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ABSTRACT

This paper critically evaluates the use of artificial neural networks
as network traffic predictors. Network traffic prediction is crucial
for the maintenance and optimization of large, federated networks.
Without the ability to forecast traffic trends, networks face conges-
tion and resource mismanagement. These are some of the issues
faced by the South African Research and Education Network. To
solve these common problems, researchers have begun to use arti-
ficial neural networks to make predictions with time-series data.
Neural networks are more accurate and efficient than statistical
methods, and can recognize long-dependencies and unusual tempo-
ral patterns. Various models have been considered for the network
traffic prediction problem, including the Autoregressive Integrated
Moving Average, Recurrent Neural Networks and Long Short-Term
Memory (LSTM) models. The literature shows that the LSTM ar-
chitecture is the best performing neural network, and is the ideal
candidate for further research using data provided by the South
African Research and Education Network. Overall, it is concluded
that additional research on the Long Short-Term Memory model
is needed in two facets. Firstly, it is necessary to evaluate whether
the LSTM architecture can be fundamentally changed to produce
improved performance. Secondly, the LSTM must be assessed for
its appropriateness on the SANReN, and so the computational re-
quirements and efficiency of the LSTM will also be evaluated.
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1 INTRODUCTION

As the internet evolves into Web 3.0, the amount of data produced
by the global Internet of Things (IoT) is increasing. Existing com-
puter networks and nodes are facing the challenges associated with
transferring unprecedented amounts of data. One of these chal-
lenges is that large computer networks exhibit fluctuating network
traffic volume [26]. Networks can attempt to implement traditional
network monitoring or data analysis techniques to preemptively
optimize the network for varying traffic volumes. However, such
techniques have shown to be insufficient for precise, real-time pro-
cessing of time-series data.

An accurate and efficient network traffic prediction model would
be beneficial to network operators and users for two reasons. Firstly,
the network would be able to predict when segments of the network
will experience high traffic volumes and congestion; and secondly,
the network would be able to optimize the allocation of its resources
based on forecasted network traffic metrics [28]. Additionally, novel
network analysis techniques may capture unknown trends in time-
series datasets and their associated dependencies.

This research paper will evaluate the state-of-the-art of net-
work traffic prediction by assessing the existing research on artifi-
cial neural network (ANN) models for network traffic prediction
- particularly the Multi-layer Perceptron (MLP), Long Short-Term
Memory (LSTM) and Stacked Auto-encoder (SAE) models— against
traditional statistical models used for prediction — namely the Au-
toregressive Integrated Moving Average (ARIMA), Support Vector
Machine (SVM) and Holt-Winters Forecasting models.

The supplementary objective of this paper is to critically eval-
uate an ANN that best supports network traffic prediction on the
South African National Research Network (SANReN). This may be
a previously mentioned ANNs or a new, evolved ANN that does
not have as much research support, such as a Dual-Stage Attention-
Based RNN. By providing network traffic prediction capabilities
to the network, the network would be able to manage network
congestion and allocate network resources effectually [5].

Furthermore, this research paper evaluates the effects of pre-
processing data on a network traffic predictor’s accuracy, as well as
the trade-off between computational complexity and accuracy in
various models, to realise an ANN model that is useful and relevant
for the SANReN use-case.

2 BACKGROUND
2.1 Network Traffic Flows

Network traffic flows refer to the volume of bytes being sent — from
any node to any other node - across a network [22]. Nodes in this
context are any type of device that is connected to the network, not
just routers [22]. As done by Ramakrishnan et al. [22], this paper


