DEPARTMENT OF COMPUTER SCIENCE

CS/IT Honours
Final Paper 2021

UNIVERSITY OF CAPE TOWN g

Title: Deep Learning for Network Traffic Prediction

Author: Antony Fleischer
Project Abbreviation: DLANTP

Supervisor(s): Dr Josiah Chavula

Category Min | Max | Chosen
Requirement Analysis and Design 0120 0
Theoretical Analysis 0125 5
Experiment Design and Execution 0120 20
System Development and Implementation 0120 0
Results, Findings and Conclusions 10 20 20
Aim Formulation and Background Work 10|15 15
Quality of Paper Writing and Presentation 10 10
Quality of Deliverables 10 10
Overall General Project Evaluation (this section 0|10

allowed only with motivation letter from supervisor)

Total marks 80

Deep Learning For Network Traffic Prediction
Using LSTMs as Network Traffic Predictors on SANREN

Antony Fleischer
flsant005@myuct.ac.za
University of Cape Town
Cape Town, South Africa

Abstract

Time series forecasting is a method that uses models fitted
on historical data to predict future values of an observation.
Network traffic prediction is a form of time series forecast-
ing that allows computer network operators to manage their
networks more efficiently. Accurate traffic prediction can
improve a network’s performance significantly, in areas such
as network congestion management, resource distribution
and network volume alerts. Most neural network models
find it difficult to learn the long-range temporal relation-
ships in a dataset - primarily due to the non-stationary and
non-linear qualities that time-series data presents. However,
existing literature suggests that Long Short Term Memory
(LSTM) models can capture the long and short-term trends
in network traffic data. This paper implements three LSTM
models for network traffic prediction on the SANReN. Over
a range of grid-searched hyperparameters, a stacked LSTM
model is the most accurate model in general. However, it is
also the most computationally expensive, and the network
traffic prediction and resource requirements of a network
operator may warrant the implementation of a simple LSTM
model.

CCS Concepts: - Computing methodologies — Neural
networks; Supervised learning by regression; « Networks
— Network performance modeling.

1 Introduction

Modern computer networks are facing the challenges as-
sociated with transferring unprecedented amounts of data.
Furthermore, large, confederated computer networks exhibit
volatile network traffic flows [27]. Historically, network op-
erators have attempted to use traditional statistical learning
methods [22, 25] to optimise their networks. However, as
network flows increase dramatically [2], network operators
require more efficient and accurate time-series processing
methods to overcome network congestion, reduce access
times, allocate bandwidth effectively and detect traffic anom-
alies [16, 18, 22].

Network traffic prediction is relevant for two temporal
forecasts: short-term forecasts assist with dynamic resource
allocation, while longer-term forecasts capture the network
traffic trend more generally, which provides a network oper-
ator with an understanding of how to upgrade their network

[22]. An accurate and computationally appropriate network
traffic prediction model is valuable in two senses. Firstly,
resources can be managed through the identification of high
traffic volumes, congestion, and burst flows [30] and sec-
ondly, a computationally appropriate model - in that it is
not overly computationally expensive for the resources of
the network it is examining - will be able to provide these
services to any network size [10].

There are a few reasons why network traffic prediction
requires neural network predictors. Primarily, any predic-
tion model depends on the statistical distribution of a data
set [25]. It also depends on the notion that the data is from
a time-series dataset [25]. The difficulty in network traffic
prediction stems from the statistical nature of the data. Net-
work traffic flows are characterised by self-similarity and
non-linearity [20] and are inefficiently modelled by Gauss-
ian or Poisson distribution models [20]. This inefficiency
introduces the need for LSTMs and is reinforced by previous
literature which has evaluated the performance of traditional
statistical learning models on network traffic data [22, 25].

Whereas previous researchers have used publicly avail-
able datasets such as the GEANT [15, 19, 29] and Abilene
[25, 28] networks, this paper uses network traffic data from
the South African National Research and Education Network
(SANReN). SANReN is a country-wide network of educa-
tion and research institutions in South Africa [1]. It is a
high-speed network for science, education, research and
innovation-based institutions, and has been phased in across
the country since 2007 [1]. As a large, federated network,
SANReN could benefit from an LSTM model that allows for
preemptive network actions.

Existing literature shows LSTMs becoming popular mod-
els for approaching network traffic prediction, which is a
subset of time-series forecasting. The literature also shows
that LSTMs - as well as other deep learning models - outper-
form traditional statistical prediction and machine learning
methods. This suggests that LSTMs are appropriate for im-
plementation as network traffic predictors on SANReN.

This research paper will provide the context of LSTMs
for the SANReN network use case. This paper investigates
the data processing pipeline of an LSTM - from network
traffic flow output to model input and present a prelimi-
nary data analysis. Additionally, this paper describes the
implementation of a stacked LSTM model and evaluates its

computational cost and predictive accuracy against a simple
and bidirectional LSTM across a range of hyperparameters.
Penultimately, the process of model optimisation through
a hyperparameter grid search will be explained, before the
conclusions present an optimal model for the SANReN use
case.

2 Background
2.1 Network Traffic Flows

Network traffic flows refer to the groups of bytes being sent —
from a node to any other node - across a network [25]. Nodes
in this context are any type of device that is connected to
the network, not just routers [25]. Given this definition, an
LSTM’s accuracy is measured by its ability to predict the
number of bytes that will be sent in a future time period,
while its computational cost is measured by the time it takes
to train the model on a dataset.

Simply put, time-series data is a sequence of observed data
points - (y1,ya, ..., y;) - indexed by time order [31]. Usually,
the data points are measured at successive, equidistant points
in time. However, the time spacing of observation measure-
ment is not uniform in this case. It is important in this study
that network traffic flows are defined as time-series data.
These constraints are necessary because they all allow the
LSTM to learn short and long-term temporal trends. If the
data was not treated as a time-series sequence, then the tem-
poral indexing of the observations would be irrelevant, and
the LSTM would be learning to predict the response based
on non-temporal values. Additionally, it is important to iden-
tify that network traffic data is non-linear. Seasonality and
trends are the main reasons that linear predictions models
are inaccurate [27, 31], and so it is necessary to use LSTMs to
capture the nonlinearity and non-stationarity that network
traffic exhibits [27].

Both neural networks and traditional statistical models
can use time-series data in different ways. For example, these
predictive models can implement different timescales and
distinctive forecasting horizons [10]. Predictions for hourly
traffic volumes rather than every 5 minutes is an instance of
an altered timescale, whereas an adjusted forecasting horizon
would change how many time periods ahead a predictor
forecasts for [10]. However, because of the non-uniformity
of the SANReN data, the LSTM models in this study predict
the next byte flow observation at time t;;;. Additionally,
network traffic data may be provided to a neural network
to predict when a burst in traffic volume will occur, rather
than to forecast a pattern in the future of the time-series
data [21]. Burst flow prediction can be achieved in parallel
with regular neural network prediction [21], and so it is also
included in this study.

2.2 Deep Learning

2.2.1 Long Short Term Memory. Time series data are
sequential patterns. Essentially, a new data observation is
dependent on past values in the time series. The LSTM model
is designed to capture these long-term temporal dependen-
cies [25] and can be used to predict sequential patterns in
the SANReN data. LSTM models are ideal for this task be-
cause of the structure of their memory units. Each unit gives
the model the ability to consider its input, and then either
keep existing memory or overwrite it with new information
[17]. This capacity allows extremely long-term temporal de-
pendencies to be captured by the model, whereas simpler
models are unable to capture these trends [25]. Additionally,
LSTMs have become the high performing standard for net-
work traffic prediction [17, 18, 25, 29] and so it is sensible to
implement a traditional LSTM for this project. Bidirectional
and stacked LSTM architectures are more suited to dealing
with long-term temporal patterns [7, 8] since they both in-
clude more layers than a traditional LSTM. Network traffic
data may also be provided to a neural network to predict
when a burst in traffic volume will occur, rather than to fore-
cast a sequential pattern in the time-series data [21]. Burst
traffic is defined as a prolonged, uninterrupted transfer of
data from one device to another. When the sequential pat-
tern of the data is non-linear, and burst traffic is also present,
neural network models have shown to be 78% more accurate
than traditional statistical prediction methods [29]. There-
fore, this study uses a large sample of non-linear SANReN
data with burst flow activity. The sample is taken over an
entire week and contains 47000 data points.

