving iff ∀𝑢, 𝑣 ∈ U,
if R𝑅𝐶

K (𝑣) < R𝑅𝐶
K (𝑢), then R(𝑣) < R(𝑢) [6]. This now formalises

the idea that one can define any rational defeasible entailment rela-
tion in terms of a ranked model that is a refinement of R𝑅𝐶

K in the
sense that certain levels of R𝑅𝐶

K may be split up into a number of
sub-levels such that the relative positions of the interpretations in
the original levels is maintained [6, 14].

Finally, to utilise the general algorithm proposed by Casini et
al. to compute Lexicographic Closure, one needs to define a K-
faithful rank preserving rank function, 𝑟𝐿𝐶K , that corresponds to

6
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Lexicographic Closure. Casini et al. define it as follows: 𝑟𝐿𝐶K (𝛼) :=
𝑚𝑖𝑛{R𝐿𝐶

K (𝑣) | 𝑣 ∈ 𝑀𝑜𝑑 (𝛼)} [6].
We will not delve into the specifics of how this is done and

the mechanics of how the algorithm answers a given query in
this review as the complexities can be abstracted from our earlier
demonstration of RC and found in [5, 6]. However, we will note
that computing this algorithm is computationally harder than com-
puting classical entailment since its implementation may result in a
number of calls to a classical entailment checker that is exponential
in the size of K [6].

4 DISCUSSION
Our examples for Rational Closure and Lexicographic Closure con-
trasted their differences in terms of their prototypical and pre-
sumptive reasoning styles. We clarify that this does not inherently
imply that LC is necessarily a more valid form of defeasible en-
tailment than RC since it ‘correctly’ entailed that platypuses are
warm-blooded mammals whereas RC did not. We mentioned earlier
than there is likely no correct-most form of defeasible entailment,
but merely ones that are potentially better suited to certain domains
than others. Ultimately, choosing certain forms of defeasible entail-
ment begins to encroach upon the area of Ontology Engineering.

5 CONCLUSIONS
We started this review with a demonstration of how one can use for-
mal logic to represent and reason about knowledge. Classical logics
and their associated reasoning services, burdened by the property
of monotonicity, are shown to be inadequate for modelling real-
world situations as they cannot express any degree of uncertainty
or typicality. On the other hand, reasoning with uncertainty and the
ability to retract prior conclusions, whilst in theory is better suited,
is not unique. Hence, we briefly motivated for and chronicled the
development of the prominent KLM framework used to formally
assess sensible forms of defeasible entailment.

In particular, we examined two principle defeasible entailment
relations, Rational Closure and Lexicographic Closure, that fall
under the umbrella of rational defeasible entailment relations in an
extension of the KLM framework [6] proposed by Casini et al. It
was shown how both could be characterised using ranked models
as well as ranked formulas - with an emphasis on the former.

A key result for our work is that any form of rational defeasible
entailment can be characterised by a ranked model that is a refine-
ment of the ranked model corresponding to Rational Closure. This
may suggest that a model-based algorithm devised for Rational
Closure may be generalisable to other forms of rational defeasible
entailment.

Whilst focusing on their model-based semantics, we noted that
the current algorithm for computing Rational Closure is equiva-
lent in computational complexity to classical entailment checking,
however, the general algorithm available for computing rational
defeasible entailment is less efficient and computationally harder.
Furthermore, it is evident that there presently does not appear to
exist an efficient way of constructing the minimal ranked model cor-
responding to Rational Closure or the ranked model corresponding
to Lexicographic Closure other than by some ‘brute-force’ means
of applying their semantic definitions.

These gaps in the literature point to the need for further investi-
gation into the design of novel algorithms that construct and use
ranked models for defeasible entailment checking along with the
feasibility of their implementations compared to current formula-
based ‘top-down’ approaches.
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