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ABSTRACT 
A literature review was performed to establish the 

effectiveness of deep neural networks (DNNs) for the 

detection of Myocardial Infarction (MI) using 

electrocardiogram (ECG) data. In this review, three DNNs 

will be explained with respect to their architecture, 

performance, and applicability for MI detection. This 

included the simple Recurrent Neural Network (RNN) and 

two of its extensions, i.e.  Long Short-Term Memory 

(LSTM), and Bidirectional LSTM (BiLSTM). Related 

works were analysed to establish common limitations and 

challenges of these DNN techniques, in addition to the 

datasets, data splitting and pre-processing methods 

utilised. This review found the simple RNN design to be 

an inadequate classifier for MI. However, the LSTM 

provided powerful detection capabilities for MI, followed 

closely by the BiLSTM design. The success of these 

architectures supports further research into their 

applicability for MI detection. 
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1 INTRODUCTION 

1.1 Background 

According to the WHO’s 2019 global health figures, 

Coronary Artery Disease (CAD) has been the primary 

cause of death worldwide, responsible for 16% of the 

world’s total deaths. In the last twenty years, the increase 

of deaths due to CAD, has risen from 2 million to 8.9 

million deaths [2]. CAD is the precursor to MI which can 

be described as when the blood supply to the muscular 

tissue of the heart is interrupted, causing irreversible 

damage to the cells responsible for generating contractile 

force in the heart [3]. MI, also called a heart attack, can 

frequently occur in patients with a history of CAD [23].  

By detecting MI early, irreversible damage to heart 

tissue can be reduced [5]. First responders such as 

paramedics may lack the proficiency of cardiologists when 

it comes to interpreting ECGs or the hospital might be 

short-staffed of such experts [1].  This establishes 

precedence to develop an automated expert system (AES) 

that can effectively screen patients for potential MI, at a 

low cost and with relative ease. The strength of DNNs to 

learn from previous patterns without needing a medical 

expert to develop the decision logic, positions them as 

effective candidates for such an AES [11]. 

As a subset of machine learning, deep learning 

makes use of a neural network with three or more layers. 

The numerous layers give way to the term deep neural 

network. By learning from large amounts of data, these 

neural networks attempt to simulate the behaviour of the 

human brain to some extent [19]. Rather than categorizing 

features as two separate modules, the DNN model can 

integrate feature extraction and classification into one 

[7,8,14]. This is referred to as the “end-to-end” model (see 

Figure 1). Such a model can solve tasks which would 

otherwise require multiple components or steps [76]. The 

concern with numerous modules when applied to a 

complex task is the snowballing of errors, as any 

discrepancies between modules can carry over and thus 

affect the classification task [28].  

 
 
 

The sequential nature of ECG signals lends itself to 

exploring architectures which excel at learning long term 

dependencies [20]. Hence, this review will focus on RNNs 

and two of its extensions, the LSTM and BiLSTM. The 

application of recurrent architectures to MI detection is a 

relatively new research focus, with the earliest papers 

cropping up only in 2019 [34,35,45,46]. This review 

presents an overview of these three architectures, and their 

comparative performances in MI detection. With the 

limited research that was available, LSTMs were shown to 

be the preferred candidate in MI detection, as will be 

confirmed in this review. 

Figure 1: An example DNN end-to-end model [7] 
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1.2 ECG Analysis 

Several methods in detecting MI, such as coronary 

angiography and echocardiogram, are invasive techniques 

and labour intensive [10]. Furthermore, these strategies 

require extensive resources and may be limited to a short 

access window, making them impractical to screen 

patients for timely medical intervention [1]. 

ECG analysis is a cost-effective alternative. It is a 

non-invasive technique that records electrical signals of 

the heart in real time [29]. It also benefits from a simple 

setup process and continuous monitoring capability [18]. 

