

CS/IT Honours

Final Paper 2021

Title: Investigating Student Engagement in an Educational

Programming Game Utilising First-Person and Puzzle Elements

Author: Cain Rademan

Project Abbreviation: PyPOV

Supervisor(s): Gary Stewart

Category Min Max Chosen

Requirement Analysis and Design 0 20 15

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 10

System Development and Implementation 0 20 15

Results, Findings and Conclusions 10 20 10

Aim Formulation and Background Work 10 15 10

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

Investigating Student Engagement in an Educational
Programming Game Utilising First-Person and Puzzle

Elements
Cain Rademan

cain.rademan@gmail.com
University of Cape Town

Cape Town, Western Cape, South Africa

Abstract
Programming can be an area of considerable difficultly for
many first year Computer Science students. Students are
required to engage with unfamiliar constructs such as if-
statements and for-loops, and develop logical thinking skills.
A common issue is the problem of student engagement. Stu-
dents are not engaged with their coursework enough to
grapple with the challenging concepts they are faced with. A
potential solution that has received significant attention in
the past two decades is that of Game-Based Learning (GBL).
While it is broadly established that game-based learning can
be an effective tool to increase student motivation and learn-
ing, there is a lack of research into the impact of genre or
specific game elements on the effectiveness of GBL software.
This paper seeks to provide such an investigation by evalu-
ating the impact that first-person and puzzle elements have
on student engagement in an educational game designed to
teach introductory programming. In the paper, it is detailed
the design, implementation and testing of the educational
game. Though limited by a small testing sample size, the
results are positive, suggesting that first-person and puzzle
elements can be used to increase student engagement in
programming games.

CCSConcepts: •Applied computing→ Interactive learn-
ing environments; Computer games; • Social and profes-
sional topics → CS1.

Keywords: game-based learning, programming education,
pov game, puzzle game

1 INTRODUCTION
Computer scientists are some of themost in-demandworkers
in the modern world. According to the US Bureau of Labour
Statistics’s employment projections, computing careers are
expected to see significant growth in the coming decade
[28]. Matching this, there has been a sustained growth in
Computer Science undergraduate enrollment over the last
twelve years. [2]. There is however, a skills gap between the
requirements of modern jobs and the abilities of university
graduates [35]. Additionally, high dropout and failure rates
[4] within computing degrees mean that even if students
enroll, many will not go on to graduate. It is during the first

year that many of these dropouts occur, and one of the key
factors contributing to this is struggle with programming.
Programming is a skill that is often difficult for first year
students to grasp, and frustration and disenchantment in this
area pose a serious problem for student engagement [20].
Misconceptions about programming, unfamiliarity with syn-
tax and weak mathematical abilities [30], as well as lack of
practice resources [4] present further barriers to students.
Cultivating engagement in the first year of study is therefore
critical in producing students who are both motivated to con-
tinue in Computer Science, and have the basic foundations to
do so. Students need to be motivated to take control of their
own learning, and grapple with the challenging concepts
they will be faced with.

One approach to address the issue of student engagement
that has received significant attention in recent years is that
of Game-based learning. The use of educational computer
games to facilitate and support student learning has been
studied in a variety of contexts to varying degrees of success.
Within the realm of Computer Science research, results are
mixed, though largely positive. A challenge in Game-based
learning research is that digital games are typically compli-
cated and varied systems utilising a host of different game
design principles that are interconnected, making it difficult
to benchmark or evaluate results [19, 42].
While it is broadly established that game-based learning

can be an effective tool to increase student motivation and
learning, the impact of genre or specific game characteristics
on the effectiveness of GBL software is not well understood,
as noted by Eagle and Barnes [7]. In many papers regarding
game-based learning, researchers tend to under focus on the
design choices utilised in their software, and usually do not
motivate the game genre, setting, or gameplay mechanics. So
while in many cases researchers will conclude that a game
was effective, there is a lack of attention given to what it was
about their game that was compelling to learners. This poses
a problem for educators wishing to leverage GBL in their
teaching - it is difficult to ascertain based on the research
what kind of game is best suited for their unique situation.
Focused research into specific elements of games in spe-
cific domains is thus called for. As such, this paper seeks to
experimentally evaluate different game design elements in

Cain Rademan

isolation to determine their impact on student engagement
within the field of Computer Science.

First-person games are highly popular, with millions of play-
ers worldwide. [6]. Despite the prevalence of first-person
perspective, there have been few programming games de-
veloped that utilise this point-of-view, either in academic
studies or in a commercial context. First-person perspective
and its impact on player engagement is not well studied,
though there is a general perception that utilising a first-
person perspective increases immersion and interest in the
game-world. There remains research to be done into whether
a first-person programming game is effective in facilitating
student engagement.
It is possible that part of the reason why first-person se-

rious games are under-represented in Computer Science
Education is that there seems to be little conceptual link be-
tween first-person gaming and the activity of writing code.
In this project, it is hypothesised that this disconnect can
be solved by creating a first-person game utilising puzzle
elements to more closely match the experience of coding. In
the puzzle game genre, the player is required to solve puz-
zles and utilise their problem solving skills. This resembles
the skills required to be an effective programmer - problem
solving and programming are two closely related and mu-
tually beneficial areas [14, 32]. Since puzzle elements offer
players a chance to hone their problem solving abilities, and
offer logical and conceptual challenges to a player, it was
hypothesised that they could be used to create a compelling
first-person programming game.

This project catalogues the design, implementations and
testing of an educational programming game that utilises
a first-person perspective and puzzle elements. The game
allows students to practice basic coding concepts, and rein-
force their knowledge. The gameplay is tightly integrated
with coding, where the user enters code to manipulate the
game world and solve puzzles.

1.0.1 Research Question. How does the utilisation of
first-person and puzzle elements affect engagement of stu-
dents in an educational game designed to teach introductory
programming?

2 BACKGROUND
2.1 Game-Based Learning in Computer Science

Education
The field of Game Based Learning often finds applications
within the realm of Computer Science. In their article "Teach-
ing Introductory Programming from A to Z: Twenty-Six Tips
from the Trenches" [43], Zhang et al. emphasise the impor-
tance of exposing first time programmers to coding in an
exciting, visual way, to motivate and engage students. Games
are known to be engaging [38], so can be an effective medium

for accomplishing this task.