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

will investigate the ability of neural network models to predict the
number of bytes that will be sent in a future time period, as well as
the number of packets sent during a time period. Time series data
is a sequence of observed data points - (y1,y2, ..., y;) - indexed by
time order [29]. Usually, the data points are measured at succes-
sive, equidistant points in time. It is important for this research
paper that network traffic flows are defined as time-series data.
Additionally, it is important to identify whether network traffic
data is linear or not. Seasonality and trends are the main reasons
that linear predictions models are inaccurate [26, 29], and so it is
necessary to use ANNs to capture the non-linearity that network
traffic exhibits [26]. Both neural networks and traditional statistical
models can use time-series data in different ways. For example,
these predictive models can implement different timescales and
distinctive forecasting horizons [5]. Predictions for hourly traffic
volumes rather than every 5 minutes is an instance of an altered
timescale, whereas an adjusted forecasting horizon would change
how many time periods ahead a predictor forecasts for [5]. Ad-
ditionally, categorical variables such as timestamps and weekday
may be encoded to numerical values and provide to a neural net-
work to improve its accuracy. Various encoding methods — namely
label and one-hot encoding - have been implemented to improve
a neural network’s predictive power [24]. The effect of these two
encoding methods will be discussed later. Network traffic data may
be provided to a neural network to predict when a burst in traffic
volume will occur, rather than to forecast a pattern in the future
of the time-series data [17]. Burst flow prediction can be done in
parallel with regular neural network prediction [17], and so it is
included in this research paper.

2.2 Project Context

There are a few motivations as to why network traffic prediction re-
quires neural network predictors. Primarily, any prediction model
depends on the statistical distribution of a data set [22]. It also
depends on the notion that the data is from a time-series dataset
[22]. We have already defined network traffic flows as time-series
datasets, so the difficulty in network traffic prediction must stem
from the statistical nature of the data. Network traffic flows are
characterized by self-similarity and non-linearity [15] and are inef-
ficiently modelled by Gaussian or Poisson distribution models [15].
This inefficiency introduces the need for ANNs and is reinforced
later when evaluating the performance of traditional statistical
models on network traffic data.

Whereas previous researchers have used publicly available datasets
such as the GEANT [10, 14, 27] and Abilene [22, 25] networks, this
paper uses network traffic data from the South African National
Research and Education Network (SANReN). SANReN is a country-
wide network of education and research institutions in South Africa.
As a large, federated network, SANReN is unable to use traditional
network monitoring and analysis techniques and would benefit
from an ANN model that allows for preemptive network actions.
The researchers would like to thank SANReN for their contribution
to this paper.
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2.3 Deep Learning for Network Traffic
Prediction

2.3.1  ANNs are Deep Learning. Deep learning refers to the imple-
mentation of artificial neural networks (ANNs) with complex layers
of internal nodes [4]. Additionally, deep learning is not distinct
from machine learning, but rather a subset of machine learning [3].
Although the terms ‘deep learning model’ and ‘ANN’ are synony-
mous, this paper will use ANN throughout to refer to the parent
class of models that this paper evaluates. Essentially, an ANN is
an information processing model that is modelled according to the
biological nervous system of the human brain [3]. Just as the brain
is made up of neurons interconnected by synapses, an ANN is made
up of elements called ‘neurons’ interconnected by weighted paths
[2, 3]. The various ANNs will be elaborated on further in this paper.

2.3.2  ANNs for Prediction. As ANNs have evolved, they have pro-
vided new ways to deal with difficult problems regarding prediction
and pattern recognition [3]. One such problem is network traffic
volume prediction. As mentioned earlier, network traffic data is not
comparable to other pattern recognition and prediction problems
due to its non-linearity and stochasticity [17]. However, ANNs can
accurately model almost any non-linear relationship [2] - including
wind speed [16] and MPEG-4 video traffic [2], and so it is sensical
to evaluate a variety of ANNs on network traffic data.

3 NETWORK TRAFFIC PREDICTION

3.1 Pre-processing

Before an ANN receives data as input, there is an opportunity for
the researcher to pre-process the data. Without pre-processing, the
ANN would receive raw data — which is data in its source form
[1]. Pre-processing is made up of two steps: data engineering and
feature engineering. By aggregating, summarizing, and filtering
data, data engineering is the process of converting data from the
source into prepared data [1]. Prepared data can then be appended
with other ANN-specific features, such as encoding or scaling to
increase the accuracy of an ANN [1, 19].

3.1.1  Discrete Wavelet Transformation. Furthermore, certain data
transformations can be applied to non-linear data sets such as net-
work traffic data. The Discrete Wavelet Transformation (DWT) is an
example of one such transformation. DWT iteratively decomposes
a given non-linear pattern into distinct non-linear approximations
and linear details - which can then be to train non-linear and linear
models respectively [18], [19]. DWTs also support reconstruction,
which combines the predictions of two models to create a final
forecast [19]. Existing research [18, 19] concludes that an ANN
model with DWT has a better predictive ability than the same ANN
model without DWT.