The rhythm of a healthy heart (referred to as normal 

sinus rhythm) [30] in a single cardiac cycle is a P wave 

followed by the QRS complex, then a T wave [17]. The 

sample of a normal sinus rhythm is shown in Figure 2a. 

Variation of the ECG signal based on its characteristic 

morphology and interval helps experts in disease diagnosis 

[8]. In the case of MI, the characteristics of the ECG signal 

generally include ST-segment elevation, abnormal Q wave 

appearance, and T-wave inversion [20]. MI classification 

can be seen in Figure 2b. 

At first glance, ECGs present as two-dimensional 

image data, but they can easily be represented as one 

dimensional data in the form of a time series [71]. 

Heartbeats are inherently sequential and can be linked to 

one another in time [6]. This format is desirable for 

recurrent architectures, which expect sequential data [21]. 

2 SUITABLE DEEP NEURAL 

NETWORKS 

Convolutional neural networks (CNN) are the most 

popular architecture for MI detection [4]. A recent study 

demonstrated a hybrid CNN-LSTM model to be highly  

 

effective at detecting ST-segment elevation MI and 

determining the occluded coronary artery from ECG 

data [5]. In several cases, the study’s model even 

outperformed expert cardiologists. However, in isolation, 

vanilla CNNs can only deduce spatial relations and are 

thus restricted by their kernel size [47]. In the case of ECG 

analysis, this means only characteristic features of the 

signal’s shape can be learnt. The concern is that these 

extracted spatial features can misdiagnose MI, as ST-

segment deviation may be observed in other conditions 

such as acute pericarditis, left ventricular hypertrophy, left 

bundle-branch block, Brugada syndrome, and early 

repolarizations [50].  

2.1 Recurrent Neural Networks 
RNNs benefit from recognising input signals as time-

varying and can therefore exploit the signal’s temporal as 

well as its spatial relationships [44]. Thus, an RNN can 

make inferences on the beat-to-beat variations in addition 

to the characteristic shape of the ECG data.  

Unlike traditional machine learning methods, 

RNN’s recognise that there is often a dependent link 

between the input and output of a model [21]. Standard 

feed-forward neural networks send data through the 

hidden layers in only one direction, thus excluding past 

results from future outputs [27]. This poses an issue in 

problems such as natural language processing, wherein a 

sentence’s meaning is not merely the sum of its 

independent words but rather the placement of the words 

in context [31]. RNNs are suited as they can develop a 

memory by forming a directed cycle wherein the previous 

layer’s output is combined with new input to form the 

current layer’s output [24]. The RNN design can be seen 

in Figure 3. 

Figure 2: The ECG characteristics of normal sinus rhythm (a) and myocardial infarction (b). [4] 
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The hidden state (h) at time step t for an RNN is 

calculated as: 

ℎ𝑡  =  𝑓𝑛(𝑈𝑥𝑡 +  𝑊ℎ𝑡−1 + 𝑏 ) 

𝑓𝑛 is an application function (such as tanh or ReLu),  𝑥𝑡 is 

the input sequence and b is the bias vector. Weight 

matrices U and W are applied to 𝑥𝑡 and the previous hidden 

state ℎ𝑡−1, respectively [24]. 

This simple RNN design as described above does 

suffer from a significant issue: A study demonstrated that 

such RNNs can manage input dependencies over long-

intervals, in principle [22]. However, the study showed 

that training these networks with gradient descent for large 

datasets often leads to the vanishing or exploding gradient 

problem [22]. 

2.2 Long Short-Term memory 

To address this problem the Long-Short-Term (LSTM), 

was introduced in 1997, as an extension of the simple RNN 

[27].  The LSTM model addresses the shortcomings of the 

simple RNN through implementing various activation 

function layers called gates. The gate structure determines 

to what extent prior information will contribute to the 

current output [32]. The LSTM architecture comprises of 

multiple memory blocks, which contain the gates as well 

as an internal cell memory. The memory cells represent the 

information that the previous memory block chose to keep 

[43]. The design can be seen in Figure 4.  