There have been several studies, with different nuances and
perspectives, investigating game based learning in a Com-
puter Science context [9, 22, 23, 40, 41, 44]. A common theme
in the studies is that using games to teach Computer Science
increases motivation, but the results on whether these games
have a significant learning effect are mixed [22].

2.1.1 Educational Content of Existing Programming
Games. In a 2018 paper “A Review of Serious Games for
Programming” Miljanovic and Bradbury reviewed a number
of programming games and assessed the educational content
and methods by which the games were evaluated [22]. It was
found that the games focused largely on problem solving and
fundamental programming concepts, while there was a lack
of representation of games focusing on data structures, de-
velopment methods and software design. The paper mainly
analysed games developed in a research context, omitting
many publicly available games developed in a popular con-
text.

Blanco and Engstrom [1] attempted to fill this gap by pro-
viding such a review of popular commercial programming
games under the assumption that since these games are pop-
ular with a wide audience they have managed to provide
an engaging player experience. As in Miljanovic and Brad-
bury’s paper, they compared the games to the ACM/IEEE
Computer Science curricula [34] to determine what aspects
of programming they taught. Their results resembled those
of Miljanovic and Bradbury, in that there was a strong rep-
resentation of games teaching fundamental programming
concepts, and an under representation of games teaching
algorithms, design and data structures.

2.1.2 Integration between Coding and Gameplay. In
programming games, an important consideration is that of
the level of integration between coding and gameplay. Some
programming games have tight integration, with coding sys-
tems/puzzles comprising the core mechanics of the game. An
example of this type of game in the academic world would
be RoboBUG [21], in which the gameplay consists of the
player identifying bugs in code. Commercial examples in-
clude popular games like Code Combat (playable in browser),
7 Billion humans and Exapunks (which can be be found on
Steam [37]). Others take the approach of segmenting the
coding and gameplay, where the gameplay resembles that
of a regular video game, but players must answer coding
questions to progress between levels and continue playing.
López-Fernández et al. present a game of this kind in which
teachers set the questions, with the results showing increased
motivation among students but not increased knowledge ac-
quisition [18].
It can be hypothesised that games in which programming
is the core mechanic are better for learning since the player

Investigating Student Engagement in an Educational Programming Game Utilising First-Person and Puzzle Elements

is focused on programming as the main activity. The op-
posite, segmented approach may not be as effective as the
player may focus on the fun, non-programming part of the
game while only comprehending the coding enough to pass
through the level. It remains a challenge to design a program-
ming game that is both fun, and focuses on coding as the
core mechanic.

2.1.3 Educational Python Games. It has been shown
that using Python to teach introductory programming con-
cepts (instead of a language that might be considered more
complex) is effective in facilitating learning [14]. We can
hypothesise that because Python is simple and elegant, it is
the ideal language to use in a serious game designed to teach
introductory programming. There have been several studies
providing implementations of games intended to do exactly
this [11, 15, 33].

Escape from the Python’s Den [11] is an educational game
implemented within the popular game Minecraft. Unfortu-
nately, the study from which it comes is extremely short and
lacking in detail. The paper also crucially omits an evaluation
of the success of the software.

Py-Rate Adventures is another such game [33]. It is a 2D
platforming game which aims to teach basic programming
concepts using Python. It is playable by players who have no
previous knowledge in Python. In this case, the use of coding
in the game is not integrated into the gameplay, but is asked
in the form of questions in between levels. The player must
answer the questions to progress in the game. The evaluation
in the study showed that players had a positive reaction to
the game, and felt that it was beneficial in terms of learning.
It is important to note that the study measured perceived
learning of the players and so may not be reflective of the
actual learning effect of the game.

2.1.4 Point of View (POV) in Programming Games.
There has been little research into point-of-view as a feature
of educational games, both in the realm of Computer Science
and otherwise. In a literature review conducted prior to this
study [31], it was found that a large number of game based
systems in research, and commercially, utilise an isomet-
ric [12], top-down [7, 10], or text-based/abstract graphics
[15] approach, but there was little motivation for choice of
these systems. There were no examples found that utilised a
first-person perspective. Nacke et al. attempted to measure
physical responses to first-person games using specialised
equipment and correlated that with qualitative responses
from participants [24]. However, the focus of the study was
on investigating physiological responses as an indicator of
psychological states of gameplay experience, and it did not
compare the levels of flow produced in other perspectives.
One might intuitively think that first-person games are more
immersive, or yield a greater engagement then non-first-
person games, but it seems that there has been little research
in this area.

2.2 Puzzle Elements in Programming Games
Blanco and Engstrom provided an analysis of game genre
used in programming games [1]. Their findings showed that
in commercial programming games, puzzle games are the
overwhelming majority. They noted that in academic papers,
this is not as pronounced, although there is still a strong
representation of traditional puzzle-type games. Based on
the success of programming games utilising puzzle elements
[7, 10, 12], there is evidence that the puzzle genre is well
suited for teaching coding. This could be attributed to the
fact that programming and puzzle games both involve prob-
lem solving. The link between problem solving and coding is
backed up in the literature. It has been shown that program-
ming improves cognitive reasoning skills [32]. It has also
been shown that teaching problem solving before program-
ming in an effective strategy in introductory programming
courses to improve learning in students [14].

2.3 User Engagement Scale (UES)
The User Engagement Scale (UES) is a widely-used question-
naire for measuring user engagement with a system [27].
The questionnaire has overall demonstrated good reliability
and validity, correlating well with other self report measures
[26, 39]. The original User Engagement Scale, published in
2010, is a 31 item questionnaire measuring six factors of
engagement [27], and has been used in a variety of stud-
ies/contexts. However, the findings of some studies pointed
to flaws in the construction of the UES, specifically relating
to its number of factors [3, 39]. In a 2018 study, O’Brien (one
of the original publishers of the scale) et al. present a refined
version of the UES questionnaire, along with a new short
form version [25]. The refined UES reduced the six factor
model of the original scale to four factors, in line with the
evidence and suggestions from prior studies, and validated
the new factors using statistical tools. The four factors in
the refined scale are: Focused Attention, Perceived Usability,
Aesthetic Appeal, and Reward. The more recent four factor
model has been adopted for the purposes of measuring en-
gagement in this study, because it addresses many of the
problems that the original scale faced. A short form version
of the scale, comprising twelve questions and measuring the
same factors was also introduced in the paper. This was in
response to one of the problems in the original question-
naire, excessive length, resulting in many studies using only
select questions from the scale. This is a problem, because as
O’Brien et al. note, it is difficult to assess the survey’s factor
structure and robustness over time and across different digi-
tal applications. The UES short form has been adopted for
this study, because it will reduce the possibility of participant
fatigue.

