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1 PROJECT DESCRIPTION
1.1 Introduction
Statistics published in 2019 by the World Health Organisation
indicate that Cardiovascular Diseases (CVDs) account for 32% of
global deaths [80]. Approximately 17.9 million people died from
CVDs in 2019; of these deaths, 85% were from Myocardial
Infarction (MI) or Cerebrovascular accident (CVA) [80]. MI occurs
when the blood supply to the myocardium is interrupted, causing
extensive damage to the myocardium [44]. The result is often a
permanently weakened heart or death if treated too late. Atrial
fibrillation (AF) is a common irregular and usually rapid heart
rhythm that can lead to coronary blood clots. AF increases the risk
of CVA, congestive heart failure, and other heart-related
complications [72]. Both AF and MI can be detected by analysing a
patient’s electrocardiogram (ECG) [61]. An ECG is a real-time,
non-invasive technique to measure the heart’s electrical activity
[30]. ECG monitoring benefits from being implementable with
many wearable devices for at-home use [45], making continuous
monitoring viable and cost-effective [69].

By detecting CVDs early, patient deterioration can be prevented
[82]. Unfortunately, initial misdiagnosis is a significant concern. In
one study, almost a third of the 564 412 patients treated for MI
were misdiagnosed initially [81]. Moreover, medical facilities may
lack expert cardiologists to interpret ECGs [83]. To ease this
burden, developing an automated system that can screen patients
for CVDs, at a low cost and with relative ease is warranted. The
strength of Deep Neural Networks (DNNs) to learn from previous
patterns without needing a medical expert to develop the decision
logic positions them as effective candidates [23]. DNNs can
combine feature extraction and classification into one
architecture [63]. This is referred to as the "end-to-end" model (see
Figure 1). The end-to-end model is preferred over traditional
methods, which require multiple components or expert
knowledge [15].

In the last five years, the application of DNNs to CVD detection
has increased dramatically and seen substantial successes [71].
However, several limitations persist throughout many such studies:
a lack of large, publicly accessible ECG datasets results in many
studies training and testing their models on small, singular
datasets [61]. The models are thus potentially over-fitted to their
dataset, bringing into question their robustness and transference

to real-world settings [84]. Additionally, the metrics and validation
strategies used in ECG classification are inconsistent [4]. This is an
issue as utilising robust evaluation strategies to make results
comparable is crucial.

Figure 1: Traditional methods vs. end-to-end models [27]

1.2 Project Overview
Our project endeavours to address the mentioned limitations by
creating an experimental platform referred to as MLECG. The
platform will host an array of DNNs capable of detecting common
CVDs, namely MI and AF. The DNNs to be investigated are
Recurrent Neural Networks (RNNs) [54] and two of its extensions,
i.e. the Long-Short Term Memory (LTSM) [26] and Bidirectional
LSTM (BiLSTM) [67]. Additionally, hybrid techniques combining
Convolutional Neural Networks (CNNs) [38] and BiLSTMs will
also be included in the study.

The relative performances of the models will be compared and
stress-tested through various evaluation metrics as described in
Section 3.3. The platform will also incorporate a data augmentation
scheme capable of correcting for class imbalance in datasets as well
as increasing sample sizes. This will be achieved through training
a Generative Adversarial Network (GAN) [20] on multiple public
ECG datasets. To this end, synthetic ECG data will bemade available
to the classifiers to augment their training pool.

2 PROBLEM STATEMENT
As mentioned, cases of CVDs are rising globally [9]. Thus there is
a need to provide accurate diagnoses of these diseases. Several
studies have been done to classify such ailments from ECGs, but to
our knowledge, there currently exists no experimental platform
that can compare different architecture effectiveness in CVD
classification tasks while stress-testing their results. To the best of
our knowledge, studies, as seen in the literature, do not attempt to



perform experiments that train models on ECG datasets from one
geographical region and test the effectiveness of these models on
other ECG datasets from different geographical areas. Furthermore,
many previous studies do not consider the prominent issue of class
imbalance that is present in ECG data as well as limited dataset
size [7]. Experimentation with transfer learning of diseases,
geographical regions, or different datasets has seldom been
explored in the literature.