3.1.2  Model Section. Considering that traditional statistical mod-
els — such as ARIMA, Holt-Winters and SVM - are less suited in
predicting non-linear data [10], ANNs are used to predict data that
takes this form. However, Katris et al. [13] propose that a test for
non-linearity should be the foundation of the model selection pro-
cess. This approach would be useful if this paper’s research applied
to a broader audience or more use-cases, as models could then be
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selected and trained based on the scale and behaviour of indepen-
dent networks. However, this is not the case, and this paper will
not include model selection as a task to be performed by an ANN.

3.2 Traditional Statistical Methods

Traditional methods refer to statistical methods that have been used
for prediction and pattern recognition before ANNs. Despite the
differences in how they function, they are united by their inability to
effectively forecast non-linear data. The most used models for linear
prediction are the Holt-Winters forecasting model and ARIMA [5],
whilst SVMs have also been used in a broader machine learning
context [10].

3.21 ARIMA. ARIMA is a traditional statistical model used for
predictions with time-series data. It fundamentally assumes that
future data observations can be predicted using the values and
errors of past data points [19].

The ARIMA is extremely efficient and accurate when modelling
non-linear time-series [11, 19, 22], however, its shortcoming is that
it cannot accurately model time-series data that does not show
stationarity [19]. A time series has stationarity if, as time passes,
the basic properties of the distribution — namely the mean, variance,
and covariance — are constant [29]. Additionally, the absence of
stationarity results in non-linearity in the mean [29]. Network
traffic data is non-linear, and as a result, is not efficiently modelled
by linear time series models such as ARIMA [19].

ANNSs’ elevated performance on network traffic data is supported
extensively by research [11, 14, 22], with simple LSTMs having a
better Root Mean Square Error than an ARIMA model by up to 69%
in some instances [14]. However, ARIMAs provide similar accuracy
to RNNs for some datasets — such as the GEANT dataset [22]. This
introduces the trade-off between prediction rate and accuracy, and
this trade-off will be assessed in this paper.

3.3 Artificial Neural Networks

Multiple forms of ANN have been used to predict network traffic
volumes. Some studies [11, 21, 27] use feed-forward neural net-
works (FFNN), whereas others [10-12, 22] use neural networks
called Recurrent Neural Networks (RNN). The difference between
these two types of ANNs is their memory state. Feed-forward neu-
ral networks such as MLP don’t have an internal memory state,
and information is passed from internal layers in the direction of
output only [5]. RNNs have cycles between internal layers, which
creates a form of artificial memory and facilitates the learning of
long-range temporal dependencies and other sequential behaviours
that network traffic data may exhibit [20, 22]. However, there are
some common features in all ANNs. For example, each neuron in a
neural network is characterized by having multiple inputs, but only
a single output [2]. Additionally, implementors of ANNs must con-
sider the time it takes to train a machine learning model. This is the
longest step of the ANN process, but once an ANN is trained, it can
provide real-time results with less error than traditional time-series
approaches [5].

3.3.1 Training Algorithms. ANNs learn from training algorithms
[7]. The algorithm trains the ANN to identify and separate data
in a set. Usually, the training set is a subset of the entire data set
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provided to the ANN [7]. Once the ANN has trained, it would
be ready to perform pattern recognition and prediction. In the
context of this paper, ANNs train using SANReN data and will
predict the future patterns of the network traffic data. According to
Cortez et al. [5], complex ANNs are comparable to human brains
when solving problems of this nature. Training ANNs can take two
forms: supervised, and unsupervised. Supervised learning is done
by providing the ANN with a labelled dataset. This could be done
by using a pre-labelled dataset, or by data engineering raw data — as
described earlier [1]. Unsupervised learning uses ANNs to evaluate
and group unlabelled data sets. Essentially, an ANN working with
unlabelled data will try to define the intrinsic structure of the data.
Due to these differences, some researchers have unsupervised ANNs
on unlabelled data and provided the output to a supervised ANN
for prediction and pattern recognition [23]. Another important
consideration when training an ANN is the training-test split. The
training data is used by an ANN to train itself to recognize patterns
and predict, whereas the test data is used to measure the accuracy of
its predictions [6]. In existing research, there are a few conventions
for splitting the data. The size of the training subset has been 50%
[2], 67% [22], 75% and 90% [10]. The training subset is not the
minority of the network traffic data in existing studies, and this
paper will maintain that.