Cain Rademan

3 DESIGN
For the purposes of answering the research question, an
educational programming game was developed. The game-
play consists of writing Python code to navigate a 3D game
environment. The game is designed to reinforce basic pro-
gramming concepts such as if-statements and for-loops, and
provide a fun visual environment to practice using these
constructs. The game also provides a console for new coders
to see the result of their code in real time and practice debug-
ging. It is assumed that students understand basic Python
syntax and have encountered the programming constructs
utilised in the game before. The intention is not to teach stu-
dents coding from the beginning, but to reinforce or cement
the ideas they have already learned in a visual, engaging way.
The setting is that of a space rover exploring an unknown
planet, avoiding obstacles and collecting valuable crystals.
Seven levels were developed for the prototype.

3.0.1 Connecting first-person and coding. At the start
of the design process, it was attempted to ascertain gen-
eral principles for the development of the educational game,
taking into account the game design elements under consid-
eration (puzzle and first-person POV). This was challenging,
as there are almost no educational programming games utilis-
ing first-person perspective and thus few examples to gain in-
spiration from. The lack of first-person programming games
may be explained by the inherent disconnect between first-
person gaming and programming. First-person games typi-
cally involve the user panning their mouse to look around
an environment, and is a highly dynamic, visual activity.
Coding is the opposite, a static experience in which users
type text into an editor. In designing this educational game,
it was attempted to solve this disconnect by utilising puzzle
elements in a first-person game with the hope that a more
coherent programming game experience could be obtained.
Students could then be exposed to the core experience of cod-
ing within the highly engaging environment of a first-person
game. However, the first-person perspective should make
sense within the context of the puzzle game and not feel
"tacked on" or superfluous, as resolved in the next section.

3.0.2 Exploring an environment. The idea of explor-
ing/navigating an environment was eventually settled on as
being an activity that is a good synthesis of puzzle and point
of view elements. It was hypothesised that exploring an en-
vironment lends itself well to a first-person view, because
there is a sense of immersion, place and spatiality. Objects
of interest are revealed to players over the course of time,
creating elements of suspense and spectacle. Exploring an
environment also presents ample opportunities for puzzle
design via obstacles, collectables and enemies. In this case
the 3D space itself forms part of a puzzle environment that
the player must negotiate. Taking these factors into account,

the setting of a game in which the player must program their
rover to navigate terrain was decided on.

3.0.3 Diegesis in games. The solution of a tech-themed
space rover game also works well with the idea of diegesis.
Diegesis has multiple definitions in different mediums (film,
theatre, literature etc), but it typically refers to the boundary
between the elements that exist within the narrative world,
and the elements that are part of the telling of the story [13].
In video games, diegesis comprises the narrative game world,
its characters, objects and actions. Such elements that exist
in the game world are refered to as diagetic. Non-diegetic
elements would be constructs like the UI or the music - they
are not really part of the "real" world of the game, but are still
necessary to tell the story. In this project, it is desirable that
the coding be part of the diegetic world of the game, so that
players do not have to suspend their disbelief when coding.
For example, within a programming game with the setting of
cooking, the act of coding would probably be non-diegetic,
and would not make much sense. Whereas in a tech-themed
space game it makes sense, coding a rover is something that
can believably integrate into the game world, and it requires
little suspension of disbelief.

3.0.4 Difficulty. Another consideration is the level of chal-
lenge for players. If the puzzles are too difficult, it could
result in decreased self-efficacy of users, and consequently
decreased engagement, as explored by Power et al. in their
paper "Difficulty and self-efficacy" [29]. In another study
investigating the relationship between game difficulty and
several emotions [5], Chanel et al. found that high difficulty
can result in higher anxiety levels in users of a game, and that
if difficulty levels are too easy, the experience will become
boring. Ideally, the game should be somewhere in the middle
- challenging, but not too challenging. The paper also found
that the engagement of a player can decrease if the game
difficulty does not change, demonstrating the importance
of modulating the difficulty of the game over time to match
the player’s increased mastery. This educational game in
particular is likely to present unique challenges to new users:
the notion of writing code to manipulate your character is
likely to be somewhat unintuitive at first, and could illicit
confusion. While it is tempting to prioritise the development
of challenging and interesting puzzles, and "throw players
in the deep end", it is important to make sure the experience
is streamlined and teaches the user how the system works
first. A solution that many puzzle games utilise is to break
the game up into a number of levels of increasing difficulty
(an example is the popular puzzle game Portal 2 [36]). The
first couple of levels are typically simple and explain the core
mechanics of the game. These principles are often modular
and are reused in other levels. As the game progresses, play-
ers are expected to utilise and combine principles that they
have mastered in increasingly challenging puzzles. The most
effective puzzle games have just the right difficulty ramp

Investigating Student Engagement in an Educational Programming Game Utilising First-Person and Puzzle Elements

so that as users achieve greater mastery of the system, they
find that the game mirrors this in difficulty level. This is
an effective solution because it reduces the chance of both
boredom and confusion. This strategy of levels of increasing
difficulty is the gameplay model that has been chosen for
the game.

3.0.5 Gameplay Design. Another advantage of using the
above technique of modular puzzle elements is that the game
designers often do not have to program large amounts of
content for the game. They can simply combine the core
mechanics they have introduced in interesting and surprising
ways to create new levels. The challenge then is choosing
core mechanics that are most likely to yield possibilities
for engaging puzzles. Another desirable quality is that the
game be deterministic - ie correct code will always result
in winning the level and incorrect code will always result
in a loss. The reason is that it is frustrating for players to
input the correct code but lose due to random elements out
of their control.

Taking the above considerations into account, the model
for the game is as follows: Player movement is constrained
to a grid that is overlaid on the terrain. This increases pre-
dictability and ensures that they cannot move in surprising
ways that will break the game. Players reference neighbour-
ing grid squares using compass directions (north, south, east,
west). Grid squares can contain various entities, such as
rocks, plants, and crystals. Each level has a start and end
grid square. Victory is achieved by moving from the start
point to the end point. Players must enter code to try and
reach the end, and must write one script to do so. If their
script terminates and they have not reached the end, the
level will reset and they will need to attempt it again from
the beginning. Players must also avoid obstacles along the
way, consisting of rocks and plants. Collision with a rock or
plant will result in being sent back to the beginning. They
must collect all the crystals in the level to be granted victory
on completion. Failure to do so will result in an unsuccessful
run. Additionally, they can shoot neighbouring plants to re-
move them as an obstacle. They can also check what entity
is in a neighbouring gridblock using a particular command.