2.1 Motivation for Deep Learning Models
2.1.1 Classification Models. The data used as input to RNN
models is typically temporal data [37]. Recurrent architectures
develop a memory by incorporating past and even future state (in
the BiLSTM case [66]) information into the model’s current time
step [65]. Singh et al. [68] proposed the RNN architecture for
Arrhythmia Classification. In contrast to CNNs and other classical
ML methods, RNNs can recognise the dependencies between the
input and output of a model [64]. RNNs have the advantage that
they can identify input signals as time-varying and can therefore
capitalise on an ECG’s signal’s temporal nature as well as its
spatial relationships [35]. Thus, an RNN can make inferences on
the beat-to-beat variations in addition to the characteristic
morphology of the ECG data. As seen in the literature, recurrent
models achieved high performance for MI classification and are a
sound implementation for detecting CVDs [13, 90].

There have been many variations of hybrid deep learning
approaches in the literature, with those joining classical ML with
deep learning [8, 86] and those joining two or more deep learning
algorithms [2, 52, 56]. The hybrid deep learning architectures, like
RNN models, have the advantage of not having
feature-engineering modules and also require minimal domain
knowledge. It is also evident, from the literature, that the CNN and
LSTM combination architecture performs impressively with the
task of CVD detection [2, 52, 56]. Ivanovic et al. [32] use a BiLSTM
and CNN model to detect AF from private ECG datasets. Their
architecture achieved an accuracy of 88.28%. Similarly, Ke Wang et
al. [79] used a hybrid CNN and BiLSTM model to detect CVD from
ECG data; however, their model was only trained on one dataset,
limited to one geographical region. The model achieved an
accuracy of 87.69%. There is scope to build these architectures with
improved hyperparameters and model structures - perhaps adding
additional layers or optimising for efficiency. There is also an
opportunity to enhance these models by training on multiple open
databases (instead of only one) to provide better and more
universal results.

2.1.2 Generative Models. DL techniques require a large amount of
fairly distributed training data to succeed [7]. ECG databases are
lacking both in terms of size and class balance [46]. Several
methods have been used to deal with these issues, such as transfer
learning for limited size [19] and random oversampling for class
imbalance [76]. Recently, GANs have been used to address both
dataset size limitations and class imbalance for DL tasks
concerning ECG data to great success [16, 24, 70]. The literature
suggests they produce comparatively better performance than
other methods [24]. GANs generate data by mapping a random

noise vector to a probability distribution [53]. This probability
distribution is learned through a minimax zero-sum game between
a generator and a discriminator. The generator’s goal is to produce
samples that deceive the discriminator, and the discriminator’s
goal is to differentiate between real and fake samples. The game
between the two is played until a Nash Equilibrium [51] is met.
Where the application of GANs in ECG synthesis can be furthered
is through the use of multiple datasets to represent several CVD
classes in training, as well as a critical comparison of architectures
in the effectiveness of data synthesis.

2.2 Aims & Objectives
This research project aims to investigate a suite of deep learning
algorithms by developing a platform that we coin: MLECG. The
MLECG will allow us to perform an array of experiments on the
deep learning architectures as mentioned in this proposal. The
platform will be modular in that the user will be able to select
different parameters for experimentation. These parameters will
include the different preprocessing methods used before input to
the algorithm and the ability to choose which datasets to train and
test the models on, as well as how those datasets will be augmented.
The user can also train the model on synthetic data generated by the
GAN architectures and test the models on real data or the opposite
way around. We aim for the MLECG platform to display evaluation
metrics of the various models in a concise and readable manner
for the experimenter. The goal of the experimental platform is to
be able to perform the studies and experiments as discussed in
Section 3. These experiments are briefly summarised below:

2.2.1 System.

(1) Use Python 3 [75] to develop, design and implement the
MLECG experimental platform

2.2.2 Classification Models.

(1) Perform experiments to discover the optimal
hyperparameters needed to achieve the best results in
detecting CVDs from ECG data using our described models.

(2) Investigate which preprocessing methods contribute to
higher accuracy in the deep learning architectures.

(3) Investigate if increasing the number of hidden layers in the
models leads to improved classification abilities for CVDs.

(4) Explore if models trained on ECG data from one geographical
region effectively detect CVDs from ECG data from another
geographical region.

(5) Use transfer learning to test if training a model with only one
class of CVD and then retraining with other CVDs improves
overall model performance.

2.2.3 Generative Models.

(1) Ascertain the degree to which WGAN-GP and WGAN
architectures stabilise the training process in the context of
ECG generation (displaying CVDs) compared to DCGANs
under a given hyperparameter search space.

(2) Compare the performance of architectures that use 1D input
against those that use 2D input.

(3) Investigate the effectiveness of conditional generation using
several datasets for training.
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(4) Determine the effectiveness of classifiers trained and tested
on synthesised data and real data.