The mechanics of the LSTM are also important to under-
stand. The LSTM model is effective at capturing long-term
temporal dependencies because it has been designed to solve
the gradient disappearance or explosion problem [14]. An
LSTM model can carry information over time intervals larger
than 1000 steps, without diminishing the influence of short-
term observations on a prediction [14]. The structure of each
neuron - the memory units within the hidden layer [25] -
include three gates, the forget gate f;, the update - or input -
gate i; and the output gate o;, as shown in Figure 1.

The update gate determines to what extent the unit values
new input, the forget gate determines to what extent existing
memory is removed, and the output gate determines how
much memory is exposed to the next step. The unit’s current
state, c;, is determined as a mathematical function of the
previous activation function ht — 1), the previous cell state
c(t — 1), the input x; , and each of the gates [25]. These gates
give the memory unit the ability to consider its input, and
then either keep existing memory or overwrite it with new
information.

Other neural networks do not have this ability and will
overwrite memory by default [25]. This singular difference
allows LSTM to capture long-term dependencies that other

Figure 1. The memory unit of an LSTM [17]

neural networks may not [25]. As mentioned earlier, the
LSTM is more accurate than other neural networks and some
statistical learning methods on the well-known Abilene and
GEANT datasets [25]. Crucially, the LSTM is never less accu-
rate than memory-less neural networks [17, 18, 29], making
it the recommended neural network to use for the network
traffic prediction needs of SANReN.

3 Problem Statement

It is important to consider the constraints and resources of
a network when evaluating a candidate model for network
traffic prediction. Both computational complexity and run
time can be a limiting factor for less-resourced networks
such as SANReN, which may result in different network
traffic prediction models being better suited for networks
of this class. Existing literature on network traffic predic-
tors has shown that neural networks - particularly Long
Short Term Models (LSTM) - provide improvements in ac-
curacy and performance over traditional statistical learning
methods. Furthermore, LSTM derivative models, such as the
stacked LSTM and bilateral LSTM, have out-performed base-
line LSTMs [11, 19]. The computational feasibility of LSTM
and LSTM-derivative prediction models will be investigated.
These models will be replicated and trained on new SAN-
ReN data sets, to further assess their performance against
traditional statistical models and conventional LSTM mod-
els. This project is a departure from previous work done
in the field since this is primarily geared towards creating
an optimal model for predicting traffic on the SANReN -
whilst the second objective is to assess the effect of different
hyperparameters on an LSTMs performance in general.

3.1 Research Question

1. How does the SANReN traffic data vary with time
and day in relation to the South African university
calendar?

2. Which of the LSTM architectures, baseline, bilateral
or stacked, provides the highest accuracy when pre-
dicting future SANReN traffic data, subject to network
constraints?

3. What is the computational cost of different LSTM ar-
chitectures, given a required level of accuracy in pre-
dicting future traffic flows on SANReN?

4 Related Work

Network traffic prediction approaches have been formalized
in past studies. Furthermore, the growth of the internet and
its networks have accelerated research, with deep learning
techniques emerging as the prevalent tool for network traffic
prediction. Historically, researchers used statistical predic-
tion techniques such as ARIMA and Holt-Winters models,
but deep learning models - particularly the LSTM - have been
shown to out-perform those. A Recurrent Neural Network
can suffer from the vanishing gradient problem, which oc-
curs when the network is unable to send back useful gradient
information from the output layers to hidden layers. If this
occurs, the neural network loses its ability to consider long
term dependencies in calculations [6]. It is for this reason
that Krishnaswamy et al. [19] propose that using a neural
network is unsuitable for network traffic prediction, suggest-
ing that an LSTM should be used for time-series predictions,
to eliminate the vanishing gradient problem.

Krishnaswamy et al. [19] discuss the differences between
using a simple and stacked LSTM learning approach. Stacked
LSTMs were more accurate in predicting future traffic flows
compared to traditional LSTM architectures, but at the cost of
higher computational complexity as a result of added LSTM
layers. There is a trade-off, but the choice between accuracy
and computational efficiency allows network operators to
decide what is more practical for their needs. In their training,
Krishnaswamy et al. [19] noted that adding extra LSTM
layers did not cause a noticeable change in accuracy. They
observed that a baseline LSTM had the lowest Mean Squared
Error overall. One limitation that will be investigated further
in this project is whether these LSTM algorithms perform
as well for smaller traffic volumes that one may see on an
education network, as the results above were for links of a
capacity of over 100GB/s.

Cui et al. [11] investigated the use of a bidirectional LSTM
for forecasting network traffic. A bidirectional LSTM runs
the input in two directions through the model: from both
past to future and future to past [26]. This approach allows
the model to preserve information from the future and fit
the data accordingly. Cui et al. [11] found that a stacked
LSTM achieved a more accurate prediction. Importantly, the
training times observed indicate that a bidirectional LSTM
is nearly double the training time of a regular LSTM. There
is no mention of prediction times for a stacked LSTM, so
this study will investigate whether this increased prediction

Date First Seen Duration Proto
2020-07-04 20:10:06.480 1.223 TCP
SrcIP DstIP Flags Tos
146.231.4.0 155.232.240.0 A 0
Packets Bytes PpPs bps
4500 234000 3679 1.5M
Bpp Flows

52 1

Table 1. A single observation from a SANReN dataset sam-
ple.

accuracy comes at the cost of a higher computational time
compared to a stacked LSTM and a bidirectional LSTM.

5 Design and Implementation

The system was designed in Python using the Keras API on
top of the TensorFlow machine learning package. A data
processing pipeline was programmed to automate the prepa-
ration of data for the models. The system also includes a
programmed preliminary data analysis, as described in Sec-
tion 5.2.2. This was also done in Python - using NumPy,
scikit-learn and the matplotlib packages. The preliminary
statistical analysis outputs graphs and tables that contex-
tualize the data and its trends. Given inputs from the data
pipeline, each model can predict network traffic data to a
varying degree.

5.1 Obtaining SANREN Data

The first step in conducting our research was to obtain times-
series network traffic data from SANReN. This data was
accessed through the University of Cape Town. The data is
stored as tab-separated .csv files, and each data set consists
of a multitude of variables, each describing the quality of the
network traffic flows on SANReN over a measured period of
time. The SANReN data has been placed on a data store at the
University of Cape Town - which is available to be accessed
remotely. However, for this research project, a smaller 47000-
observation sample was used to train, validate and test the
LSTMs that this paper evaluates. An example of the format
of the SANReN data is provided in Table 1.

5.2 Preprocessing

The raw SANReN data has to be extracted and cleaned for
a neural network model [3]. This preprocessing step will
transform raw data into input for each of the neural network
models. This section describes the preprocessing methods
that will be applied.

5.2.1 Feature Extraction and Transformation. The net-
work traffic received from SANReN is already stored in tab-
separated .csv format, with labels. The sample contained
47000 data points of 14 features. 13 of these features are

explanatory variables, whilst the number of bytes that oc-
curred in a flow - stored as Bytes - is the response for this
study. However, the data is not stored in a format that is im-
mediately interpretable by a Python program. For example,
large byte values are indicated by using an "M’ or G’ unit
of measurement to represent megabyte and gigabyte flows.
This additional string in some rows of the file breaks the
uniformity of the file, and so each line is processed individu-
ally to convert non-byte values into byte representations, as
well as removing variables that were mostly homogeneous
across the entire data set, such as transfer protocol type,
number of flows and flags. Initially, the categorical features
were encoded using one-hot encoding - which creates a new
binary column for each instance of a categorical variable
- however, this caused the DataFrame’s dimensions to in-
crease dramatically and had little impact on the predictive
power of the LSTM models - so the categorical variables
were subsequently dropped from the DataFrame.