3.3.2  Multi-Layer Perceptron. As mentioned earlier, a Multi-Layer
Perceptron is a type of feed-forward neural network. As shown in
Figure 1, an MLP has an input layer, multiple hidden layers, and
a single output layer [20]. Every neuron in layer I, is connected
to every neuron in layer l,41 [20]. However, a node in I, is not
connected to any other nodes in the same layer. The qualifier ‘feed-
forward arises from the fact that data is only passed in the direction
of output — unlike other ANNs [20]. An MLP is trained using a
supervised learning algorithm called backpropagation. The prin-
ciple of backpropagation is to let the MLP adjust the weightings
of its hidden layers’ nodes so that its prediction matches that of
an expected result [20]. By iteratively minimizing the difference
between its prediction and the expected output, the MLP trains
itself [20]. Additionally, the output of the MLP does not depend
on the number of layers, as the accuracy of the MLP is affected
by the total number of neurons in the hidden layers, rather than
the number of the layers that are hidden [9]. MLP is usually com-
pared to other ANNS to assess its performance. When using Mean
Squared Error as an indicator of accuracy against RNN, LSTM, and
GRU, MLP was the worst-performing ANN by 35% [27]. Conversely,
when assessed against an SAE over various time periods, the MLP
provided more accurate predictions in all periods but was more
accurate by a larger amount as the time period approached 1 hour
[20]. However, there is no research available containing a direct
comparison between MLP and traditional statistical models such as
ARIMA. Presumably, the better-performing, more complex ANNs
are used more often to show the predictive value of the ANN class.

3.3.3  Recurrent Neural Networks. A Recurrent Neural Network is a
type of ANN that can have one or more connection between neurons
to form a cycle [20]. These cycles allow neurons to store information
and pass feedback in the opposite direction to the flow of inputted
data [20]. FFNN do not have this ability, and so this cyclical passage
of information is how RNNs can create a form of internal memory
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Figure 1: The feed-forward structure the MLP model [20].

The MLP model shows that the input, output and hidden layers are made
up of multiple neurons, each only connected to neurons in the layer in
front of itself.

[7]. These information cycles do not only occur within the hidden
layer but could initiate at an output node and end at the input
layer or be self-reflective [7]. This unique architecture trait allows
an RNN to determine the dependencies in the data. Consequently,
the increased accuracy of RNNs — and its derivatives: Long Short-
Term Memory and Gated Recurrent Unit - stems from their ability
to model more complex non-linear behaviour than FFNNs and
traditional statistical models [22]. However, one shortcoming of
RNNGs is the gradient disappearance problem [16]. As the RNN is
trained, and the nodes iteratively update one another, the gradient
— the applied effect — of each update becomes smaller. Essentially,
observations at the start of the network traffic data would not be
considered or ‘remembered’ as the RNN processes more data [16].
Krishnaswamy et al. [14] argue that this makes RNNs unsuitable
for network traffic prediction because it is unable to completely
consider long-term dependencies. This has not been suggested
by other research, as RNNs are still more accurate than ARIMA
and Holt-Winter models on the same datasets [22]. However, by
comparing an RNN with a more memory-dependent variation, such
as LSTM, the effect of the gradient disappearance problem will
be evident. When using MSE as a measure of error, traditional
RNNS are shown to be more accurate than ARIMA models when
forecasting 5 minutes ahead [19]. However, on small datasets with
less than 100 data points, ARIMA’s MSE is comparable to RNN [19].
Despite being more accurate than traditional statistical models at
most forecast periods, RNN prediction error can increase for long
term predictions, going from 3.5% when predicting one hour ahead
to 12.23% for a 24-hour lookahead [5].

In general, the mentioned RNNss - traditional RNN, LSTM and
GRU - demonstrate high accuracy when used on large datasets
[22]. In terms of model construction, all three variations can be
implemented using Python [22], which is useful for integration
with Jupyter Notebook, sci-kit learn, and TensorFlow.