The LSTM gate structure is composed of three 

gates namely the: 

1) forget 

2) input 

3) and output gate 

The output of the forget gate at time step t is given by the 

following application of the sigmoid activation function: 

𝑓𝑡 =  𝜎(𝑈𝑓𝑥𝑡 +  𝑊𝑓ℎ𝑡−1 + 𝑏𝑓) 

Note that definitions of symbols used carry over from the 

previous section. The forget gate’s output is applied to the 

previous memory cell 𝐶𝑡−1 by taking their element-wise 

product (denoted as ⊙). The forget gate thus determines 

to what degree previous data must be discarded [33]. 

The input gate determines the amount of 

information that will be written to the current memory cell 

𝐶𝑡 [37] and is calculated as:  

𝑖𝑡 =  𝜎(𝑈𝑖𝑥𝑡 +  𝑊𝑖ℎ𝑡−1 + 𝑏𝑖) 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑈𝑖𝑥𝑡 +  𝑊𝑖ℎ𝑡−1 + 𝑏𝑖) 

Lastly, the output gate calculates the current hidden 

state to be passed onto subsequent LSTM blocks [49]. This 

is calculated as follows: 

𝑜𝑡 =  𝜎(𝑈𝑜𝑥𝑡 +  𝑊𝑜ℎ𝑡−1 + 𝑏𝑜) 

ℎ𝑡 =  𝑜𝑡 ⊙ tanh (𝐶𝑡) 

 
 
 

2.3 Bidirectional Long-Short Term Memory 

The Bidirectional RNN (BRNN) was developed to 

incorporate not only past, but also future state information 

into the training algorithm [25].  BRNNs achieve this by 

training both a forward and a backward RNN which share 

a common output layer [25]. This allows for the 

dependencies between sequential input to be learnt in both 

directions [38]. This leads to improved predictions as the 

context of the entire input sequence is considered [13]. 

Notably, the neurons of the forward and backward RNNs 

are independent of each other [42]. Thus, the training of 

the BRNN follows the same paradigm as in the regular 

unidirectional case [25].    

The Bidirectional LSTM (BiLSTM) follows the 

same structure as the BRNN, however the forward and 

backward RNNs are simply replaced with LSTM layers 

[12]. Two independent models are effectively trained, thus 

a system to combine both of their outputs is needed. The 

merging of their outputs can be performed via several 

methods such as summation, average, multiplication, or 

concatenation. [37] A visualisation of the BiLSTM model 

can be seen below in Figure 5. 

Figure 3: RNN Design [33] 

Figure 4: LSTM memory block design [43] 
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BiLSTM models can outperform standard unidirectional 

LSTMs in time series prediction [38] and are significantly 

more effective in natural language processing [36]. A 

disadvantage of the BiLSTM is that they require longer 

training times, owing to the dual model design [38]. 

3 APPLICATIONS TO MI 

DETECTION 

3.1 Evaluation Metrics 

A study analysed data from 564 412 patients treated for MI 

in the UK over a nine-year period discovered that almost a 

third were initially misdiagnosed [39]. The misdiagnosed 

patients faced a seventy percent increased risk of death 

after thirty days, as opposed to those who were correctly 

diagnosed at first [39]. On the other end of the scale, 

overdiagnosis of MI wastes medical resources and leads to 

unnecessarily invasive treatments [1]. 

The above warrants a careful consideration of how 

a MI classifier should be evaluated. The most important 

metric for a diagnostic system tasked with detecting a 

dangerous condition like MI is its sensitivity [9]. This 

measures the system’s ability to correctly identify patients 

who have the disease [10]. Following on closely, is the 

classifier’s specificity as  this indicates how effective the 

classifier is at excluding healthy patients [40]. There are 

many other metrics frequently used such as precision, 

accuracy, F1 score and area under the receiver operator 

curve (AUC-ROC) [6]. As is common practice, we 

consider positive cases to represent the disease (i.e. MI), 

whilst the negative is the healthy control [8]. 