3 PROCEDURE AND METHODS
3.1 Datasets
Without high-quality datasets, deep learning techniques cannot
be trained effectively, and they cannot be generalised for use in
clinical settings [62]. Concerning supervised learning, samples must
be expertly annotated to distinguish healthy control samples from
those which are not [85]. This, in addition to the dataset needing
to be publicly available, restricts the inclusion of viable datasets for
AF and MI detection to the following:

(1) Physikalisch-Technische Bundesanstalt (PTB) Diagnostic
ECG Database [5]

(2) MIT-BIH Arrhythmia Database [48]
(3) PTB-XL [78]
(4) Long Term ST Database (LTST) [33]
(5) The China Physiological Signal Challenge 2018 [42]
(6) Telehealth Network of Minas Gerais (15% of original

dataset) [60]
(7) The PhysioNet/Computing in Cardiology Challenge

2017 [10]
(8) Huazhong University, Wuhan (only test dataset) [95]

The smallest dataset is the MIT-BIH Arrhythmia Database,
consisting of only 48 recordings from 47 patients, [49] whilst the
largest database is the Telehealth Network of Minas Gerais,
comprising almost two million recordings from 1 676 384 patients
[60]. Further details of the eight datasets can be found on Table 1
and Table 2.

Other public ECG datasets used in AF or MI detection were
excluded to keep this project’s scope to a reasonable level.

3.2 Preprocessing
Since this study aims to work with several different datasets, it is
vital that the preprocessing of data is handled carefully.
Preprocessing is a crucial step when handling ECG data [36] as it
is subject to a range of external artefacts such as baseline wander
and power-line interference [41]. To reduce noise, we will look
into using filters [50, 94] and discrete wavelet transforms
[34, 58, 59]. We will divide ECG recordings into uniform time
intervals [17, 24] and, for architectures that require it, transform
ECG data into 2D spectrograms [29]. To preserve consistency
amongst datasets, we will use normalisation.

3.3 Evaluation of Algorithm Performance
3.3.1 Classification Models. Sensitivity is the most important
metric for a diagnostic system to detect a dangerous disease [4].
Using this metric, the system’s ability to correctly identify a
patient with the disease can be evaluated [30]. The classifier’s
specificity is closely related because this indicates how effective it
is at excluding healthy patients from the diagnosis [84]. There are
many other metrics commonly used, which we will implement,
such as precision, accuracy, F1 score and area under the receiver
operator curve (AUC-ROC) [71].

Best practice in deep learning for classification suggests that any
dataset should be partitioned into training, validation, and testing
sets with the most amount of data (70%+) being used for the training
set [71]. K-fold cross validation is an effective technique to achieve
these divisions and is widely used to measure prediction error [18].
We will implement ten-fold cross validation, as this has been used
for AF detection with hybrid deep learning models to ensure model
generlisability [52] and similarly in MI detection using recurrent
architectures [45].

3.3.2 GANs. GANs lack a consistent evaluation metric [14, 16].
This said several measurements have been developed to evaluate the
generator that has been used across multiple studies. The methods
to be used to directly assess the quality of synthesised ECG data
will be Frechét Inception Distance (FID) [25], squared Maximum
Mean Distance (MMD) with a Gaussian kernel [21] and Dynamic
Time Warping (DTW) [1]. To assess how well synthesised data
transfers to classification tasks, the F1 score will be used as a proxy
to determine generator efficacy for "train on real, test on synthetic"
and "train on synthetic, test on real" experiments [16].

3.4 Classification Models Experiments
The deep learning models to be explored for the classification of
CVDs from ECG data are RNN, LSTM, BiLSTM and a hybrid
structure combining a CNN module and a BiLSTM module. The
classifiers will be tasked with detecting CVDs, namely MI and AF.
The datasets to be used can be found in Table 1 and Table 2. The
studies will take place over two phases, each with a different
purpose. These two phases are discussed in detail below:

3.4.1 Phase One - Architecture and Hyperparameters. Phase one
will involve tuning our models to achieve the best possible model
performance, in detecting MI and AF, within our given time frame
and scope. The performance will be compared using the evaluation
metrics as outlined in Section 3.3.1. For this phase, we will use
datasets with the least patients such as the MIT-BIH Arrhythmia
dataset [49] or the LTST dataset [33] (see Table 1 and Table 2). The
smaller datasets will allow for faster training times of the models,
allowing for rapid changes to be made to hyperparameters. This
will enable us to compare performances using different
hyperparameters repeatedly. Firstly, we will segment the ECG data
into windows with lengths ranging from 5 seconds to 30 seconds,
which is typical of deep learning studies involving ECG data [17].
We will then experiment with different preprocessing methods and
which combinations provide the best performance. These
preprocessing methods that will be interchanged and combined
are outlined in Section 3.2.