A. Fleischer
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Figure 2: The memory unit of an LSTM [22].

An LSTM contains multiple memory units at each layer, with the forget,
update and output gates determining the state of each memory unit. Each
gate feeds information to a tensor product operation to compute the unit’s

current state and activation function.

3.3.4 Long Short-Term Memory. The LSTM is one of the RNN mod-
els that has been designed to solve the gradient disappearance
problem. The LSTM improves on the RNN by adding a memory
unit [22]. The structure of each memory unit includes three gates,
the forget gate f;, the update gate i; and the output gate o; as shown
in Figure 2 [11]. The update gate determines to what extent the unit
updates itself, the forget gate determines to what extent existing
memory is removed, and the output gate determines how much
memory is exposed to the next step. The unit’s current state, c;, is
determined as a mathematical function of the previous activation
function h;_1, the previous cell state c;—1, the input x;, and each of
the gates [22].

These gates give the memory unit the ability to consider its
input, and then either keep existing memory or overwrite it with
new information. RNNs do not have this ability and will overwrite
memory by default [22]. This singular difference allows LSTM to
capture long-term dependencies that an RNN may not [22]. Using
MSE as a measure of accuracy and error, the LSTM is more accurate
than RNN and ARIMA on the Abilene and GEANT datasets [22].
Crucially, LSTM is never less accurate than memory-less RNN and
traditional statistical methods and is more accurate in multiple
studies [11, 12, 22, 27]. In one study, despite RNN being 35% more
accurate than an FFNN, the implemented LSTM outperformed the
RNN by 37% [27]. The only occasion when LSTMs are comparable
to RNNs is when predicting packet data flow, rather than the flow
of bytes [22].

Additionally, LSTM has various improvements that are not ex-
tensively researched. Models such as Dual-Staged Attention-Based
LSTM [21] and Parallel LSTM [17] have led to accuracy improve-
ments over traditional LSTM and could be an area of further re-
search.

3.3.5 Gated Recurrent Unit. The Gated Recurrent Unit is another
variant of RNN. It is a very similar design to LRU, with gated units
that can determine the exposure of information within the unit [22].
As in LSTM, the GRU can learn long-term dependencies because of
its update gate [25]. If the GRU has found a significant feature, then



Using Deep Learning Techniques to Predict Network Traffic on the South African Research and Education Network

the update gate will maintain it rather than overwrite it [25]. This
is in converse to RNN, where the neuron will always replace its
content [25]. The GRU is not as extensively investigated as LSTM
models, possibly due to its performance as a predictor. As with
all the ANNs evaluated thus far, the GRU is more accurate than
traditional statistical prediction techniques [22, 27]. However, when
compared to LSTM, the GRU is significantly less accurate [27]. For
example, when implemented on the public GEANT dataset, GRU
exhibited an MSE of 0.051, compared to an LSTM MSE of 0.042 [27].
This is a difference in error of 27% when using the LSTM’s score as
the basis.

3.3.6 Stacked Auto-Encoder. An autoencoder is a special type of
unsupervised FFNN that is trained to copy its input to its output
[6]. However, it is designed to be unable to copy perfectly, so that
it must prioritize which aspects of the data to copy, and therefore
learn the characteristics of the data [6]. A stacked autoencoder
(SAE) is an ANN that uses multiple autoencoders, where the output
of each autoencoder is linked to the input of the next [20], [6].
SAEs use a greedy layer-wise approach to learning, where each
layer is trained independently [6]. SAEs will not be researched in
this paper as they are ineffective on time-series data [20] and are
consistently outperformed by other ANN models. As an ANN with
an unsupervised training algorithm, the SAE takes extremely long
to train relative to MLP and RNN. When using a 5-minute network
traffic dataset, an RNN took 33981 milliseconds to train, whilst an
SAE took over 6 million milliseconds — a 19000% increase [20]. This
combination of relative inaccuracy and long training times makes
SAE an unsuitable candidate for the SANReN use case.