Precision measures the ratio of samples correctly 

labelled as positive to all samples labelled positive [14]. 

Accuracy is the proportion of correctly classified samples 

to the entire pool of samples [8]. It is the most used 

measurement in MI diagnosis [4];  however, when the data 

exhibits significant class imbalance, accuracy may be 

misleading [34,35]. This is because the model can still 

score high by simply  classifying everything as the 

majority class. In cases of class imbalance, the F1 score is 

preferred [40]. This metric gives the harmonic mean of the 

precision and sensitivity [11]. 

Four central values, True Positives (TP), True 

Negatives (TN),  False Positives (FP) and False Negatives 

(FN) are needed in calculating the metrics mentioned. The 

following equations summarise the various metrics: 

Accuracy = TP+TN/(TP + FP + TN + FN) 

Precision = TP/ (TP+FP) 

Sensitivity = TP/(TP+FN) 

Specificity = TN/(TN+FP) 

F1 Score = 2*(Precision*Sensitivity) / (Precision 

+Sensitivity) 

Utilizing robust evaluation strategies to make results 

comparable and generalizable is crucial. However, there 

exists a lack of consistency in the choice of such metrics 

used for MI detection [9]. 

3.2 Architectures 

Recurrent architectures have achieved great success in 

classifying and modelling time series data [49]. The 

capacity of such models to process and remember 

information through time, would imply that heartbeat 

sequences can be processed with their sequential 

dependencies remaining intact [51]. This inherent strength 

of recurrent structures hypothesises its success in MI 

detection. Note that the studies explored in this section all 

focused on MI detection and made use of the PTB 

diagnostic dataset [58].  

3.2.1 Recurrent Neural Networks 

A study assessed the classification power of the 

simple RNN versus LSTMs [34]. The RNN model 

performed considerably worse than the LSTM, achieving 

a precision score of 68% compared to the LSTM which 

gave 91%. A limitation of the study was that minimal pre-

processing on the ECG signal was performed prior to it 

being passed to the models. 

An additional study compared the relative 

performances of the simple RNN to that of an LSTM and 

a Gated Recurrent Unit (GRU) [35]. A GRU merges 

several of the gates and states present in the vanilla LSTM. 

The result is a model that is simpler, whilst still retaining 

the memory capability of LSTMs [52]. The study used 

training-testing data splits ranging from 50:50% to 90:10% 

to demonstrate the effect on model performance within 

various splits. Optimal results came from a 90:10% split, 

with the vanilla LSTM model achieving the best sensitivity 

score of 98.49% [35]. The GRU was however a close 

second to the LSTM in its specificity, precision and F1-

score. The RNN performance was inferior, averaging 

10.2% below the LSTM’s scores [35]. 

  The results of the previous studies [34,35] support 

the notion that a simple RNN is inadequate at detecting 

Figure 5: BiLSTM Model design [42] 
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MI, as compared to its extension, the LSTM. Moreover, 

the RNN has sub-par performance in MI detection when 

compared to CNNs and more traditional ML techniques 

[53]. 

3.2.2 Long Short-Term Memory 

In a study comparing CNNs, LSTMs and a hybrid CNN-

LSTM model, the CNN and LSTM models demonstrated 

accuracy scores of 84.95% and 85.23% respectively [48]. 

This study however had several issues, including the 

absence of pre-processing and data splitting methods used, 

as well as only presenting accuracy scores for the models. 

 Near perfect classification ability was found in a 

study using an LSTM [46]. The classifier achieved 

sensitivity, specificity, precision and accuracy scores of 

99.91 99.95 99.91 and 99.91%, respectively [46]. 

Furthermore, the study concluded that it exhibited superior 

performance compared to several related works which 

used other machine learning techniques such as CNN and 

support vector machines [46]. 