Additionally, to capture the relationship between South
African university schedules and network traffic data, two
new variables were engineered. The first is a simple day
variable - which numerically encodes the day of the week -
and the second is a binary holiday variable - which asserts
whether the network flow occurred during a university holi-
day or not. The holiday dates were defined by the University
of Cape Town’s academic schedule for 2020. Interestingly,
the date of a traffic flow and the time it was first seen on
the network were stored independently, but these were com-
bined to create a TimeStamp value for each observation.
Furthermore, each of the SANReN features was transformed
into an LSTM-recognised data type. Byte values were en-
coded to 64-bit float representations, strings were removed -
as strings are not acceptable input for a TensorFlow LSTM -
and temporal values were encoded to 64-bit integer nanosec-
ond representations.

At this point in the processing pipeline, the SANReN
dataset has been condensed into a 47000 x 9 DataFrame.
The distribution of the remaining features in the dataset are
shown in Figure 2. Lastly, the data were examined for out-
liers. However, since we want the LSTM models to be able
to predict volatile burst flows - flows that do not follow the
long-term temporal pattern - it was decided that outliers will
not be removed.

5.2.2 Preliminary statistical analysis. To provide insight
into the underlying patterns, correlations and composition
of the SANReN data, a preliminary statistical analysis was
performed.

Figure 2 demonstrates that correlation between variables
is a possibility in the SANReN dataset - as demonstrated by
the similar trends between Duration and Packets. To further
investigate the possibility of multicollinearity, a correlation
matrix 3 was plotted. As expected, Duration and Packets have

leld+1. 8

25 '—'—'—,—I_DTetime
0.0
500000 j ECkets 00
0
1 Byteg)00
0
1 ppsjoo
0
1] | | | II I | I I ' I I bpjoo
0
5] | Day|00
o '—’—l—‘—
1

} I Weekend|

} | Holiday|00
0

0 10000 20000 30000 40000 50000

00

o

Figure 2. Distribution of the numerical features of the SAN-
ReN data.

-1.0
Datetime - 0.0023 0.0063 0.0098 0.005 0.0091 0.015

Duration {3 L -0.038 -0.061 0.066 08

Packets b -0.012 -0.0084 0.073

Bytes b -0.0098 0.0037 0.15

[JLE 0.005 -0.038 -0.012 70.0098 0.55 0.054
0.2
[0.0091 -0.061 -0.0084 0.0037 [H0:55 0.2

:lJE 0.015 0.066 0.073 0.15 0.054 0.2 0.0

etime
ration
ackets
Bytes
pps
bps
Bpp

Figure 3. A correlation heatmap of the continuous variables.

a strong positive linear correlation. The existence of multi-
collinearity in a feature set suggests that a pair of correlated
variables are providing redundant information about the re-
sponse and should be removed [4]. However, this requires
further investigation into multicollinearity and is beyond
the scope of this study. Furthermore, the option of removing
all of the variables apart from the three that make up the
stronger, orange correlations in the upper left of the matrix
was considered, although due to the non-linearity of the data,
this design decision was rejected. Other correlative relation-
ships of interest are the negative relationship between Bytes
and Datetime and the strong positive relationship between
Duration and the response. In this sample, the weak corre-
lation between Bytes and Datetime suggest that the byte
volume per flow is decreasing as time increases. Importantly,
this does not imply that there is less network traffic in gen-
eral because network traffic volume is a function of byte
per flow as well as the number of flows. The relationship
between Bytes and Duration implies that longer flows gen-
erally have more data being transferred - which is a sensible
assumption.

The preliminary data analysis provides an opportunity
to garner insight into the answer to our first research ques-
tion: how does the SANReN traffic data vary with time and
day in relation to the South African university calendar?
This was initially examined using a box-and-whisker plot
to examine the differences in the percentiles. However, the
number of outliers caused this to be ineffective. To extract
the relationship between time of day, university holidays
and byte volumes, a pair of scatter plots were fitted. Fig-
ure 4 shows the total byte flows over each day of the week.
Since seven equal slices (1000000 bytes) were taken from
each day’s sample, the number of observations from each
day should be roughly the same. Surprisingly, there is no
clear distinction between bytes flows during the week com-
pared to the weekend. Similarly, the total byte flow per
day is shown in Figure 5. In the sample, there are 4 non-
holiday dates, and 3 holiday dates, so the totals in Figure 5
are totalbyteflows/n[whereholiday = 0]. Again, it is sur-
prising to see that the total byte flows are higher on average
during a holiday. This is unexpected, as the SANReN links
research units and other university-related institutions.

1el0 Bytes vs Day of Week

2.0 A

151

Bytes

1.01

0.59

0.0 -

Mon Tue Wed Thurs Fri Sat Sun
Day of Week

Figure 4. Scatter plot of Day vs Bytes

Lastly, the five-number quartile summary of the response
was plotted - shown in Figure6. In the context of a distribu-
tion, skewness is a measure of how asymmetric the data is.
It is clear that the data is extremely skewed to the right, indi-
cated by the density of low byte value observations to the left
of the curve, and the massive byte flows shown as one moves
along the tail to the right. The outlying values have the effect
of increasing the mean of the data. It is important to note
that the LSTM models in this project are designed to capture
outlying burst flows, although the magnitude of some of
the outliers in the SANReN data mean that the models may
under-predict these observations under testing conditions.
This is elaborated in Section 6. The exact values of the quar-
tiles of the response distribution in megabytes are also given
in Table 2.

lel0 Bytes vs Holiday

2.00 A

1.754

1.50 1

1.254

Bytes
=
o
o

0.75

0.50 A

0.251

0.00 -

No holiday Holiday
Holiday

Figure 5. Scatter plot of Holiday vs Bytes

le—7 Density of Byte Values

0.0 0.2 0.4 0.6 0.8 1.0
Bytes 1le9

Figure 6. Distribution of the Byte reponse variable

Min Q1 Median Q2 Max Mean
0.02 0.1 0.75 22 177 3.15
Table 2. The quartiles of the Byte response

5.2.3 LSTM Data Preparation. All machine learning al-
gorithms require that the input data is split into training
and testing samples. The training data is the sample of the
SANReN data that is used to adjust the weights of the LSTM.
For our implementation of the LSTMs, the training sample
is 64% of the full input sample. Additionally, the training
sample is split to produce the validation set. An interesting
observation is identified when examining how the validation
set is constructed. To ensure the sequential nature of the
data, the data is not shuffled when it is split into training
and test sets, and it is not shuffled when being split into
training and validation sets. This essentially means that for
100 fictional observations, the training set would be made

of y1, 12, ..., Ys4, the validation set would be yss, ..., yso and
the test set would be ys;, ..., y100- The information provided
by the validation set - primarily the out-of-sample MSE of
the fitted model - allows the hyperparameters of the model
to be adjusted. The model’s evaluation on the validation set
becomes more biased as the hyperparameters are adjusted.
This is because the model starts to fit the validation set better
as the information it provides is incorporated into the model
configuration. In our implementation, the validation set is
20% of the training set. Lastly, the test set is the sample of
data that is used to provide a truly unbiased evaluation of
the final model fit. The test set is used as input to the final,
trained model.

In the context of time-series prediction, it is important that
the validation set’s role is well defined. Usually, the validation
set is used to provide an evaluation of the model’s fit on the
dataset. It is effectively a proxy for unseen test data. However,
because of the ordered split of the data, the validation set
is now an actual measure of the short-term performance of
the model. Therefore, this study will propose a model that
has been optimised on this unique type of validation set.
The optimised model will be assessed on unseen data that
lies beyond the indexing of the validation set, and therefore,
the final model will be optimised to predict t;1ya1idationsetsize
steps ahead of the current time, ¢;. It is important to clarify
that this does not mean that the model cannot be used by
SANReN for short-term network traffic prediction.

Once the train, test and validation sets have been created,
LSTM models require that all data is normalised to an equal
range of values. The MinMaxScaler from the scikit-learn
package [24] scales all variables to a range of 0 to 1. Usually,
categorical variables would have to be encoded separately,
however, the categorical variables of the SANReN dataset
have not been used as predictors in the LSTM models. Af-
ter the LSTM models have been implemented, the response
can be predicted. However, due to the scaled nature of the
inputs, the output is also a scaled value between 0 and 1. To
convert the LSTM predicted response back to a byte value, a
MinMaxScaler is used. The data is then fully prepared, and
ready to be given to the LSTM models.