Another step to improve algorithm performance is
experimenting with different model architecture structures. This
will involve assessing if adding additional hidden layers to models
improve their performances. We can also experiment with
different activation functions such as ReLu or Leaky ReLu. We will
additionally experiment with various loss functions such as
Cross-Entropy or more novel loss functions such as focal loss,
which has proved effective in AF detection in deep learning
models [56]. There is also room for experimentation in the
convolutional module of the hybrid architecture - including
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assessing different pooling methods such as max-pooling or
average-pooling. We will similarly evaluate different optimisation
strategies, such as the Adam Optimiser, which was used by
Ivanovic et al. [32].

We will also experiment with a range of hyperparameters and
what changes to these will improve model performance. These
hyperparameters include, but are not limited to: initialisation
weights, number of epochs and batch sizes.

3.4.2 Phase Two - Datasets and Transfer Learning. The second
phase of experimentation will extend our models to different
datasets and an assessment of transfer learning. We will use the
best performing models found in phase one to perform the
following set of experiments:

The first experiment will assess the generalisability of our
models to datasets of varying geographical regions. This will
determine whether our models are agnostic to geographical
location. For this experiment, we will use a dataset from one
geographical area for training the models. Then we will use a
dataset from a different geographical region to test the models. We
will record performance differences and evaluate the
generalisability. An example of this methodology would be
training the models on the Telehealth Network dataset [60] (the
patients in this dataset were local to the Minas region in Brazil)
and then testing the models on the Huazhong University
dataset [95] (which contains participants local to the Wuhan
region in China).

Our second experiment will train the models on a dataset with
only one CVD and then use transfer learning to assess whether this
could improve the detection of various CVDs. An example would
be training the models on the MIT-BIH Arrhythmia dataset [49]
(which focuses on Arrhythmia detection) and then retraining the
models on the PTB Diagnostic database [5] (which is used widely
in MI detection). We will assess if a study setup such as this will
improve over phase one’s results.

3.5 Generative Model Experiments
The experimentation involving the generative models will consist
of two phases.

3.5.1 Phase 1 - Architecture and Hyperparameters. Training of the
generative network will be iterative. This will manifest through
using increasingly advanced architecture starting from the Deep
Convolutional GAN (DCGAN) [57], to the Wasserstein GAN
(WGAN) [3], and finally ending with the WGAN using a gradient
penalty (WGAN-GP) [22]. All of the mentioned architectures will
accept a conditional input [47] so that we might direct the
generation process by specifying the class of the signal or image.
This will involve embedding diagnostic codes of related ECG
samples into the network. In this phase, the models will be trained
using the LTST [33] (Table 1). This dataset contains instances of
MI and AF and will thus allow us to generate ECGs representing
all three desired beat classes namely normal, AF, and MI.
Initially, the architectures used will follow directly from the
studies in which they were implemented. This implies that ECG
data must be converted into 2D images. This will be accomplished
through a process adapted from the study by Brophy et al. [6]

Figure 2: DCGAN generator. [57]

using Fourier transforms. Further experimentation on the
architecture will involve adjusting the models to accept 1D signals
instead of spectrograms [40].

The initial values for hyperparameters will be that of the
original DCGAN architecture (Figure 2). The range of
hyperparameter adjustments to be made will be based on the work
by Lucic et al. [43].

3.5.2 Phase 2 - Datasets. In this phase, we will aim to generate
ECGs displaying AF and MI from independent datasets using
efficient architectures defined in phase 1. Initial experimentation
involving multiple datasets will be adapted from the RadialGAN
[89]. More specifically, the discrete case. At a high level, the
RadialGAN works by assigning each input domain its own
generator and discriminator. It then arranges these constructs
around a central noise vector. This particular design choice lends
itself well to the iterative design process as datasets can be added
onto the radial structure one by one until each domain is
represented. The datasets to be represented are displayed in Table
1 and Table 2. Another possible solution to be investigated is to
have the models trained using the sample’s origin as another label
along with the CVD class. For example, an ECG segment
displaying AF coming from the MIT-BIH dataset will have both the
diagnostic code and the dataset associated with it during training.
There is precedent for using multiple conditions to train GANs
[16].