Notably, another study using an LSTM trained its 

model to detect MI on a single heartbeat from a single lead 

ECG (Lead II), in real time (< 40ms) [47]. The model 

achieved sensitivity, precision and F1-scores all above 

90%. This study presents a novel application as detecting 

MI from Lead II alone is challenging but more 

importantly, Lead II is widely available in wearable 

devices and fitness machines, making the proposed model 

widely deployable at a low cost [47]. Other studies used 

eight [34,46], twelve [44,45] or fifteen leads [35,48].  

The first study from Section 3.2.1 also 

experimented with one, two and three hidden layer 

LSTMs, shedding light on the impact of changing this 

number. The study demonstrated no notable improvement 

when the LSTM’s hidden layer count was increased [34]. 

3.2.3 Bidirectional Long Short-Term Memory 

This review found limited research to have been done in 

the application of BiLSTMs to MI detection. In the one 

study found, the BiLSTM achieved sensitivity, specificity 

and accuracy values of 93.86, 85 and 92.54% respectively 

[45]. The study experimented with the use of a heartbeat 

attention mechanism, comparing the BiLSTM model with 

and without the mechanism. Improvements were seen by 

including the mechanism, raising the metrics on average 

by 3.2% [45]. The attention mechanism allows the model 

to weight ECG segments which provide valuable 

diagnostic markers in MI detection [44]. 

As prior research would indicate [15,36,38], the ability of 

BiLSTMs to train on both the forward and backward 

sequence of the data suggests it would outperform simpler 

models like the LSTM and RNN. The limited research 

provides an opportunity for future studies to ascertain its 

comparative performance versus other deep learning 

models in MI detection. 

4 ECG DATASETS 

Without high quality datasets, deep learning techniques 

cannot be trained optimally, and their classifying ability 

cannot be generalised for use in clinical settings [7]. In the 

case of supervised learning, samples need to be expertly 

annotated to distinguish healthy control samples from 

those who are not [67]. This, in addition to the dataset 

needing to be publicly available, restricts the inclusion of 

viable datasets for MI detection to the following: 

 

1. Physikalisch-Technische Bundesanstalt (PTB) 

Diagnostic ECG Database  

2. PTB-XL 

3. Long Term ST Database (LTST) 

4. ECG-VIEW II 

 

Researchers frequently analyse ECGs from the PTB 

diagnostic database since it contains cardiologist 

annotations of ECGs for various heart conditions, 

including MI [58]. The smallest dataset is the LTST [60], 

consisting of only 86 recordings from 80 patients whilst 

the largest database is the ECG-ViEW II database 

comprising 979 273 recordings from 461 178 patients 

obtained over a 19-year research period [61]. The PTB-XL 

database was made publicly available in 2020 and is a 

large dataset (21 837 recordings from 18 885 patients) and 

is extensively annotated, boasting the highest number of 

records explicitly labelled MI [59]. Further details of the 

four datasets can be found in Table 1. 

Other public ECG datasets used in MI detection 

include the ESCDB [62] and STAFFIII [63]. They are 

however excluded due to a combination of small sample 

sizes (< 100 patients), minimal ECG leads (two or three), 

containing non-MI ST-segment deviations or no healthy 

control identified in the data. There are also no prior 

studies that used these datasets for MI detection with an 

end-to-end recurrent architecture.  

4.1 Pre-processing 

A strength of DNNs is that they can learn from raw data 

which has seen minimal pre-processing. This explains the 

relative success in two studies this review identified which 

did not employ any noise removal [34,35]. 

Notwithstanding, ECGs are weak electric signals 

generated from the body’s surface, which are relatively 

unstable and subject to distortion [46]. To name a few 

sources, ECGs can be distorted by high-frequency noise 

[54], electromagnetic interference from power lines [55] 

as well as baseline wander attributed to patient breathing 

and movement [16]. Studies commonly employ waveform 

transform to remove these artifacts [12, 14, 23, 45, 56], 

however other filters were found to be used such as 

moving average [47], median plus notch [46] and bandpass 

[44]. 