5.3 Implementation of Models

The simple, bidirectional and stacked LSTM models were
all developed in a Python environment using the Keras API
on top of the TensorFlow package. The system was initially
built on Google Colaboratory, to use its GPU capabilities to
train the models. However, the system was then transferred
into a Python executable - as it offered the ability to develop
functions in a more modular fashion, and because SANReN
data sizes became difficult to manage in a cloud environ-
ment. As mentioned in Section 5, the data is preprocessed,
formatted and then used to provide preliminary insight into
the dataset. It is then transformed and given to the LSTM
models as input.

5.3.1 Simple LSTM. A simple LSTM, also known as a
vanilla LSTM, is an LSTM with a single hidden layer. As
it is the simplest model, the expectation was that it would be
the least accurate and computationally cheapest, allowing
it to function as the baseline for the performance for all of
the project’s models. A Keras LSTM requires a 3D input -
in the form (samples, time steps, number of features). The
data from SANReN is naturally two-dimensional, with the
observed features spanning the horizontal dimension in the
DataFrame, and a time-related index descending vertically
through the data. As an LSTM designer, the product of the
2D SANReN input must be the same as the product of the
reshaped 3D LSTM input. One can either break the input into
smaller samples, decreasing the ’sample’ dimension of the
input, or default to a time step of 1, which leaves the prod-
uct of the dimensions as it was. This project implemented
a time-step of one - which allowed the LSTM to access the
entire sample input at once.

The simple LSTM accepts the SANReN data and adjusts
its neurons - by changing the weights of the internal input,
update and output gates - to best fit the model to the true
non-linear pattern of the sample. Although the model is fitted
on the training data - given both the explanatory variables
and the response - it still makes a response prediction whilst
it is being fitted. This allows the model to return training
accuracy metrics - such as MSE loss. Once the model has
been optimally fitted, it is ready to be fed unseen test data
to make predictions.

5.3.2 Bidirectional LSTM. A bidirectional LSTM involves
duplicating the first recurrent layer in the network so that
there are now two layers side-by-side. It then provides a
reversed copy of the input sequence to the second, reversed
layer [21]. Other LSTMs, and recurrent neural networks in
general, only consider information from the past, xy, ..., x; — 1,
and the current inputs x; to determine the value of a pre-
diction [12]. This approach is generally used in machine
learning tasks where context is necessary - such as speech
recognition - but it has been implemented as a solution to
time-series forecasting by Althelaya et al. [5] in their work.
In their study, it outperformed a simple LSTM for short-term
and long-term predictions.

A bidirectional LSTM allows the whole input sequence
to be considered when predicting y; [12]. A bidirectional
LSTM is implemented in Keras by wrapping a simple LSTM
in a Bidirectional layer. The Keras API then ensures that the
LSTM processes data forward and backwards through time.
Furthermore, to ensure that the difference in performance
between the bidirectional and baseline LSTM is due to the
bidirectional flow of data, the two encapsulated LSTMs are
defined identically to the baseline LSTM.

5.3.3 Stacked LSTM. A stacked LSTM is a simple LSTM
with multiple LSTM layers. Rather than a hidden layer im-
mediately producing a scalar output, the LSTM layer will

provide a sequence output to the LSTM layer below it. This
implies that the data remains in a three-dimensional format
whilst it passes through each of the hidden LSTM layers,
before being converted to the required scalar value [10]. The
motivation behind a stacked LSTM for time-series prediction
can be attributed to Graves et al. [13], who found that the
depth - the number of layers of the network - had more of
an effect on predictive power than the number of neurons
in a neural network layer.

Our implementation of a stacked LSTM in Keras uses
three LSTM layers, each with the same number of neurons.
As discussed earlier, a Keras LSTM layer requires input in
a three-dimensional format. For this reason, the first and
second LSTM layers return three-dimensional output for the
LSTM layers below them. Essentially, an LSTM layer returns
a sequential output rather than a single scalar [7]. The output
layer, the Dense layer in Keras, outputs a scalar prediction
based on the three-dimensional input it receives from the
LSTM layer above it.

5.3.4 Prediction Metrics. Before searching for the opti-
mal models across the hyperparameter space, it is important
to define how each model will be evaluated. Mean Abso-
lute Error (Equation 1) and Mean Squared Error (Equation
2 are both measures of how close a model’s predicted val-
ues are to the actual observed value. MAE averages this
difference across the entire model, with all scores being
equally weighted. The primary difference with MSE is that
it squares the errors before averaging them - resulting in
a larger penalty being given to outlying values. For both
prediction metrics, a lower result is better, because it shows
a better model fit. Additionally, due to the seemingly sto-
chastic nature of the SANReN time-series data, we are more
concerned with how MSE responds to the data. The model
should learn the short and long-term trends well enough that
there are few outliers to penalise. However, MAE is also used
as a preliminary metric to assess the fit of the LSTM models.
Both of these metrics are implemented from the scikit-learn
package in Python [24].

1. _

MAE = (;);(yi—yil (1)
1. v _

MSE = (=) ;(yi -)’ (2)

Furthermore, the Coefficient of Determination - R? - is
used to evaluate the models. It shows the proportion of the
variance in the response that can be explained by the inde-
pendent features. In this case, it shows the proportion of the
variation in Bytes that can be explained by the numerical
features in the dataset. In statistics, the range of the metric
is from 0-1, with a low score showing that the independent
features do not explain the response well, and a high score

illustrating that the independent features explain the varia-
tion in the response well. However, the scikit-learn package
implementation of R? allows the value to be negative [24].
This is common when the data being evaluated is not from
the same subset as the training data - as would be the case
with a test set - or with non-linear data [9]. When the R?
value is negative, this means that a model predicting the
mean of the data would provide a better fit than the fitted
model [9].

Ssregression

RP=1-
Sstotal

®)

5.4 Hyper-parameter Tuning

All three of the LSTM models are parameterised functions,
meaning that there is an optimal combination of parameters
that will minimise the chosen cost function and produce the
best performing model [29]. This process is known as hy-
perparameter tuning. The simple, bidirectional and stacked
LSTM models were fitted over a range of hyperparameters.
In the context of LSTMs, these parameters are epochs - the
number of times the data is passed through the model - and
neurons - the number of memory units in each LSTM layer.
In this study, each LSTM model was trained using a range
of epochs from 25 to 150, with 25 epoch intervals, and with
50 or 100 neurons in each LSTM layer of the model. This
resulted in 12 permutations of hyperparameter combina-
tions for each model. It is of paramount importance that
the hyperparameters are adjusted to optimise the fit of the
models on the training and validation data. If the models’
test prediction performance is used to retrospectively adjust
the hyperparameters of the models, then the test data is not
truly unseen and the results of the study may not apply to
the SANReN use-case. It is for this reason that a model’s
potential predictive power is assessed on the training and
validation sets. Additionally, because predictive performance
is not the only measure of an optimal model for the SANReN
use case, the training time of the models will also be assessed
across the hyperparameters.

When using an LSTM for network traffic prediction, the
most expensive computational task is training each model.
The time it takes for a model to output a set of predictions is
minimal compared to the training time. For example, training
the most basic LSTM - a 50 neuron baseline LSTM over 25
epochs - took 77 seconds, while the prediction on the same
model was 0.68 seconds. Therefore, the training time will be
used to assess the applicability of a model to the SANReN
use case. The models were trained on a 2Ghz Dual-Core
Intel Core i5, with 8 GB of RAM, and the hardware on the
training machine must be considered by anyone who applies
the conclusions of this study to their research.

Figure 7 shows the training time for each of the three mod-
els as epochs and neurons are adjusted. The general linear
trend is positive, with the models’ training times reflecting

their depth. Generally, the simple LSTM has the smallest
training time, with the bidirectional LSTM being slightly
more complex, and the stacked LSTM taking far longer to
train. There seem to be training time anomalies during the
100 and 125 epoch iterations across all of the models. With-
out further testing, this cannot be attributed to anything
other than noise, and the overall trend is maintained. It is
noticeable that by having two more layers than the simple
LSTM and an additional layer over the bidirectional LSTM,
the stacked LSTM takes 228% and 187% longer to train on
average. Based on training complexity alone, a model cannot
be recommended for the SANReN study, but this information
will be considered as the hyperparameter tuning process is
assessed.