3.6 Implementation details
The development of the experimental platform and the
architectures of deep learning models will be written in the Python
3 programming language [75]. The deep learning models will be
created and coded using the PyTorch library [55]. PyTorch is open
source and allows us to create RNNs, hybrid architectures and
GANs - thus allowing for greater collaboration and consistency of
the different modules being implemented into the experimental
platform. We will also use other open source libraries such as
SciPy [77] and PyWavelets [39] for the various preprocessing
methods discussed above.

4 ETHICAL CONCERNS
The datasets to be used in this research are publicly available
through the Open Data Commons Attribution License v1.0 and the
Creative Commons Attribution 4.0 International Public License.
All datasets contain completely anonymised ECG data. Our
research requires no animal or human participants, and no further
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data collection is needed. Thus we do not require an ethics
clearance. All the software used as a part of this research is free
and open source. Programming will be done in Python which is
freely available under the Python Software Foundation License.
External libraries are given under permissive licenses such as MIT,
BSD-like and Apache License 2.0. Where applicable, copyright
notices and license agreements will be made accessible in our final
codebase.

5 RELATEDWORK
5.1 Classification Models
Recurrent architectures develop a memory by combining the
output of previous layers with new input to form the current
layer’s output [54]. The application of recurrent architectures to
MI detection is a burgeoning field of study, with the earliest papers
only being developed in 2019 [11, 12, 91, 93]. With the limited
research available, LSTM based models were identified as the top
performer in MI detection, with one study achieving sensitivity,
specificity, precision and accuracy values of 99.91% 99.95% 99.91%
99.91%, respectively [91]. The simple RNN design performed the
worst in inter and intra study comparisons, achieving the lowest
sensitivity, precision and F1 scores of 83%, 68%, and 75%,
respectively [11]. Notably, a gap in the literature exists for
BiLSTMs and their application to MI detection. Moreover, no study
has compared a BiLSTM’s performance in MI detection to other
architectures, warranting further investigation. A primary concern
was that every study that used recurrent architectures for MI
detection had trained their models on the public PTB Diagnostic
ECG database [5]. This presents an opportunity for research using
new ECG datasets.

As mentioned, a hybrid deep learning methodology is when two
or more deep learning architectures are combined to, in this context,
perform the classification of CVDs. According to Hong et al. [28],
the combination of LSTMs and CNNs is the best combination of
architectures for detecting AF. Ivanovic et al. [32] proposed a hybrid
model incorporating two CNN layers and a BiLSTM layer, achieving
an accuracy of 88.28% in detecting AF. Oh et al. [52] demonstrated
an impressive accuracy of 98.42% for detecting arrhythmias by
using a combined structure of LSTM and CNN layers. While these
studies indicate impressive performance, they are either trained on
private datasets (such as in Ivanovic et al. [32]) or trained using only
one or two datasets. This theme of a lack of diverse datasets is seen
through the literature regarding the hybrid method for detecting
CVD [2, 32, 52, 56, 87, 88].

Of interest to our research is the application of transfer learning
to test whether models trained on one type of CVD classification
(such as MI detection) can form the starting point for detecting
another CVD such as AF. Significant performance increases have
been achieved in CVD classification when using transfer
learning [19, 31]. In one study [74] the authors retrained a
high-performance image classification model, GoogLeNet [73], on
a public ECG dataset, The China Physiological Signal Challenge
2018 [42], and a private dataset of 17 000 ECGs from patients in
Southern China with MI [71]. The study attained a reasonable

accuracy of 86% on the private dataset but performed poorly on
the challenge dataset.

5.2 Generative Models
GANs have been previously shown to be capable of effectively
synthesising ECG data. Esteban et al. [16] used GANs to generate
medical time series data, achieving MMD statistics as low as 0.35.
The authors were able to direct generation using four conditions.
Hatamian et al. [24] compared three data augmentation schemes
(oversampling, Gaussian Mixture Models, and Deep Convolutional
GANs) to be used in DL classification tasks for AF in ECGs. The
authors found that classification tasks using data augmented by
GANs were the most effective in detecting AF. This study also
looked at the effectiveness of CNN-based models when using 1D
and 2D input and found those trained using 2D input were more
effective. Brophy et al. [6] experimented with a novel method of
generating time series data using 2D-based architectures. This
process involved transforming ECG signals into 2D images and
then using those images to train the generator. Images produced
by the generator could then be converted back into signals.