Regardless of denoising steps taken, the ECG 

signals must then be resampled at a consistent rate [23]. 

This involves transforming the ECG beats into uniform 

segments, which can then be passed to the classifier [14]. 
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Heartbeats are generally segmented based on the R-wave, 

owing to its high amplitude [56]. The Pan Tompkins 

algorithm is commonly employed to achieve this [57].  

Sliding windows with the same number of 

heartbeats can then be generated from the relative 

positions of the R-peaks [45,46]. A more popular 

technique is to determine a sliding window based on a 

particular length of time [34,35,44,47]. After the data is 

processed, it must then be separated into groups for 

training the model and evaluating its performance [47]. 

4.2 Data Splitting 

To determine the performance of DL methods, data 

splitting plays a crucial role [68]. Over fitting is a prime 

concern if all the data is used to train the model.  This 

would result in poor performance when the model is 

presented with new data [67]. Depending on the task at 

hand and the structure of the data, various partitioning 

methods are employed to remedy this [69].  

A traditional method such as standard cross 

validation assumes an absence of a dependent relationship 

between observations [64]. At first glance, this is of great 

concern to ECG analysis, as the beat-to-beat variation 

would be lost if the signals are sliced up arbitrarily. This 

would result in the model’s weights and hyperparameters 

being tuned incorrectly, leading to poor classification 

power [72]. However, the segmenting and windowing as 

described in the previous section takes care of this, as the 

ECG samples are then independently and identically 

distributed. The use of a sliding window closely aligns 

with that of the walk-forward validation technique which 

is more effective at evaluating models operating on time 

series data [65]. 

Application of a simple training-validation-testing 

data splitting is popular [12,34,35,45,46], however some 

studies choose to exclude the use of a validation set 

[34,35]. Furthermore, the proportion of these splits vary 

amongst studies [4]. Each split has a specific function: 

Training data is the initial input and is the how the model 

develops its classification or predictive ability [26]. The 

validation split is for preliminary evaluation and is thus 

separated from the training data. The validation set 

determines the model’s performance on unseen data, 

whilst still optimising the model’s hyperparameters [66]. 

The test set emulates a real world setting and provides an 

unbiased evaluation of the final model’s generalisability 

[70]. 

Another common option is to use, K-fold cross-

validation [44,47]. In this technique, the samples are 

randomly divided into k equally sized subsets [41]. Of the 

k groups, one is held back to be used as the validation set, 

whilst the rest are used for training the model [30]. This 

process is then repeated k times with the mean of the k 

results used as a measure of the final model’s skill [72]. 

Importantly, each unique group is used exactly once to 

validate the model [75]. K-fold cross-validation is a 

popular technique as it generally results in a more realistic 

and unbiased estimate of the model’s performance as 

opposed to the simple training-testing split method [74]. 

5 DISCUSSION 

Results from notable studies which incorporated an end-

to-end recurrent architecture for MI detection have been 

summarised in Table 2. The simple RNN design 

performed the worst in both inter and intra study 

comparisons, achieving the lowest sensitivity, precision 

and F1-scores of 83%, 68%, 75% respectively [34]. LSTM 

based models were the top performer across the studies, 

with one study achieving sensitivity, specificity, precision 

and accuracy values of  99.91% 99.95% 99.91% 99.91% 

respectively [46]. This review found the BiLSTM model 

for MI detection to only have been studied in one paper 

[45] and it performed considerably better than the simple 

RNN. However, the BiLSTM only outperformed three of 

the six studies which incorporated an LSTM. Lastly, the 

average ratio of MI to HC samples was 4.81:1. This 

represents a moderate class imbalance across the studies. 