Training Time vs Epochs

| — simple: neurons = 50
Simple: neurons = 100
—— Bidirectional: neurons = 50
| — Bidirectional: neurons = 100
—— Stacked: neurons = 50
| — stacked: neurons = 100

w N o =3 ~ @
=3 S =3 S =] S
S =3 =3 k=3 =3 =3

Training Time (seconds)

N
=3
=3

25 50 75 100 125
Epochs

=
o
=3

Figure 7. Model training time as a function of epochs and
neurons.

Although training and prediction were done on the full
sample, the effect of dataset size on training time was in-
vestigated. As shown in Figure 8 the gradients of the linear
training time functions of each model are ordered as ex-
pected, with the stacked LSTM’s training time increasing
faster than the bidirectional and simple models. The bidirec-
tional model’s training time also increases faster than the
simple model.

Lastly, it is worth noting how the models will be referenced
in this section. A model with 50 neurons in its hidden LSTM
layer will be referred to as ’the 50-neuron model’, whilst
additional context will be provided to clarify which epoch
parameter is being discussed.

5.4.1 Simple LSTM Hyperparameters. One of the ben-
efits of searching for an optimal model across a range of
hyperparameters is that each model can be optimised inde-
pendently. Figure 9 shows the near-parabolic shape of MAE
as epochs increase. Interestingly, the more complex models -
the 100 neuron models - are outperformed by their simpler
counterparts on both the training data and the validation set.
The red curve is higher than the orange until 100 epochs,

Dataset Size vs Training Time

5004 —— Simple
Stacked
—— Bidirectional
400
» 300
T
c
o
o
L]
»n

200 1

100 1

5000 10000 15000 20000 25000 30000
Dataset Size

Figure 8. Model training time as a function of dataset size.

and the green curve is higher than the blue. Ideally, the MAE
of the validation set would not be significantly higher than
the MAE of the training set, however, this is not the case
here. This suggests that the model is overfitting the training
data, and is demonstrating too much bias. One point in the
plot where the validation and training set MAE are similar is
at 125 epochs. Therefore, to allow the simple LSTM model to
pick up some of the variations in the future test sample, and
to avoid overfitting, 125 epochs and 100 neurons is the op-
timal configuration for the simple LSTM when considering
MAE as a performance metric.

Simple LSTM MAE vs Epochs

—— Train: n = 50
Val: n = 50

—— Train: n = 100

—— Val: n =100

0.0045

0.0040

0.0035 4

0.0030 4

MAE

0.0025 -
0.0020 A /~

0.0015 4

0.0010 4

0.0005

25 50 75 100 125
Epochs

Figure 9. Model MAE as a function of epochs and neurons.

By looking at Figure 10, we are able to refine the hyper-
parameter suggestions from Figure 9. It is evident that the
general linear trend is decreasing, with MSE still decreasing
when the upper epoch limit is reached. Surprisingly, the val-
idation MSE is lower than the training set MSE in both the
50 and 100 neuron models. The sequential nature of the data

means that the data is not uniform, and so the distributions
of data within the train, validation and test sets may differ.

le—5 Simple LSTM MSE vs Epochs

—— Train: n = 50
Val: n = 50

—— Train: n = 100

6 — Val:n = 100

25 50 75 100 125
Epochs

Figure 10. Model MSE as a function of epochs and neurons.

All of the MSE values reach their global minimum after
150 epochs. A low training MSE shows that the simple LSTM
is fitting the data with more bias, and a low validation MSE
shows that the model is still able to capture the variation in
other samples without overfitting. Additionally, as a proxy
for testing, the MSE of the validation set suggests the range
of MSE values we can expect when the simple LSTM model
performs predictions is between 0.00000727 and 0.00000445.
These values can be compared with the MSE values of the
bidirectional and stacked LSTM model to suggest which will
perform best on the unseen test data.

Considering the information provided from the MAE, MSE
and R? metrics: that the simple LSTM is overfitting after 125
epochs; that the marginal improvement in MSE decreases for
all sets after 125 epochs; and that R? shows the 125-epoch
model explaining the variation in Bytes well for both models,
the optimal epoch hyperparameter for the simple LSTM
model is 125 epochs. Additionally, at 125 training epochs, the
100 neuron model consistently performs better. Therefore,
the optimal hyperparameters for the baseline LSTM model
are 125 epochs and 100 neurons.

5.4.2 Bidirectional LSTM. The process by which the bidi-
rectional LSTM’s hyperparameters were selected is similar to
the simple LSTM. By assessing the MAE, MSE and R? metrics,
the optimal hyperparameters for the bidirectional model are
150 epochs and 50 neurons. Interestingly, the bidirectional
model also experienced a decrease in all performance metrics
when trained over 100 epochs - especially when run with 100
neurons. This trend was observed in the simple LSTM model
too - and can be attributed to noise in the data and variation
in the metric. This is best shown by the sharp increase in
the MSE trend of the 100 neuron model on the training and
validation sets, as shown in Figure 12.

Simple LSTM R2 vs Epochs

1 —— Valin=50

Val: n =100

0.94

0.92

R2

0.90

0.88

0.86

0.84

25 50 75 100 125
Epochs

Figure 11. Model R2 as a function of epochs and neurons.

Bidirectional LSTM MSE vs Epochs

—— Train: n = 50
val: n = 50

—— Train: n = 100

—— Val:n =100

0.000175
0.000150
0.000125
0.000100
w
a
=
0.000075

0.000050

0.000025

0.000000

25 50 75 100 125
Epochs

Figure 12. Model MSE as a function of epochs and neurons.

5.4.3 Stacked LSTM. Optimisation of the stacked LSTM
starts with the investigation of the MAE metrics across the
hyperparameter space - as seen in Figure 13. The trend of
MAE for the stacked model is different for the 50-neuron
and 100-neuron models. For the 50-neuron model, training
MAE initially increases, before decreasing as epochs reach
150. The MAE of the 50-neuron model’s validation sample
increased sharply after 100 epochs, suggesting that the model
strongly overfits after this point. The 100-neuron model’s
trend is the inverse: it initially decreases before increasing
and again finding a minimum at 150 epochs. The 100-neuron
model is overfitting after 75 epochs, but the average of the
errors decreases again when the model is trained on 125
and 150 epochs. Additionally, both the models exhibit too
much bias on the training data when the model is given
150 epochs to train. This is shown by the divergence in the
blue and orange, and red and green pairings in Figure 13.
Therefore, the models of interest are the 100-epoch and 125-
epoch models. The MAE values for the 100 and 125-epoch

10

models are shown in Table 3. The difference between the less-
complex and more-complex models is much more evident
at 100 epochs, with the 50-neuron model having a better
MAE by 7.1e — 7 compared to the 100-neuron model having
a better MAE by 4e — 8 at 125-epochs.

Epochs Neurons MAE
100 50 0.00000261
100 100 0.0000019
125 50 0.00000307
125 100 0.00000311

Table 3. Stacked LSTM MAE on validation data for 100 and
125-epoch models

Stacked LSTM MAE vs Epochs

0.0030 4

—— Train: n = 50
Val: n =50

—— Train: n = 100

—— Val:n =100

0.0025
0.0020-

] #

£ 0.0015 1
0.00101

0.0005 -

25 50 75 100 125
Epochs

Figure 13. Model MAE as a function of epochs and neurons.

The more complex model generally outperform the less
complex model in this case. This is aligned with what we
would expect, as adding neurons to the hidden LSTM layer
should increase the capability of the model to fit the dataset.
Due to the minimal differences between the MAE values of
the 100 and 125 epoch models, MSE will be used to refine an
optimal hyperparameter pair for the stacked LSTM model.

Figure 14 shows that the 100-neuron model’s MSE mirrors
the MAE’s sharp initial decrease. However, the similarity
stops there. After 50 epochs, the validation set MSE for the
100-neuron model hits a minimum. In the 50-epoch model,
the validation set MSE is 0.0000014, while the 150-epoch
model has a validation set MSE of 0.00000125. Both the vali-
dation and training MSE only exhibit small fluctuations from
then on, suggesting that exposing the LSTM model to the
data more than 50 times has little effect on the model’s fit
of the data. The training MSE’s minimum occurs in the 150-
epoch model, but the separation between the red and green
line shows that, at this point, the model is starting to overfit
slightly.