From this, we can define the set of commands that the player
will have access to:

• Movement: The player is able to move their rover
using commands such as Rover.moveNorth()

• Queryneighbouring cells:The player is able to check
what is in neighbouring gridblocks using commands
such as Rover.checkNorth("Plant")

• Shooting: The player is able to shoot neighbouring
gridblocks, using commands such as Rover.shootNorth().
This will destroy any poisonous plants that are con-
tained there.

3.0.6 Randomistion. An essential skill for any program-
mer is the ability to write code that can handle general input
that is not known before runtime. A skillful programmer
can identify a pattern in a problem and write code in such a
way that it solves the problem no matter what variant is pre-
sented (often through the use of conditional checks). This is
reflected in the game through the inclusion of random levels.
In some levels, placement of objects is semi-random (though
still following some sort of pattern). The idea is that players
must use "check" commands to query what is around them
and decide how to handle it. In the end, only one random
level was implemented, in which the player needs to check
for plants around them and shoot them to move forward.
However, the functionality is in place, making it an easy
process to add more random levels.

3.0.7 Line limit. Another important skill of a program-
mer is conciseness - writing code in its simplest and most
efficient form. This often involves looking at code and fig-
uring out what can be more efficiently done via a loop or a
conditional statement. In the game, the inclusion of levels
in which the player is limited in the number of lines of code
they can write forces them to practice this process. In these
levels, a brute force solution will not suffice as it will go over
the line limit.

4 IMPLEMENTATION
The game was implemented using the popular real-time
development platformUnity. Development followed a system
of priority where the most essential and high-risk features
were implemented first.

4.0.1 Python to C# Interfacer. Since scripts in Unity are
written in the language C#, and players needed to write
Python code, it was necessary to facilitate the execution
of Python code in a C# environment. IronPython [8] is an
open-source implementation of the Python programming
language which is tightly integrated with .NET (the frame-
work upon which C# is built). Using IronPython, Python
programs can integrate with applications written in other
.NET programming languages, such as C#. When embedded
in a C# application, IronPython supports the ability to ac-
cept a number of C# objects as part of its scope. It can then
execute Python scripts at runtime that can call methods on
these objects. This approach was used to implement the re-
quired functionality of users being able to call methods such
as “Rover.moveNorth()” in Python, and have that reference
the correct C# Unity object. The interpreter also needed to
be used in a parallel study by a different researcher, Theo
Thesen, focusing on narrative elements. Since this study had
a different use case, the interpreter needed to be designed in
a generic and modular way. The main classes in the architec-
ture are explained below, and are depicted in a diagram (fig.
1) explaining the application flow between these classes.

Cain Rademan

Figure 1. Application flow of the Python to C# Interfacer

ScriptableObj. ScriptableObject is a data structure stor-
ing all the information needed to make a GameObject script-
able. It contains attributes such as an ObjectController that
is passed into IronPython, a ControlledObject that is the
actual Unity object that is controlled by script and the spawn
position and orientation it should return to when the "stop"
button is hit.

ScriptEditor. The ScriptEditor is the GameObject that al-
lows the user to input the code string. It contains a list of
all the ScriptableObj’s and passes these into the PythonIn-
terfacer along with the code string when the run button is
pressed.

PythonInterfacer. The PythonInterfacer contains the Iron-
Python components necessary to interpret the user’s Python
code. When run is pressed, it creates a new IronPython en-
gine, adds the ObjectController of each ScriptableObj to the
scope, and sets the script source to the user’s inputted string.
It then executes the script, catching compile errors and out-
putting them to the console.

ObjectController. Instead of allowing the user to interact
with the ControlledObject directly, it is necessary to have a
proxy controller object. This is because the ControlledObject
may have methods on it that it is undesirable for the user to

access, such as, for example, a reset() method. The Object-
Controller is an abstract class that all controllers must inherit
from, and exposes a number of methods to the user. These
methods will directly call methods in the ControlledObject.

StaggeredActionManager. During the design process, it
was decided that it would be more engaging for players to see
their code execute over a time span, instead of in a fraction
of a second. This is because the user can see the effect that
each line of code has and can follow along. Since the user’s
Python script executes instantly, and we want to animate the
Unity objects over time, it is necessary to build up a queue
of actions from the script. In the current implementation,
the StaggeredActionManager is the ControlledObject, and
builds up a queue of actions executed by the user’s script.
This queue can later be read by the Unity object that needs
to animate, to ensure that it performs the correct actions
that the user’s script defined. As it stands this component
essentially runs a simple abstract version of the program
beforehand, building up a queue of actions, and then uses this
to animate the objects. A more ideal solution to this problem
could have been wrapping the user’s Python program in a
thread and executing each statement line by line, as will be
discussed below.

PlayerMovement. This is the Unity GameObject repre-
senting the rover. After the Python script has run, it reads
the necessary actions one by one off the StaggeredAction-
Manager. After an action has been completed, it dequeues
the next action and animates based on that.

As is often the case with software engineering, upon com-
pletion it became apparent that an alternate implementation
would have been preferable. As alluded to in the StaggeredAc-
tionManager section, the entire architecture could have been
greatly simplified, made more stable, and more flexible, us-
ing an approach of threading. In this case, running the Iron-
Python script in a thread, line by line, and blocking until
each action is finished would have been the preferable imple-
mentation, for a variety of reasons. Crucially, in the current
implementation an infinite while loop would crash the entire
game, whereas in a threaded approach a player would be
able to stop the code. It would be possible to facilitate the use
of while-loops in the current architecture, by stopping the
code if a timer exceeds a certain threshhold, say 0.5 seconds,
but this is an inelegant solution. Additionally, the threaded
approach would allow for game objects to move around at
runtime, and still be detected by the player using, for exam-
ple "checkNorth()". It is recommended that anybody looking
to develop a similar system follow the threaded approach
instead.