6 CONCLUSIONS 

This review established several conclusions relating to the 

literature on MI detection. All the studies developed 

models which achieved high performance for MI 

classification. A primary concern however is that every 

study trained their models on the public PTB Diagnostic 

ECG database. The models are thus over-fitted to this 

dataset, bringing into question their robustness and 

generalisability to real world settings. This leaves room for 

further research to be done employing ECG datasets such 

as the LTST, PTB-XL or ECG_VIEW II. 

The AUC-ROC is a valuable metric in the medical 

field and is robust to class imbalance [77]. Moderate class 

imbalance was identified, with samples skewed towards 

those with MI. However, of the studies identified, none 

made use of the AUC-ROC. Relying on single threshold 

metrics such as accuracy do not shed light on the 

classifier’s usefulness in a clinical setting [78]. This, in 

addition to a more consistent choice of evaluation metrics 

is encouraged for future research. 

Lastly, this review established that the simple RNN 

design had the worst performance compared to the LSTM 

and BiLSTM. The LSTM was the top contender achieving 

near-perfect classification results in several studies. 

Notably, limited research exists for BiLSTMs in MI 

detection and no single study has compared its relative 

performance against other architectures, warranting 

further research. The success of LSTMs over BiLSTM 

identified in this review may be due to the more 

widespread use of LSTMs in the literature.  
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Table 1: Selected open-access ECG datasets used in MI detection and their properties 
 

Dataset Study 

period 

Country ECG Information Patient 

Count 

Record 

Count 

Strengths Limitations 

LTST [60] 2003-

2007 

Slovenia Leads: 2 or 3 

Length:21-24h 

Frequency: 250Hz 

Resolution: 12 bits with +- 

10milivolts 

Annotations: locations of the 

PQ junction (the isoelectric 

level) and the J point, ST level 

time series or the ST deviation 

time series 

80 86 - Detailed clinical notes and ST 

deviation trend plots are 

provided for all 86 records. 

- Only 2 or 3 leads used 

-Data sample size is 

small.  

- MI and healthy control 

not explicitly labelled. 

ECG-

VIEWII 

[61] 

1994-

2013 

South Korea Leads: 12 

Patient demographics: Aged 0 

– 100, mean 42,6, interquartile 

range 19,2 Male: Female ratio = 

50:50% 

Annotations: Test date, clinical 

department, RR interval, PR 

interval, QRS duration, QT 

interval, QTc interval, P axis, 

QRS axis, and T axis. 

 

461 178 979 273 - Comprises long-term 

follow-up data 

- Real-world ECG data of 

patients who took medication to 

treat a variety of diseases.  

- Large sample size 

-Healthy control patients 

labelled (94 326) 

-MI not explicitly 

labelled 

- Contains data from only 

one large hospital. 

PTB [58] 2000 Germany Leads: 12 leads + 3 Frank leads 

Patient demographics: Aged 

17–87, mean 57.2; 209 men, 

mean age 55.5, and 81 women, 

mean age 61.6 

Length: 2 min 

Frequency: 1 kHz-10 kHz 

Resolution: 16 bits with 0,5 

V/LSB (2,000 A/D units per mV) 

 

290 549 - 15 leads ECG used.  

- MI (148) and healthy control 

patients (52) explicitly labelled. 

- Higher resolution 

than LTST 

-Small sample size.  

- Data is only recorded 

from a single site.  

PTB-XL 

[59] 

1989-

1996 

Switzerland Leads: 12 

Patient demographics: (Male: 

Female ratio = 52:48% 

(Ages: from 0 to 95 years 

Median 62 and interquartile 

range of 22) 

Length: 10 s 

18 885 21 837 - Largest open access 12-lead 

ECG-waveform dataset.  

- Recorded at multiple sites.  