6 ANTICIPATED OUTCOMES
6.1 Research
6.1.1 Classification Models. We anticipate having fully trained and
optimised RNN (and its variations) as well as hybrid ML structures,
yielding comparable results. We intend to train our models on
multiple datasets and optimise preprocessing and model structure
to attain the highest possible accuracy and F1 score in our given
project time frame. If the timeline is followed, we should have
robust architectures capable of detecting CVDs with sufficiently
high sensitivity and specificity levels. We also hypothesise that
during the second phase of experimentation, our deep learning
architectures will be exportable and generalisable across different
geographical regions and datasets.

6.1.2 Generative Models. We expect the results of experimentation
on generative models to produce ECG data points that transfer well
to classification tasks. Furthermore, we anticipate that architectures
using the Wasserstein loss function with a gradient penalty in
conjunction with 2D input will produce the best results in terms of
the evaluation metrics defined in Section 3.3.2 [22, 24]. Finally, we
expect the generator to synthesise class-specific data points across
several datasets.

6.2 System
We anticipate the MLECG to be a modular and robust platform that
will allow for a wide array of experiments to be performed on both
the generative and classification models. We expect the
experimental platform to be thoroughly tested as well as
documented.

6.3 Impact
6.3.1 Classification Models. The comparison and assessment of
model performance from different geographical regions is a
significant gap in the literature. By having a model that transfers
across regional and geographical boundaries, we are creating
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technology that is exportable across the globe. If our models are
successfully trained on multiple large datasets, CVD diagnosis may
be performed more effectively. This could relieve some of the
burden placed on healthcare systems.

6.3.2 Generative Models. This study partly aims to highlight the
potential effect that training stability has on ECG generation by
assessing three different architectures. Furthermore, this study aims
to tackle the lack of research into the effectiveness of generative
models trained over several ECG datasets. As such, we will present
a GAN capable of representing CVD-displaying ECGs from a range
of datasets.

6.4 Key Success Factors
6.4.1 Classification Models. Key features determining success for
the classification models discussed are sensitivity and specificity
levels over 90% when tested on ECGs with varying noise and CVD
dataset origins. Achieving scores above this threshold would make
our models comparable to previous works wherein such successes
were found [2, 11, 35, 56, 91, 92]. Another critical success factor is
the ability to outline and interpret results from the second phase of
transfer-ability experimentation. In terms of design challenges we
may face, we anticipate that hyperparameter optimisation and
model structure selection will be a time-sensitive process as
retraining the model multiple times is a lengthy process. Thus
because of this lengthy process, careful consideration of the
relevant literature will be imperative in making hyperparameter
choices to ensure timely project success.

6.4.2 Generative Models. For the success of the generative models,
model convergence is the first and most important factor. Following
from this low FID, MMD, and DTW scores will further imply the
success of the generator. The generator should be able to produce
ECG data representing three discrete classes: Normal, AF, and MI.
In conjunction with the system, the success of the generator will be
derived from comparable F1 statistics of TSTR and TRTS processes
to that of train on real, test on real.

We anticipate several design challenges concerning GANs.
Among these challenges is the mode collapse phenomenon, where
a generator fails to produce data outside a small subset [16]. This
will be counteracted through the use of robust architectures.
Furthermore, we expect experimentation with hyperparameters to
be complex as GANs are incredibly sensitive [43] and minor
changes may result in non-convergence.

7 PROJECT PLAN
7.1 Risk management Strategies
A risk assessment matrix has been outlined in Table 3 to address
this.

7.2 Deliverables and Milestones
The key deliverables for this project include the following:

• Three literature reviews
• Project Proposal draft
• Project Proposal final paper
• An initial project feasibility demonstration

• Complete draft of a final paper
• Final project code with written documentation
• Final paper
• Project demonstration
• Project poster
• Project website

There are other significant milestones in our project that include
the implementation of the core experimental platform, with its
corresponding preprocessing modules, the completion of the coded
and optimised deep learning architectures and finally, the
completion of the various studies we will be performing.

7.3 Timeline
A Gantt chart, representing our project’s timeline with all
deliverables and milestones, can be seen in Figure 3.

7.4 Required resources
We will need access to an account for the University of Cape Town
High-performance cluster or another high-performance server to
train the computationally expensive deep learning models.
Otherwise, we will need to leverage Google Collab1. However, a
free account limits us to a maximum time of 12 hours, and our
resource allocation can be throttled. Our last option would be to
use a single, high-performance GPU, which we would need to
inquire as to the availability of this through UCT or CAIR 2.