4.0.2 Environment design. Since aesthetic appeal is an
important component of the engagement cultivated in a sys-
tem [25], it was necessary to design an environment that

Investigating Student Engagement in an Educational Programming Game Utilising First-Person and Puzzle Elements

Figure 2. The Rover Model

was attractive and interesting to look at. However, since
first year students were the target group, it was also es-
sential that the game be able to run on lower end laptops.
The tradeoff between graphical quality and performance is
a common problem that game developers face. Typically,
improving graphics involves utilising models with a higher
vertex count, or more computationally expensive shaders.
Realistic graphics in particular usually come at the cost of
increased computational complexity, and require higher-end
computers to render at a reasonable framerate. An alternate
approach to making games look more appealing is through
the use of striking art direction, such as colour composition,
stylistation and world building. An aesthetic that is being
increasingly favoured in indie games is the “low poly” style.
This style tends to forgo realism in favour of stylised low
polygon count models. The low poly style was adopted for
the educational game in this project. In low poly games, it is
often the imagination of the player that fills in the details and
brings the game world to life. The idea was to have sparse,
rocky alien environments, scattered with plants and ancient
ruins, contrasted by a colourful skybox, creating an effect
of a strange yet visually appealing world. The assets for the
project were obtained from the Unity asset store, mostly
from the Low Poly Rocks Pack [17], which provided a num-
ber of low poly rocks, structures, and terrain. An exception
is the rover model, which was designed by a 3D artist. There
was also the consideration of the implementation of the grid
over which the player can move as part of the puzzle design.
The Terrain Grid System from the Unity asset store was used
to efficiently draw such a grid over the terrain [16].

4.0.3 User Interface. Due to the fact that most beginner
programmers have likely not been exposed to a coding game
before, designing an intuitive and responsive UI was essential
in ensuring user comprehension of the system. A labelled

Figure 3. UI of the educational game

screenshot of the UI can be seen in figure 3, with each labelled
component discussed below:

Methods Window. The methods window provides the
user with a list of the available methods for the level. Each
method can be hovered to obtain information about what it
does and how to use it.

Script Editor. The user enters Python code in the ScriptE-
ditor. It has a white background to differentiate it from the
other UI components as an area in which you can type.

Run Buttons. The user can press the run button to exe-
cute the current code in the Script Editor. On click, the run
button will change into a stop button, which can be pressed
to reset the rover and environment. There is also a speed up
and a slow button, which make the rover go faster or slower
respectively, useful for allowing the user to control the pace
of the game.

Console. The console area offers helpful compile and run-
time output to the user, such as if their Python program
fails to compile, if they collide with a plant, or the results of
neighbouring grid cell querying using check commands.

View and Mode Info. These windows provide the user
with visual feedback on their view and mode. The view can
be either first-person or top-down. The mode can be either
scripting or looking, and determines whether the focus is on
the Script Editor or the environment.

5 USER TESTING
For the purposes of evaluating the system developed, user
testing was conducting. Participants recruited were students
whose only experience with coding was through taking an
introductory programming course. These students had been

Cain Rademan

exposed to Python but were still at a low programming abil-
ity level. These were mainly first year Computer Science
students at the University of Cape Town, but also included
a few students taking different degrees who had taken an
introductory programming course. Six students in total took
part in the testing. It was decided to conduct testing online in
light of the risks of in-person meetings due to the COVID-19
pandemic. Students were recruited through in-person lecture
visits, online announcements/emails and messages sent to
Whatsapp groups.

5.1 Procedure
An hour before the experiment, participants were sent an
executable version of the game specific to their computer
operating system. They were informed to not begin playing
the game until the experiment had begun. Participants then
entered an online voice call with the researcher. First, partic-
ipants played the educational game for 20-30 minutes, shar-
ing their screen while doing so. The researcher was present
while participants played to help them if they got stuck or
if any bugs occurred. The researcher monitored/interacted
with participants as little as possible during this time, both
to test the usability of the system and to ensure that partici-
pants did not feel pressured. In some cases, if participants
were struggling with the puzzles, hints were given to help
them complete as many levels as possible. Afterward, the
researcher and participant had a brief semi-structured con-
versation about their experience playing the game. Partici-
pants were prompted with questions from a set list to guide
the conversation. This audio was recorded in order to obtain
transcripts of what was said. Participants then undertook a
survey administered through Google forms, discussed in the
next section.

5.2 Survey
The survey consisted of the User Engagement Scale short
form along with an additional section consisting of six ques-
tions. The two sections were separated, with the UES first.
O’Brien et al.s’ paper on the UES short form is useful in pro-
viding a guide to administration and scoring of the scale [25].
As suggested the wording of the questions was adapted to the
context, and the order of the questions was randomised per
participant (see table 1). PU-S.1, PU-S.2, and PU-S.3 were also
reverse-coded as per the survey guidelines. The additional
six questions (table 2) included in the survey attempted to
measure factors key to the research question, such as par-
ticipants’ reaction to first-person and puzzle elements. Also
measured were their feelings on whether the game helped
to practice basic coding concepts, and would be valuable
to first year Computer Science students. The additional six
questions section were measured (as in the UES) with a five
point Likert scale. FP-2 and PZ-2 were reverse-coded.

Table 1. The User Engagement Scale short form

FA-S.1 I lost myself in this experience.
FA-S.2 The time I spent playing the game just slipped away .
FA-S.3 I was absorbed in this experience.
PU-S.1 I felt frustrated while playing the game.
PU-S.2 I found this educational game confusing to use.
PU-S.3 Using this educational game was taxing.
AE-S.1 This educational game was attractive.
AE-S.2 This educational game was aesthetically pleasing.
AE-S.3 This educational game appealed to my senses.
RW-S.1 Using the game was worthwhile.
RW-S.2 My experience was rewarding.
RW-S.3 I felt interested in this experience.

Table 2. Additional Questions

FP-1 The first-person view in the game increased my feel-
ings of engagement.

FP-2 The first-person view in the game was unnecessary.

PZ-1 The puzzle solving element in the game increased my
feelings of engagement.

PZ-2 The puzzles in the game were too difficult.

Q5 This experience would be valuable to first year Com-
puter Science students

Q6 This game helped me practice basic coding concepts.

6 RESULTS

Figure 4. Scores for the 4 UES factors

6.1 User Engagement Results
The overall UES engagement score was found to be 4.39.
This is a positive result and shows that overall people found
the game to be engaging. The subscales Focused Attention,
Perceived Usability, Aesthetic Appeal, and Reward had mean
scores of 4.05, 4.58, 4.28, and 4.67 respectively. Subscale scores

Investigating Student Engagement in an Educational Programming Game Utilising First-Person and Puzzle Elements

Figure 5. Scores for the Additional Questions

for participants who had left out data was handled by omit-
ting that question from the subscale mean calculation for
that participant.