4 DISCUSSION

All the ANNs mentioned above have shown, to varying degrees,
that they can predict network traffic volumes accurately. However,
this paper aims to find the best candidate ANN for network traffic
prediction. Therefore, each of the ANNs mentioned must be pair-
wise assessed to choose a model that is accurate, efficient and has
the theoretical capacity to be improved. Efficiency and computa-
tional complexity can also be considered attributes by which to
assess ANNGs as training times and prediction rates are a consider-
able part of the ANN research process. SAEs are a perfect example
of this. They perform better than traditional statistical models but
require an unsupervised pre-training period [20]. Consequently,
they take relatively long to train and offer no increase in prediction
accuracy when compared to others [20]. Therefore, the SAE will
not be considered in this paper.

The traditional RNN seems to be the baseline for most research
[10, 16, 22], [11], [20], [5], however, it also has its known shortcom-
ings — such as the gradient disappearance problem [16]. The RNN
model is also more prone to overfitting than its child models — the
LSTM and GRU [22]. Therefore, the LSTM and GRU architectures
should be considered suitable models for network volume predic-
tion. However, the GRU does not outperform the LSTM in the few
studies it appears in [25, 27], and will also not be considered in this
paper.

It is also worth mentioning that the best performing RNN models
only outperform traditional statistical models by 11% in smaller,
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more linear datasets such as GEANT [22]. However, when non-
linearity and burst patterns are present, RNNs are up to 78% better
than traditional models [22]. Therefore, this paper will aim to use a
large sample of non-linear SANReN data with burst flow activity.
Another consideration is how long the ANN is allowed to train for.
When limited to 20 epochs — complete training cycles - MLPs suffer
from severe performance issues. For instance, when compared to
an ARIMA on 892 data points, limited MLPs performed worse [11].
This is because the MLP did not fully train the network in the
restricted time. Conversely, an LSTM model limited in the same
way maintained its performance [11].

Vinayakumar et al. [27] propose that the learning rate is directly
correlated with the speed at which the model converges on the
pre-determined error range. This suggests that the LSTM is a faster
learner than the MLP, more efficient, and more accurate, and so
the LSTM is still the prime candidate for further ANN research for
network traffic prediction. Whilst considerations of the learning
rate, data size, and training time are important, the primary measure
of an ANN’s performance is its accuracy. Across all the examined
research on ANNs, LSTM is the best predictor [8, 11, 12, 22, 27].
Considering the LSTM’s pertinence as an accurate network traffic
predictor, this paper will explore evolutions of the LSTM. Two
examples of LSTM improvements are the Dual-Staged Attention-
Based LSTM model [21] and the Parallel LSTM [17]. The Dual-Stage
Attention-Based LSTM can identify the relevant pattern in the data.
Essentially, it can decide whether the current data point under
consideration is influenced by the long-range temporal pattern or
by the short-term burst flow [21]. This adapted LSTM was shown
to outperform traditional LSTM models when trained and tested on
a NASDAQ dataset [21]. Similarly, the parallel-LSTM can predict
burst flows with greater accuracy, and so its general prediction
accuracy is improved relative to traditional LSTMs [17]. Lastly, it
is important to clarify that, according to an analysis of existing
research, the LSTM model is this paper’s best option for further
evaluation. MLP, GRU and SAE may outperform the LSTM in other
deep learning contexts, but that is beyond the scope of this paper.

5 CONCLUSIONS

Throughout existing research, it has become evident that all three
of the main RNN architectures are low-error predictors for network
traffic volumes. Across various datasets, RNN, LSTM and GRU bet-
ter statical forecasting models [22]. Traditional statistical models
have fallen behind in terms of prediction accuracy and efficiency
[10], and so they will not be evaluated or used for comparisons
in this paper. Similarly, there is sufficient research on ANNs to
identify that traditional SAEs, RNNs and MLPs no longer compete
with their respective variations. The feasibility of the LSTM model
for non-linear time-series data has also been demonstrated, which
makes an LSTM derivative the ideal focal point of this paper. Fur-
thermore, considering the strength of the LSTM model derivatives
when handling large samples and burst traffic, this paper will fur-
ther research LSTM variations to use as predictors for network
traffic data volumes. Lastly, it must be considered if the LSTM is
appropriate for the SANReN use case, and so the computational
requirements and efficiency of the LSTM derivative models will
also be investigated.
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