- MI (5486) and healthy control 

records (9528) explicitly 

labelled. 
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Frequency: 500Hz 

Metadata: demographics, 

infarction features, likelihoods 

for diagnostic ECG statements 

and annotated signal properties  

 

- Suggests folds for splitting 

training and testing data. This 

incentivises standardization for 

evaluating model performance 

 

 

Table 2: Results and Properties of Notable Recurrent Architecture-based MI detection on ECGs 
 

Study Year Data Properties Models Data Split 

Evaluation Metrics 

Sensitivity (%) Specificity 

(%) 

Precision 

(%) 

Accuracy (%) F1-Score 

(%) 

[34] 2019 Dataset: PTB 

Leads: 8 

Data extracted: 

MI: 10144, HC: 

2215 

(ECG sequences) 

RNN 

 

1,2,3 hidden 

LSTM 

layers 

Train:Test = 

80:20% 

RNN: 83 

 

1 Hidden LSTM layer: 91 

 

2 Hidden LSTM layers: 91 

 

3 Hidden LSTM layers: 91 

 RNN: 68 

 

1 Hidden 

LSTM Layer: 

91 

 

2 Hidden 

LSTM Layer: 

90 

 

3 Hidden 

LSTM Layer: 

91 

 RNN: 75 

 

1 Hidden 

LSTM Layer: 

90 

 

2 Hidden 

LSTM 

Layers: 90 

 

3 Hidden 

LSTM 

Layers: 90 

 

[35] 2019 Dataset: PTB 

Leads: 15 

Data Extracted: 

MI: 10144, HC: 

2215 

(ECG sequences) 

 

RNN, 

LSTM and 

GRU 

Best 

Train:Test = 

90:10% 

 

RNN: 85.81 

 

LSTM: 98.49 

 

GRU: 87.07 

 

RNN: 87.92 

 

LSTM: 97.97 

 

GRU: 98.1 

 

RNN: 89.56 

 

LSTM: 95.67 

 

GRU: 94.89 

 

 RNN: 84.97 

 

LSTM: 96.32 

 

GRU: 94.08 

 

[44] 2020 Dataset: PTB 

Leads: 12 

Data extracted:  

MI: 20337, HC: 

4652 

(ECG sequences) 

 

Attention 

Based 

Hierarchical 

LSTM 

5-Fold cross 

validation 

99.92 99.73  99.88  

[45] 2019 Dataset: PTB 

Leads: 12 

Data extracted:  

MI: 369, HC: 79  

(records) 

 

BiLSTM 

with and 

without 

heartbeat-

attention 

mechanism 

(HAM) 

Train:Test = 

70:30% 

BiLSTM w/o HAM: 93.86 

 

BiLSTM with HAM: 

95.58 

BiLSTM w/o 

HAM:  85.00 

 

BiLSTM with 

HAM: 90.48 

 BiLSTM w/o 

HAM: 92.54 

 

BiLSTM with 

HAM: 94.77 

 

[46] 2019 Dataset: PTB 

Leads: 8 

Data extracted: 

54753 heartbeats 

 

LSTM Train:Test = 

90:10% 

99.91 99.95 99.91 99.91  

[47] 2021 Dataset: PTB 

Leads: Only Lead 

II 

Data Extracted:  

MI: 50732, HC: 

10123 

(ECG sequences) 

3 layers 

LSTM 

10-fold Cross 

Validation 

91.88 80.81 95.30 89.56 93.45 

[48] 2020 Dataset: PTB 

Leads: 15 

Data extracted:  

MI: 3897, HC: 690 

(ECG sequences) 

 

CNN, 

LSTM, 

EDN 

Not given    CNN: 84.95 

LSTM: 85.23 

EDN: 88.89 

 

 

Table 2 Key: 

GRU = Gated Recurrent Unit 

EDN = Enhanced Deep Neural Network. This was the study’s proposed model which is based on a hybrid CNN – LSTM model. 

MI = Myocardial Infarction, HC = Healthy Control 

HAM = Heartbeat Attention Mechanism 

RNN: Refers to the simple RNN without any memory/ gate modifications 

 
Note: Studies which focused on other ML techniques or solely used a hybrid technique (e.g. CNN-LSTM) were excluded from this comparison for 

consistency. Additionally, only reported metrics were included. 