7.5 Allocation
All members will collaborate on shared deliverables and
milestones, such as the presentation, poster and website creation.
Additionally, all members will develop the experimental platform,
curate datasets and create the initial preprocessing modules.
Thereafter, members will work on their own contributions. Joshua
Rosenthal will develop the data augmentation scheme by
constructing several GANs. Shai Aarons will focus on hybrid CVD
detection techniques, and Jarred Fisher will use recurrent
architectures for the same task. Both Shai Aarons and Jarred Fisher
will also assess their model’s generalisability to geographically
separate ECG datasets.
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Figure 3: Gannt Chart representing project timeline.
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Table 1: Public ECG datasets

Dataset Study
period Country Application to

our research ECG Information Patient
Count

Record
Count Strengths Limitations

LTST [33] 2003-
2007 Slovenia MI and

AF detection

Leads: 2 or 3

Length: 21-24 hours

Frequency: 250Hz

Resolution: 12 bits with
+-10 mV range

Annotations: locations of
the PQ junction (the isoelectric level)
and the J point,
ST level time series or the ST
deviation time series

80 86

- Detailed clinical notes and ST
deviation trend plots are provided
for all 86 records.

- Contains both AF and
MI labelled data. Allows testing
of model’s capability
to detect AF and MI
within the same cohort.

- Only 2 or 3 leads used

-Data sample size is small.

- MI and healthy
control not explicitly labelled.

MIT-BIH
Arrhythmia [48]

1975-
1979 USA AF detection

Leads: 2

Patient Demographics:
Aged 23 - 89; 25 men, 22 women.

Length: 30 minutes

Frequency: 360Hz

Resolution: 12 bits with
+-10 mV range.

Annotations: QRS complex,
R-R intervals and peaks,
PQ junction and J point,
signal quality, beat,
diagnosis and
rhythm classifications.

47 48

- Extensive annotations

- Expert cardiologists
independently
annotated each record.

- Small sample size.

- Only 2 leads used

The China
Physiological Signal
Challenge 2018 [42]

2018 China AF detection

Leads: 12

Patient Demographics:
3699 male, 3178 female recordings

Length: 6 – 60 seconds

Frequency: 500Hz

Annotations: QRS complex,
R-R intervals and peaks,
PQ junction and J point,
signal quality, beat,
diagnosis and rhythm classifications.

- 6877

- Large sample size
and well annotated.

- ECG data comes from
11 different hospitals –
more generalisable as hospitals
may use various ECG equipment,
thus introducing real world noise
and variability.

- Test set excluded.

- Minimal ECG information given:
Missing resolution, patient and
age information.

Telehealth
Network of Minas Gerais
(15% stratified sample
of original dataset) [60]

2010-
2016 Brazil AF detection

Leads: 12

Patient Demographics:
Mean age: 51.6;

40.2% male, 59.8% female.

Length: 7 – 10 seconds

Frequency: 400 Hz

Resolution: Unknown

Annotations: Beat and
diagnosis classifications.

233770 345779
- Extremely large sample size.

- High quality dataset.

- Labelling of ECG abnormalities
was done with imperfect
automatic coders and natural
language processing models. –
Not all labels have been reviewed
by cardiologists.

- No P-QRS-T signal
annotations given
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Table 2: Public ECG datasets cont.

Dataset Study
period Country Application to

our research ECG Information Patient
Count

Record
Count Strengths Limitations

PTB [5] 2000 Germany MI
detection

Leads: 12 leads + 3 Frank leads

Patient demographics:
Aged 17–87, mean 57.2;
209 men, mean age 55.5,
81 women, mean age 61.6

Length: 2 minutes

Frequency: 1 kHz-10 kHz

Resolution: 16 bits with
0,5 V/LSB
(2,000 A/D units per mV)

Annotations:
Rhythm and diagnosis classification.

290 549

- 15 leads ECG used.

- MI and healthy control patients
are explicitly labelled.

- Higher resolution than LTST

- Noise levels were recorded
during signal collection

- Small sample size.

- Data is only recorded
from a single site.

- No P-QRS-T
signal annotations were given.

The PhysioNet/
Computing
in Cardiology
Challenge 2017 [10]

2017 USA AF
detection

Leads: Single lead

Patient demographics:
Unknown

Length: 9 – 60 seconds

Frequency: 300 Hz

Resolution: 16-bit files
with a bandwidth of 0.5-40 Hz
and a ± 5 mV dynamic range.