6.1.1 Focused Attention. Focused Attention scores were
high with the exception of an outlier who felt only neutral.
Generally, participants felt absorbed in the game.

6.1.2 Perceived Usability. Perceived Usability was unan-
imously scored at 4 or above - participants found the software
to be very intuitive and easy to use. One participant felt that
the interface could be improved by providing explanations
of the coding constructs in the game such as if statements
and for loops on the side or through a popup, so that the
game could be played by coders with no experience at all.

6.1.3 Aesthetic Appeal. Aesthetic Appeal scores were
also generally high. One participant noted, “I really liked the
graphics style that you chose. It was kind of cute but also
aesthetically pleasing. I liked the colour scheme.” Another
student commented on the top down camera placement, not-
ing that it was off-centre in some levels.

6.1.4 Reward. Reward was the factor that received the
highest mean score in the UES, indicating that people felt
that the game produced a valuable experiential outcome.
Participants unanimously indicated a five for their interest
in the experience. When asked whether the game was what
they had expected, many participants expressed that it was
more fun than they had expected, and that they had enjoyed
it.

6.2 Additional Questions Results
6.2.1 First-Person. Participants’ reactions to the first-person
elements were slightly positive, with a mean rating of 3.41.
Overall participants were either neutral towards the first-
person elements, or seemed to think that they aided engage-
ment and were necessary to the experience. There was an
outlier who indicated an FP score of 2.

6.2.2 Puzzle. Puzzle elements received a mean rating of
4.25, indicating a positive response. All students completed
the first 4 levels with little difficulty, but some struggled a
little on the later levels. When asked whether the difficulty
level was too easy or too hard, the majority thought it was
on the easier side, and would be best suited to students in the
first 2-3 weeks of their course. One student noted “I think
its a really good level if you’re first learning how to code
and getting the logic behind iteration. I wouldn’t say that
it would be a good level towards the end of a Computer
Science course”. One student thought the levels accelerated
in difficulty a little too quickly.

6.2.3 Q5 (Valuable for First Years). This question re-
ceived a mean score of 4.83, indicating that participants
strongly felt that the experience would be valuable to first
year Computer Science students.

6.2.4 Q6 (HelpedPractice BasicCodingConcepts). This
question received a unanimous response of 5, indicating that
students felt the game was extremely effective for practicing
basic coding concepts.

6.3 Improvements
Through the conversations that took place after testing, feed-
back was obtained about what participants felt could be
improved/changed about the game. One student felt that
the "limiting lines of code" for some levels could induce
frustration in some students, because "people’s brains think
differently". They suggested not making the line limit a neces-
sity, and instead implementing some kind of system where
you are rewarded for completing the level in under the line
limit. Another student noticed that, on the last level (which
incorporated randomness), you could keep hitting run until
you got a favourable configuration, and so make it through
the level without inputting the correct code. They suggested
implementing a system where, for each level, the code is run
many times and has to pass multiple cases to ensure that the
player did not "get lucky". Another student commented on
the fact that while-loops were unusable, suggesting that it
would be a good feature to have. During one student’s run, a
strange bug occured in which plants shot by the player would
not be properly destroyed, and the player’s code would halt
at this point. This bug could not be reproduced, and is of
high priority to fix.

7 DISCUSSION
As the sample size in the study was small, sweeping conclu-
sions cannot be drawn from the data. More testing would
need to be done to reproduce and confirm the results ob-
tained. It is reasonable however, to do some tentative anal-
ysis of the current results, bearing in mind that they may
be inaccurate. The original research question involved as-
certaining the effect of first-person and puzzle elements on

Cain Rademan

engagement. Based on the results of the survey, the game
seems to be engaging to students, as measured by the User
Engagement Scale. Students also felt that the first-person
and puzzle elements increased their feelings of engagement.
This was a self-report however, so it is unclear whether en-
gagement was really increased by these factors or whether
some other properties of the game facilitated engagement.
It may be that a similar programming game without these
elements would have resulted in a more engaging experi-
ence. However, the engagement generated does seem to be
to some extent aided by the first-person and puzzle elements
- these elements were designed to be core components of the
game, and so it makes sense that they must influence the
engagement generated while playing.
In terms of the relative engagement factor of the two el-
ements, puzzle received a higher score than first-person,
indicating that puzzle was the element with a higher engage-
ment facilitation.

The results pertaining to whether the game could facilitate
the practice of basic coding concepts, and whether partici-
pants thought it would be beneficial to first year program-
ming students are particularly encouraging, with very high
scores. When asked in what way the game would be ben-
eficial in introductory programming courses, students ex-
pressed that playing the game was a lot more enjoyable than
the traditional methods of teaching. One student is quoted
as saying "I remember in my first year Computer Science
course I found the assignments (which is where you really
consolidate how to code) could often be really stale. I think
this could be a way for people to develop there skills with
coding but in a much more enjoyable way."

An interesting thing to note is that many students specif-
ically mentioned that they thought the game was a good
introduction to the logic of if-statements and for loops, and
would be best suited for students in their first couple of
weeks of study. It was originally intended for the game to be
of a slightly higher level, incorporating additional constructs
such as variables and primitive data types, and while-loops.
During development, the focus was shifted to providing a
more fundamental experience that requires less prior knowl-
edge and focuses on coding logic. The responses of students
are encouraging and indicate that the game achieved these
goals. Some students did indicate that they thought that it
would be good to add more breadth of content, so that "as
you go forward you could play more levels". Some students
also thought that adding more challenging puzzles would be
good for the students who want extension.

7.1 Limitations
The results of this study are limited by the small sample size
and lack of a control group. An ideal testing scenario would
be one in which different versions of the same programming

game were developed: with first-person elements, with puz-
zle elements, with both of these and with neither. This would
enable insight into the effects of first-person and puzzle on
engagement in isolation, as well as their combined effect
and the interplay between the two elements. Such a rigorous
procedure was beyond the scope of this research. Should
such a study take place, based on the results of this paper
it is recommended that it be hypothesised that first-person
and puzzle elements have a positive effect on engagement
in educational programming games.