Nevertheless, the 100 and 125-epoch models have already
been presented as optimal models, and so the information

the MSE provided can be used to distinguish between these
two models. It is immediately evident that at 125 epochs, the
model is attempting to correct for overfitting. The increased
MSE shows that the model’s fit to the training data has wors-
ened. However, the validation MSE has increased far less.
An increase in training MSE with a smaller increase in the
MSE of a proxy test set is encouraging, as it shows that the
model is generalizing well on unseen data.

le-5 Stacked LSTM MSE vs Epochs

—— Train: n = 50
41 Val: n = 50
—— Train: n = 100
—— Val: n =100

25 50 75 100 125
Epochs

Figure 14. Model MSE as a function of epochs and neurons.

The R? values for the stacked LSTM follow a similar trend
to the MSE values - as shown in Figure 15. As training epochs
increase, the general trend of the validation set R? increases.
The 100 neuron model’s R? is generally above or similar
to its less complex partner and increases dramatically at 50
epochs. Interestingly, according to the formula, the estimated
R? is not expected to change as the sample size decreases.
However, the variation of its value increases as the sample
size decreases. Since the validation set is 20% of the training
data, the fluctuations in an R? value of a validation set cannot
be attributed to a worse model fit alone. However, the R?
value of both models begin to decrease beyond 100 epochs,
and so the 100-epoch model will be used as the optimal
candidate based on what we can infer from the model’s R?
scores. The R? values of the 100-epoch model show that
98.8% and 99.1% of the variation in Bytes are explained by
the independent features of the 50-neuron and 100-neuron
model respectively.

The metrics show that the stacked LSTM is overfitting
after 125 epochs, that the marginal improvement in MSE
decreases for all sets after 50 epochs but is comparable at
100 or 125 epochs, and that the R? metric shows the 100-
epoch model explaining the variation in Bytes well for both
models. Therefore, the optimal epoch hyperparameter for
the stacked LSTM model is 100 epochs. Although the R?
values for the 100-neuron model continue to increase past
125 epochs, existing concerns about overfitting cause this
improvement to be of negligible importance. Additionally,
at 100 training epochs, the 50 and 100 neuron models have

11

Stacked LSTM R2 vs Epochs

0.99
e

\

0.98
0.97

0.96 -

R2

0.95
0.94
0.93

0021 /

0.91

— Val:n =50
Val: n =100

25 50 75 100 125
Epochs

Figure 15. Model R2 as a function of epochs and neurons.

comparable performance. The comparison between the two
models fitted over 100 epochs is shown in Table 4. The 50-
neuron model performs better in MAE and R?, and due to the
additional constraint of complexity, the minuscule difference
in MSE is an acceptable allowance. Therefore, the optimal
hyperparameters for the stacked LSTM model are 100 epochs
and 50 neurons.

Metric 50 Neurons 100 Neurons
1 MAE 0.00053 0.00077
2 MSE 2.61E-06 1.90E-06
3 R? 0.992 0.987

Table 4. Table of model evaluation metrics for Stacked LSTM
over 100 epochs on a validation set.

6 Results

The hyperparameter search allowed each model to be op-
timised independently. According to the information the
training and validation sets provide, the optimised models
are a 100-neuron simple LSTM over 125 epochs, a 50-neuron
bilateral LSTM over 150 epochs, and a 50-neuron stacked
LSTM over 100 epochs. Based on these hyperparameters, the
prediction results on an unseen test set are provided in Table
5. The prediction metrics were used to evaluate the second of
the research questions from Section 3.1: which of the LSTM
models provides the highest accuracy?

H Model MAE MSE R? Training Time H
Simple 0.0063 0.00010 0.65 293.67

Bidirectional 0.0078 0.00013 0.55 306.60
Stacked 0.0029 0.00006 0.80 591.20

Table 5. Table of model evaluation metrics on test set using
optimal models.

The stacked LSTM is the best performing model on the
test data. It has the lowest MAE and MSE, and the highest R%.
However, it also takes extremely long to train compared to
the other models. This trade-off will be assessed in Section 7.
Although it is more important to assess the models’ predic-
tive power, the graphical results are worth examining too.
In all of the plots of predicted bytes vs observed bytes, the
left-hand plot shows if any predictions are under-predicting,
while the right-hand plot shows if any of the predictions
are over-predicting. The results also show that the bidirec-
tional model’s additional complexity offers no improvement
in accuracy or training time over the simple LSTM.

The simple LSTM’s predictions are shown in Figure 16.
From the two plots, it is evident that the simple LSTM is
over-predicting more frequently than it is under-predicting,.
The fitted simple LSTM only accounts for 65% of the vari-
ation in the Bytes, so, understandably, there is some unex-
plained noise in the predictions. Additionally, the general
trend is impressive. The model is capturing the non-linearity
and non-stationarity in the model, although it has under-
predicted a large burst flow by 25%. This large burst flow has
affected the next observation too, and it has over predicted
by a large amount too. This suggests that the influence of
data point, t;_1, is affecting the prediction of the data point
at t;.

1.0{ — Observed 1.0
Predicted Observed

08 08

06 06

Byt
Bytes

04 04

02 02

il Bl

LPLR I
iy -m"\'-h” Y

m
0.0 SRRl ek Y. LA L 004 M

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Index Index

Figure 16. Predicted vs observed test set values for the opti-
mised simple LSTM.

The bidirectional LSTM’s predictions are shown in Figure
17. The dual flow of information through the model has had
an unusual effect on the shape of the LSTM’s predictions.
Despite the inputs being bound to a range of 0 - 1, the bidirec-
tional LSTM has produced byte outputs that are less than 0.
In general, the bidirectional LSTM over-predicts most values
in the test set, and also fails to capture the full extent of the
burst flow. Additionally, the over-estimating effect of burst
flows on the next predicted value is evident - as it was with
the simple LSTM.

Lastly, the graphical results of the optimised stacked LSTM
model reinforce that it is the best performing model in terms
of accuracy. On the left-hand side of Figure 18, the model

12

— Observed
Predicted Observed

|
Il \

|
|
|l | | ‘ I
i 1 1
o[l w" b, bl “v“‘\ L \‘m'\‘u‘m
R AR

o 2000 4000 6000 800 10000 o 2000 4000 6000 800 10000
Index Index

Figure 17. Predicted vs observed test set values for the opti-
mised bidirectional LSTM.

is slightly under-predicting for low byte values and misses
the outlying burst flow that the other two models failed to
capture. Again, the model is over-predicting in general, but
the amount by which it is overpredicting is much less than
the other models. In this stacked LSTM, the independent
variables account for 23% more variation in the response
than the simple model, and 64% more than the bidirectional
model.

— Predicted
Observed

1.0{ — Observed 10
Predicted

4 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Index Index

Figure 18. Predicted vs observed test set values for the opti-
mised stacked LSTM.

The answer to the first research question was discussed
in Section 5.2.2. The SANReN network traffic data does not
show any obvious trend that follows the South African uni-
versity calendar. The average total daily flow of bytes was
higher for holiday days than it was for ’school’ days. The
daily total flows were highest on Tuesday and Friday, as
shown in Figure 4, although there is no valuable conclusion
that can be inferred from this. Further insight into how the
university calendar affects SANReN traffic and congestion
would require further study. The size of the SANReN data
meant that only a small sample could be used, whereas the
trend between bytes and days would be more evident if hun-
dreds of days could be sampled simultaneously.

trainingtime = 100 + 0.0172(samplesize) (4)

Additionally, the training times of each model have been
assessed in Section 5.4 as a measure of the computational cost
of the different models. The stacked LSTM model training
process takes 228% and 187% longer than the simple and
stacked models, respectively. The training time of each model
increases linearly, as shown in Figure 8, and so the training
time of any of the models with more observations as input
could easily be extrapolated. As the best performing LSTM
architecture, the stacked LSTM’s linear regression function
was calculated. This is shown in Equation 4 and can be used
to estimate the training time - in seconds - of a stacked LSTM
on samplesize number of observations. As this project was
done on personal computers, it is likely that SANReN has
the computing hardware to implement a stacked model with
more observations than were used in this study.