Annotations:
Rhythm and diagnosis classification.

- 8528

- Large sample size

- High resolution

- Single lead ECGs can be found
in everyday fitness devices.
A model achieving high sensitivity
on this dataset would be readily
deployable on wearable tech.

- Test set excluded.

- Minimal ECG information is given.
Missing resolution and
patient demographic information.

- No P-QRS-T
signal annotations were given.

- Only one cardiologist oversaw
labelling.
Mid challenge, the trustworthiness
of the labelling was questioned and
later revealed discrepancies.

PTB-XL [78] 1989-
1996 Switzerland MI

detection

Leads: 12

Patient demographics:
Ages: from 0 to 95 years

Median 62 and IQR of 22

Male: Female ratio = 52:48%

Length: 10 seconds

Frequency: 500Hz

Metadata:
demographics, infarction features,
likelihoods for diagnostic
ECG statements
and annotated signal properties

18885 21837

- Largest open access
12-lead ECG waveform dataset.

- Recorded at multiple sites.

- MI and healthy control records
are explicitly labelled.

- Suggests folds for splitting training
and testing data.
This incentivises standardisation
for evaluating model performance.

Tongji Hospital:
Huazhong University,
Wuhan
(Test dataset only) [95]

2012-
2019 China AF

detection

Leads: 12

Patient demographics:
Mean age 50.8;

Male: Female ratio = 41:59%

Length: 10 seconds or 24 hours

Frequency: 500Hz

Resolution: Unknown

Metadata:
Rhythm and diagnosis classification.

828 828

- Three board-certified actively
practising cardiologists,
including one cardiac
electrophysiologist,
annotated ECGs in this test dataset.

- Extensive labels representing
different ECG rhythm classes.

- Vast difference in recording time
amongst samples allows for an
intra-dataset comparison
of classification ability
when trained on
short vs. long term ECG data.

- Small sample size
on account of only
having public access
to test dataset.

- Minimal ECG information
is given.
Missing resolution
and age information.

- No P-QRS-T
signal annotations are given.
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Table 3: Risk matrix

Risk Probability Impact Consequence Mitigation Monitoring Management

Inability to complete
tests and validation Low Catastrophic

Unable to draw sound
conclusions. Findings will
be severely limited.

Ensure deadlines are
adhered as specified
by the project time line.

Pay careful attention
to project development
status in relation to
project timeline.

Prioritise completion of
pivotal project components.

Project partners withdraw
from project Low Medium

Shared workload would have
to be redistributed. This would
have cascading effects on the
proposed timeline.

Limit task dependencies
between members.

Regular meetings
with project partners to
assess headspace and
progress.

Communicate with
supervisors and reduce
project scope.

Insufficient time to
adequately train models Low High Unable to obtain comparable

results to previous findings.

Use high-quality hardware
to reduce overall training
time.

Compare expected
training times with
initial training times.

Plan accordingly using more
accurate estimates of
training times.

Lack of engagement

with supervisor.
Low Medium

Lack of guidance may lead
the project astray - possibly
leading to low scientific
contribution

Maintain regular
communication with
supervisors. Schedule
regular meetings.

Observe the rate of
scheduled meeting
attendance.

Schedule regular meetings
with supervisors every
2 weeks.

Course work interferes
with project progress Medium Medium

Delays in project deliverables -
pushing time line forward.
Fewer scientific conclusions
ultimately drawn.

Careful planning and
time management to
allow for concurrency
between development and
course work.

Pay attention to
course work deadlines
and their interference
with project deliverables.

Allowing for slack time
in project development
cycle.

Load Shedding slowing
development progress High Low

Unable to train models or work
on project paper further delays
time line.

Plan training intervals
in accordance with
load shedding schedules.

Use the Eskom publically
released load shedding
schedules.

Work at UCT during load
shedding hours as a
generator is provided.

Project member gets
Covid-19 Low Low

Individual contributions suffer.
Further delays in time line as a
result.

Limit task dependencies
between members. Practice

recommended hygiene
routines.

Pay careful attention to
physical well-being.

Slack time permits for
suboptimal human resources.

Scope creep High Medium
Time delays result in lower
productivity performing
meaningful tasks.

Careful planning and
communication with super-
visors.

Verify that any proposed
changes to project design
fall in line with the over-
arching objectives.

Prioritise completion of
pivotal experiments and
features. Drop extraneous
research.
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