Another potential limitation of this study to bear in mind
is that testing was done with students who had already com-
pleted an introductory programming course. As such, stu-
dents were at a higher coding level than the game was de-
signed for. As such, it is difficult to ascertain whether the
the puzzles are at the right level of difficulty. Many students
indicated that the difficulty would be suitable for the first
couple of weeks of a course, but they may have been overes-
timating their own abilities in the past. Some of the students
actually struggled with the later levels, even though they
had already completed an introductory programming course.
It would be ideal to conduct a study with participants who
are actually in the midst of an introductory programming
course, to more accurately judge the level of difficulty of the
software.

8 CONCLUSIONS
This paper saw the development of an educational Python
game designed to allow students to practice introductory pro-
gramming concepts. To achieve this goal, the paper saw the
successful implementation of a modular system for interpret-
ing players’ Python code at runtime in a Unity environment.
This system was leveraged within Unity to enable the core
code writing mechanics of the game. The mechanics and
setting of the game were motivated using game design prin-
ciples, and it was attempted to integrate first-person and
puzzle elements into the game to create compelling coding
gameplay. User testing showed positive results, suggesting
that the educational programming game developed is effec-
tive in eliciting feelings of engagement in students. Students
responded positively to the first-person and puzzle elements,
and linked them to their feelings of engagement. They felt
that the first-person elements were necessary to the game,
and that the difficulty of the puzzles was suitable for new
Computer Science students. They also felt that the game
helped them practice basic coding concepts, and would be
valuable to first year students. The findings of this study
should in no way be treated as definitive, and it is recom-
mended that more detailed study take place to reproduce and
confirm the results. It is hoped that this paper will bolster
similar research, and encourage more comparative study of
different game design elements in educational programming
games.

Investigating Student Engagement in an Educational Programming Game Utilising First-Person and Puzzle Elements

References
[1] Ander Areizaga Blanco and Henrik Engström. 2020. Patterns in Main-

stream Programming Games. International Journal of Serious Games 7,
1 (Mar. 2020), 97 – 126. https://doi.org/10.17083/ijsg.v7i1.335

[2] Computing Research Association. 2019. 2019 Taulbee Survey.
[3] F Banhawi and N. M Ali. 2011. Measuring user engagement attributes

in social networking application. In 2011 International Conference on
Semantic Technology and Information Retrieval. IEEE, 297–301.

[4] Theresa Beaubouef and John Mason. 2005. Why the High Attrition
Rate for Computer Science Students: Some Thoughts and Observa-
tions. SIGCSE Bull. 37, 2 (June 2005), 103–106. https://doi.org/10.1145/
1083431.1083474

[5] Guillaume Chanel, Cyril Rebetez, Mireille Bétrancourt, and Thierry
Pun. 2008. Boredom, engagement and anxiety as indicators for adap-
tation to difficulty in games. In Proceedings of the 12th international
conference on entertainment and media in the ubiquitous era (MindTrek
’08). ACM, 13–17.

[6] Valve Corporation. [n.d.]. Steam & Game Stats. Retrieved June 22,
2021 from https://store.steampowered.com/stats/

[7] Michael Eagle and Tiffany Barnes. 2009. Experimental evaluation of an
educational game for improved learning in introductory computing. In
Proceedings of the 40th ACM technical symposium on computer science
education (SIGCSE ’09). ACM, 321–325.

[8] .NET Foundation. [n.d.]. IronPython. Retrieved June 22, 2021 from
https://ironpython.net/

[9] Stefanos Galgouranas and Stelios Xinogalos. 2018. jAVANT-GARDE:
A Cross-Platform Serious Game for an Introduction to Programming
With Java. Simulation gaming 49, 6 (2018), 751–767.

[10] Andrew Hicks. 2010. Towards social gaming methods for improving
game-based computer science education. In Proceedings of the Fifth
International Conference on the foundations of digital games (FDG ’10).
ACM, 259–261.

[11] Ilish Kane, Chuy-Thuy Pham, Adam Lewis, and Vanessa Miller. 2019.
Escape from the Python’s Den: An Educational Game for Teaching
Programming to Younger Students. In Proceedings of the 2019 ACM
Southeast Conference (ACM SE ’19). ACM, 279–280.

[12] Cagin Kazimoglu. 2020. Enhancing Confidence in Using Computa-
tional Thinking Skills via Playing a Serious Game: A Case Study to In-
crease Motivation in Learning Computer Programming. IEEE Access 8
(2020), 221831–221851. https://doi.org/10.1109/ACCESS.2020.3043278

[13] Erica Kleinman, Elin Carstensdottir, and Magy Seif El-Nasr. 2019. A
Model for Analyzing Diegesis in Digital Narrative Games. In Interactive
Storytelling. Springer International Publishing, Cham, 8–21.

[14] Theodora Koulouri, Stanislao Lauria, and Robert D Macredie. 2015.
Teaching Introductory Programming: A Quantitative Evaluation of
Different Approaches. ACM transactions on computing education 14, 4
(2015), 1–28.

[15] Dimitra Koupritzioti and Stelios Xinogalos. 2020. PyDiophantus maze
game: Play it to learn mathematics or implement it to learn game
programming in Python. Education and information technologies 25, 4
(2020), 2747–2764.

[16] Kronnect. [n.d.]. Terrain Grid System. Retrieved Aug 2, 2021
from https://assetstore.unity.com/packages/tools/terrain/terrain-grid-
system-47215

[17] LMHPOLY. [n.d.]. Low Poly Rocks Pack. Retrieved Aug 2,
2021 from https://assetstore.unity.com/packages/3d/environments/
low-poly-rocks-pack-70164

[18] Daniel López-Fernández, Aldo Gordillo, Pedro P. Alarcón, and Ed-
mundo Tovar. 2021. Comparing Traditional Teaching and Game-
Based Learning Using Teacher-Authored Games on Computer Sci-
ence Education. IEEE Transactions on Education (2021), 1–7. https:
//doi.org/10.1109/TE.2021.3057849

[19] Katie Larsen McClarty, Aline Orr, Peter M Frey, Robert P Dolan, Victo-
ria Vassileva, and Aaron McVay. 2012. A literature review of gaming

in education. Gaming in education (2012), 1–35.
[20] A McGettrick. 2005. Grand Challenges in Computing: Education–A

Summary. Computer journal 48, 1 (2005), 42–48.
[21] Michael Miljanovic and Jeremy Bradbury. 2017. RoboBUG: A Serious

Game for Learning Debugging Techniques. 93–100. https://doi.org/
10.1145/3105726.3106173

[22] Michael Miljanovic and Jeremy Bradbury. 2018. A Review of Serious
Games for Programming.