7 Discussion

The stacked LSTM is the best model for prediction, but the
value of its superior predictive performance is determined by
the implementer of an LSTM model. If the stacked LSTM’s
training time - which is two times greater than both simpler
models - is prohibitive, then a network provider may decide
that the predictive performance of the simple LSTM model
is sufficient. The stacked LSTM’s R? value shows that as
the depth of an LSTM increases, it is able to better find a
non-linear model fit that attributes more of the variation
in the response to the independent features. Additionally.
the optimal stacked LSTM model was parameterised with
the fewest epochs. This suggests that an even deeper model
trained over fewer epochs may out-perform a stacked model.

Furthermore, when looking at the discrepancies between
training and test metrics, it is immediately evident that all
of the selected models were overfitting the training data.
The models are too biased - and are capturing too much
noise in the training sample. They are unable to capture the
variation in the unseen test sample. The reason this wasn’t
picked up is because the baseline measure - the simple LSTM
- is also overfitting. Therefore, the stacked and bidirectional
models seem to only be overfitting slightly, but they are
actually capturing more bias than a baseline model with a
high existing bias. One possibility is that the non-uniformity
in the data causes the training set to exhibit higher byte
volumes than those of the training set, but this is unlikely.

Additionally, it was mentioned in Section 5.4 that predic-
tion times were not considered as a metric of model com-
plexity. All three models’ prediction times are extremely low
compared to their training times. This is because the model
has already learned to fit the data, and is applying an es-
tablished non-linear function to a set of inputs, rather than
finding a model that minimises an MSE metric.

13

In determining the non-linear function that best fits the
data, the LSTMs were provided with a range of hyperparame-
ters. The effect of changing the two studied hyperparameters
is very similar. Generally, if epochs or neurons are increased,
then the performance of a model improves. In each of the
models’ figures of MAE, MSE and R?, the effect of an increase
in epochs appears to be more consequential. The difference
in the measured value between the first epoch parameter
and the last epoch parameter seems to be larger than the
effect of increasing neurons. An increase of 25 epochs does
seem to increase accuracy slightly more than an increase of
50 neurons, as illustrated in Figure 10. The vertical distance
between the green and blue, and red and orange, lines show
the effect of increasing neurons, and the vertical distance
between a model’s metric at epoch x and epoch x + 25 shows
the effect of increasing epochs. In general, epochs cause a
greater increase in MSE. However, to make these increases
genuinely comparable, a researcher would have to find the
effect of changing a parameter by the same unit, which was
not done in this study.

LSTMs can adjust other hyperparameters too. In the exist-
ing literature, the other two adjusted hyperparameters are
time steps and batch size. A time step in an LSTM model
refers to the number of times a neuron iterates before pass-
ing the output to the next neuron [23]. Although an LSTM
naturally learns the data’s trend using the entire sample, by
increasing the time steps parameter, the LSTM has explicit
memory of n number of observations, where timesteps = n.
In this study, increasing time steps presented two difficul-
ties. Firstly, changing the time steps parameter affects the
required input shape of the LSTM models. Reshaping the
SANReN data to a variable size proved to be out of scope for
this study and would be worth examining in another study.
Secondly, increasing the number of time steps caused the
LSTM models’ training set performance to drop significantly.
The LSTMs were no longer capturing any of the variations
in the model and were producing predictions that were all
based on the sample mean. This functionality is not useful at
all for network traffic prediction and would be more appro-
priate in a less granular network analysis study. The batch
size determines how many observations the LSTM processes
at once. When configuring an LSTM, a researcher can break
up a sample into multiple batches or give the entire sample
to the LSTM at once. In this study, the entire sample was
provided to the models at once. This meant that batch size
did not have to be defined, because the batch size was the
size of the LSTM input.

Due to the nature of the train, validation and test sets,
their natural temporal order is maintained by the LSTMs.
This essentially means that the validation set is not a proxy
for the test set, but rather an actual measure of how each of
the models performs in the short term, whilst the test data is
now framed as a measure of how the model performs beyond
the range of the validation set. However, the MAE, MSE and

R? metrics of the optimal models’ validation sets cannot be
used to define any results, as they have been used to opti-
mise the hyperparameters of the optimal models themselves.
Therefore, this study is assessing an LSTM that is a medium
to long-term predictor for network traffic prediction. In the
future, cross-validation or walk forward validation would
be more appropriate for creating a test set proxy, without
losing the ability to assess the short-term performance of a
model.

Lastly, based on the research questions stated in 3.1, it
is important to recommend a model for the SANReN use
case. Based on the results, a stacked LSTM model provides
the highest accuracy when predicting future SANReN traffic
data. However, when subject to network constraints, the sim-
ple LSTM is a less accurate alternative. The computational
cost of the stacked LSTM model is at least two times that of
the simple model, and so model selection would ultimately
be decided given a required level of accuracy. If a prede-
termined level of accuracy was required by SANReN, then
this study could recommend either the simple or stacked
LSTM models based on whether the simple LSTM produced
the required accuracy level. Alternatively, if a maximum
training time allowance was provided, a model could be rec-
ommended based on whether the stacked LSTM’s training
time fell below the threshold. However, given that SANReN
is a country-wide network spanning multiple institutions,
this study recommends that they use a stacked LSTM model
as a network traffic predictor.

8 Limitations and Future Work

There were a couple of limitations that the study encoun-
tered. Firstly, the size of the SANReN data is prohibitive when
implementing LSTM models on a personal device. This study
has investigated the capabilities of LSTMs to predict network
traffic data over a week, using almost 7000 data observations
from each day. However, each SANReN data file - of which
there is one per day - contain at least 9 000 000 observations.
With a better understanding of the resources SANReN has
at its disposal, it would be easier to implement more realistic
modelling of the SANReN data. However, the project is scal-
able and can accept an input of any size, as long as there is
hardware to support it. Secondly, the study aimed to extrap-
olate its conclusions to other low-resource networks. In the
context of this study, a low-resource network has not been
well defined and so it is hard to conclude without a quantita-
tive value of the performance capabilities of a network. In the
future, another network could be assessed - provided that a
research team had knowledge of the computing resources at
their disposal. Lastly, the nature of time-series data presents
a few challenges. The primary limitation of sequential data
for LSTMs is that the data cannot be shuffled when split into
sets or when provided as input. In this study, this had the
effect of causing the test-set to be a longer-term forecast,

14

whilst the validation set became a short-term proxy of test
performance. In future work, a study could determine if the
temporal quality of the SANReN data is a necessary feature
for an accurate network traffic predictor.

Other future work could include developing a stateful
LSTM model, implementing a grid search over additional
hyperparameters, further investigation into the relationship
between computer hardware and the effect it has on potential
model complexity, and a more thorough, analytical approach
to model’s validation sets.

9 Conclusions

In this study, LSTM models were applied as network traf-
fic predictors to SANReN data. An examination of the data
shows that SANReN data does not have a well-defined re-
lationship with the South African university schedule, and
does not have an obvious weekly trend. Although all of the
models were able to capture the long-term trends in the data,
the positive skew in the sample resulted in none of the mod-
els being able to model the volatility of the short-term burst
flows.

Using a grid-search for hyperparameter tuning, it was
found that the optimal models to predict SANReN network
traffic data were a 100-neuron simple LSTM over 125 epochs,
a 50-neuron bilateral LSTM over 150 epochs, and a 50-neuron
stacked LSTM over 100 epochs. Of these models, a stacked
LSTM model is the best performing model in all three mea-
sured metrics. Despite taking 228% longer to train than the
simple model, the stacked model had an R? value of 0.80
compared to values of 0.65 and 0.55 for the simple and bidi-
rectional LSTM models. Therefore, the stacked LSTM is the
recommended model for the SANReN network traffic predic-
tion use case.