[23] Mathieu Muratet, Patrice Torguet, Jean-Pierre Jessel, and Fabienne
Viallet. 2009. Towards a serious game to help students learn computer
programming. International journal of computer games technology 2009,
1 (2009), 1–12.

[24] Lennart E Nacke and Craig A Lindley. 2010. Affective Ludology, Flow
and Immersion in a First- Person Shooter: Measurement of Player
Experience. (2010).

[25] Heather O’Brien, Paul Antony Cairns, and Mark Hall. 2018. A prac-
tical approach to measuring user engagement with the refined user
engagement scale (UES) and new UES short form. (2018).

[26] Heather L O’Brien and Mahria Lebow. 2013. Mixed-methods approach
to measuring user experience in online news interactions. Journal
of the American Society for Information Science and Technology 64, 8
(2013), 1543–1556.

[27] Heather L O’Brien and Elaine G Toms. 2010. The development and
evaluation of a survey to measure user engagement. Journal of the
American Society for Information Science and Technology 51, 1 (2010),
50–69.

[28] US Bureau of Labour Statistics. 2019. Employment Projections 2019-
2020. https://www.bls.gov/emp/tables/emp-by-detailed-occupation.
htm

[29] Jason Power, Raymond Lynch, and Oliver McGarr. 2020. Difficulty
and self-efficacy: An exploratory study. British journal of educational
technology 51, 1 (2020), 281–296.

[30] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions
and Other Difficulties in Introductory Programming: A Literature
Review. ACM Trans. Comput. Educ. 18, 1, Article 1 (Oct. 2017), 24 pages.
https://doi.org/10.1145/3077618

[31] Cain Rademan. 2021. Literature Review of Game-Based Learning in
Computer Science Education. (2021), 3–4.

[32] Ronny Scherer, Fazilat Siddiq, and Bárbara Sánchez Viveros. 2019.
The Cognitive Benefits of Learning Computer Programming: A Meta-
Analysis of Transfer Effects. Journal of educational psychology 111, 5
(2019), 764–792.

[33] Grigorios Sideris and Stelios Xinogalos. 2019. PY-RATE ADVEN-
TURES: A 2D Platform Serious Game for Learning the Basic Concepts
of Programming With Python. Simulation gaming 50, 6 (2019), 754–
770.

[34] The Association for Information Systems (AIS) The Joint Task Force:
Association for Computing Machinery (ACM) and IEEE Computer
Society. 2020. Computing Curricula 2005: The Overview Report.

[35] The Association for Information Systems (AIS) The Joint Task Force:
Association for Computing Machinery (ACM) and IEEE Computer
Society. 2020. Computing Curricula 2020.

[36] Valve. [n.d.]. Portal 2. Retrieved Sept 14, 2021 from https://store.
steampowered.com/app/620/Portal_2/

[37] Valve. [n.d.]. Steam. Retrieved June 3, 2021 from https://store.
steampowered.com/

[38] Eric N Wiebe, Allison Lamb, Megan Hardy, and David Sharek. 2014.
Measuring engagement in video game-based environments: Investiga-
tion of the User Engagement Scale. Computers in human behavior 32
(2014), 123–132.

[39] Eric N Wiebe, Allison Lamb, Megan Hardy, and David Sharek. 2014.
Measuring engagement in video game-based environments: Investiga-
tion of the User Engagement Scale. Computers in human behavior 32
(2014), 123–132.

https://doi.org/10.17083/ijsg.v7i1.335
https://doi.org/10.1145/1083431.1083474
https://doi.org/10.1145/1083431.1083474
https://store.steampowered.com/stats/
https://ironpython.net/
https://doi.org/10.1109/ACCESS.2020.3043278
https://assetstore.unity.com/packages/tools/terrain/terrain-grid-system-47215
https://assetstore.unity.com/packages/tools/terrain/terrain-grid-system-47215
https://assetstore.unity.com/packages/3d/environments/low-poly-rocks-pack-70164
https://assetstore.unity.com/packages/3d/environments/low-poly-rocks-pack-70164
https://doi.org/10.1109/TE.2021.3057849
https://doi.org/10.1109/TE.2021.3057849
https://doi.org/10.1145/3105726.3106173
https://doi.org/10.1145/3105726.3106173
https://www.bls.gov/emp/tables/emp-by-detailed-occupation.htm
https://www.bls.gov/emp/tables/emp-by-detailed-occupation.htm
https://doi.org/10.1145/3077618
https://store.steampowered.com/app/620/Portal_2/
https://store.steampowered.com/app/620/Portal_2/
https://store.steampowered.com/
https://store.steampowered.com/

Cain Rademan

[40] Stelios Xinogalos. 2018. Programming Serious Games as a Master
Course: Feasible or Not? Simulation gaming 49, 1 (2018), 8–26.

[41] Mirac Yallihep and Birgul Kutlu. 2020. Mobile serious games: Effects
on students’ understanding of programming concepts and attitudes to-
wards information technology. Education and information technologies
25, 2 (2020), 1237–1254.

[42] Michael F Young, Stephen Slota, Andrew B Cutter, Gerard Jalette,
Greg Mullin, Benedict Lai, Zeus Simeoni, Matthew Tran, and Mariya
Yukhymenko. 2012. Our princess is in another castle: A review of
trends in serious gaming for education. Review of educational research

82, 1 (2012), 61–89.
[43] Xihui Zhang, John D Crabtree, Mark G Terwilliger, and Janet T Jenkins.

2020. Teaching Tip: Teaching Introductory Programming from A to Z:
Twenty-Six Tips from the Trenches. Journal of information systems
education 31, 2 (2020), 106–.

[44] Dan Zhao, Cristina Hava Muntean, Adriana E Chis, and Gabriel-Miro
Muntean. 2021. Learner Attitude, Educational Background, and Gender
Influence on Knowledge Gain in a Serious Games-Enhanced Program-
ming Course. IEEE transactions on education (2021), 1–9.

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Game-Based Learning in Computer Science Education
	2.2 Puzzle Elements in Programming Games
	2.3 User Engagement Scale (UES)

	3 DESIGN
	4 IMPLEMENTATION
	5 USER TESTING
	5.1 Procedure
	5.2 Survey

	6 RESULTS
	6.1 User Engagement Results
	6.2 Additional Questions Results
	6.3 Improvements

	7 DISCUSSION
	7.1 Limitations

	8 CONCLUSIONS
	References