By using the stacked LSTM as a network traffic predictor,
SANReN will be able to implement measures to manage
network congestion and network resources. However, given
a complexity constraint, the simple LSTM’s accuracy may
be an adequate network traffic predictor on a low resource
network. The bidirectional LSTM was the worst performing
model, and its additional complexity offers no improvements
in training time over the simple LSTM. Therefore, this study
aligns with existing literature in concluding that LSTMs
are useful and accurate network traffic predictors, and that
deeper, more complex stacked LSTM architecture outperform
simple and bidirectional LSTM models.

10 Acknowledgements

The researcher would like to thank SANReN, and Dr Josiah
Chavula and Justin Myerson from the University of Cape
Town, for their contributions to this study.

References

[1] The south african nren. URL https://sanren.ac.za/south-african-nren/.

https://sanren.ac.za/south-african-nren/

[2] Cisco annual internet report - cisco annual internet report (2018-2023)

[10

[11

[12

[13

[14

[15

[16

(17

]

—

—

]

]
]

]

—

white paper, Mar 2020. URL https://www.cisco.com/c/en/us/solutions/
collateral/executive-perspectives/annual-internet-report/white-
paper-c11-741490.html.

2021. URL https://cloud.google.com/architecture/data-preprocessing-
for-ml-with-tf-transform-pt1.

Basil Alothman. Raw network traffic data preprocessing and prepara-
tion for automatic analysis. In 2019 International Conference on Cyber
Security and Protection of Digital Services (Cyber Security), pages 1-5,
2019. doi: 10.1109/CyberSecPODS.2019.8885333.

Khaled A. Althelaya, El-Sayed M. El-Alfy, and Salahadin Mohammed.
Evaluation of bidirectional Istm for short-and long-term stock market
prediction, 2018.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-
term dependencies with gradient descent is difficult. IEEE transactions
on neural networks, 5(2):157-166, 1994.

Jason Brownlee. Stacked long short-term memory networks, Aug 2019.
URL https://machinelearningmastery.com/stacked-long-short-term-
memory-networks/.

Jason Brownlee. How to develop a bidirectional Istm for se-
quence classification in python with keras, Jan 2021. URL
https://machinelearningmastery.com/develop-bidirectional-Istm-
sequence-classification-python-keras/.

A. Colin Cameron and Frank A.G. Windmeijer. An r-squared mea-
sure of goodness of fit for some common nonlinear regression mod-
els. Journal of Econometrics, 77(2):329-342, 1997. ISSN 0304-4076.
doi: https://doi.org/10.1016/S0304-4076(96)01818-0. URL https://www.
sciencedirect.com/science/article/pii/S0304407696018180.

Paulo Cortez, Miguel Rio, Miguel Rocha, and Pedro Sousa. Internet
traffic forecasting using neural networks. In The 2006 IEEE international
Jjoint conference on neural network proceedings, pages 2635-2642. IEEE,
2006.

Zhiyong Cui, Ruimin Ke, Ziyuan Pu, and Yinhai Wang. Stacked bidirec-
tional and unidirectional Istm recurrent neural network for forecasting
network-wide traffic state with missing values. Transportation Research
Part C: Emerging Technologies, 118:102674, 2020.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep learning, volume 1. MIT press Cambridge, 2016.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. Speech
recognition with deep recurrent neural networks. CoRR, abs/1303.5778,
2013. URL http://arxiv.org/abs/1303.5778.

Sepp Hochreiter and Jirgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.

Yuxiu Hua, Zhifeng Zhao, Rongpeng Li, Xianfu Chen, Zhiming Liu,
and Honggang Zhang. Deep learning with long short-term memory for
time series prediction. IEEE Communications Magazine, 57(6):114-119,
2019.

Muhammad Faisal Igbal, Muhammad Zahid, Durdana Habib, and
Lizy Kurian John. Efficient prediction of network traffic for real-time
applications. Journal of Computer Networks and Communications, 2019,
2019.

Shan Jaffry. Cellular traffic prediction with recurrent neural network.
arXiv preprint arXiv:2003.02807, 2020.

15

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Nan Jiang, Yansha Deng, Osvaldo Simeone, and Arumugam Nal-
lanathan. Online supervised learning for traffic load prediction in
framed-aloha networks. IEEE Communications Letters, 23(10):1778-
1782, 2019.

Nandini Krishnaswamy, Mariam Kiran, Kunal Singh, and Bashir Mo-
hammed. Data-driven learning to predict wan network traffic. In
Proceedings of the 3rd International Workshop on Systems and Network
Telemetry and Analytics, pages 11-18, 2020.

Will E Leland, Murad S Taqqu, Walter Willinger, and Daniel V Wil-
son. On the self-similar nature of ethernet traffic (extended version).

IEEE/ACM Transactions on networking, 2(1):1-15, 1994.
Huang Lin, Wang Diangang, Liu Xiao, Zhuo Yongning, and Zeng Yong.

A predictor based on parallel Istm for burst network traffic flow. In
Proceedings of the 2020 6th International Conference on Computing and
Artificial Intelligence, pages 476-480, 2020.

Rishabh Madan and Partha Sarathi Mangipudi. Predicting computer
network traffic: a time series forecasting approach using dwt, arima
and rnn. In 2018 Eleventh International Conference on Contemporary
Computing (IC3), pages 1-5. IEEE, 2018.

C. Olah. Understanding Istm networks.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

Nipun Ramakrishnan and Tarun Soni. Network traffic prediction using
recurrent neural networks. In 2018 17th IEEE International Conference
on Machine Learning and Applications (ICMLA), pages 187-193. IEEE,
2018.

Mike Schuster and Kuldip Paliwal. Bidirectional recurrent neural
networks. Signal Processing, IEEE Transactions on, 45:2673 — 2681, 12
1997. doi: 10.1109/78.650093.

Sebastian Troia, Gao Sheng, Rodolfo Alvizu, Guido Alberto Maier, and
Achille Pattavina. Identification of tidal-traffic patterns in metro-area
mobile networks via matrix factorization based model. In 2017 IEEE
International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), pages 297-301. IEEE, 2017.
Sebastian Troia, Rodolfo Alvizu, Youduo Zhou, Guido Maier, and
Achille Pattavina. Deep learning-based traffic prediction for network
optimization. In 2018 20th International Conference on Transparent
Optical Networks (ICTON), pages 1-4. IEEE, 2018.

R Vinayakumar, KP Soman, and Prabaharan Poornachandran. Apply-
ing deep learning approaches for network traffic prediction. In 2017
International Conference on Advances in Computing, Communications
and Informatics (ICACCI), pages 2353-2358. IEEE, 2017.

Weitao Wang, Yuebin Bai, Chao Yu, Yuhao Gu, Peng Feng, Xiaojing
Wang, and Rui Wang. A network traffic flow prediction with deep
learning approach for large-scale metropolitan area network. In NOMS
2018-2018 IEEE/IFIP Network Operations and Management Symposium,
pages 1-9. IEEE, 2018.

Steven Wheelwright, Spyros Makridakis, and Rob J Hyndman. Fore-
casting: methods and applications. John Wiley & Sons, 1998.

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://cloud.google.com/architecture/data-preprocessing-for-ml-with-tf-transform-pt1
https://cloud.google.com/architecture/data-preprocessing-for-ml-with-tf-transform-pt1
https://machinelearningmastery.com/stacked-long-short-term-memory-networks/
https://machinelearningmastery.com/stacked-long-short-term-memory-networks/
https://machinelearningmastery.com/develop-bidirectional-lstm-sequence-classification-python-keras/
https://machinelearningmastery.com/develop-bidirectional-lstm-sequence-classification-python-keras/
https://www.sciencedirect.com/science/article/pii/S0304407696018180
https://www.sciencedirect.com/science/article/pii/S0304407696018180
http://arxiv.org/abs/1303.5778

	Abstract
	1 Introduction
	2 Background
	2.1 Network Traffic Flows
	2.2 Deep Learning

	3 Problem Statement
	3.1 Research Question

	4 Related Work
	5 Design and Implementation
	5.1 Obtaining SANREN Data
	5.2 Preprocessing
	5.3 Implementation of Models
	5.4 Hyper-parameter Tuning

	6 Results
	7 Discussion
	8 Limitations and Future Work
	9 Conclusions
	10 Acknowledgements
	References

