
Literature Review of Defeasible Explanations
Emily Morris

Department of Computer Science
University of Cape Town
mrremi007@myuct.ac.za

ABSTRACT
Explanations provide a way of showing why an entailment holds
in classical logics. A justification is a form of explanation provided
by minimal entailing subsets of a knowledge base. Very little work
has been done in terms of extending explanations to forms of defea-
sible reasoning. Defeasible reasoning is a form on non-monotonic
reasoning that aims to emulate reasoning with uncertainty. Expla-
nations have many useful applications in classical logics, making it
a worthwhile concept to extend to defeasible reasoning. We aim to
extend justifications to KLM-style defeasible reasoning and poten-
tially define a set of properties which contribute to a more general
definition of explanations for defeasible reasoning.

CCS CONCEPTS
• Computing methodologies → Nonmonotonic, default rea-
soning and belief revision; • Theory of computation → Au-
tomated reasoning;

KEYWORDS
Artificial Intelligence, Knowledge Representation and Reasoning,
Propositional Logic, Justifications, Explanations, Defeasible Rea-
soning, KLM Framework

1 INTRODUCTION
Knowledge Representation and Reasoning is a field within Artificial
Intelligence in which information is modeled using formal logic,
allowing one to apply a set of rules and manipulations related to a
form of reasoning [4]. There are many different forms of logic, with
different levels of expressivity. Our work will focus on propositional
logic, one of the most basic forms of classical logic. While it is not
as expressive as logics such as description logics or first-order logic,
propositional logic provides a level of simplicity which makes it
easier to understand and work with.

An important aspect of reasoning is being able to infer new
knowledge from existing information. In propositional logic, this is
done using classical entailment. In addition to being able to infer
knowledge, it is often useful to know why certain information is be-
ing inferred. Explanations provide reasons as to why an entailment
holds. The form of explanations that we will focus on are justifica-
tions. Justifications provide a desirable approach to explanations
due to the fact that they are conceptually simple and can be com-
puted using existing reasoning services [10]. Justifications have also
been used extensively in knowledge base debugging due to their
ability to expose the exact information causing faulty reasoning.

There are certain forms of reasoning that classical logics cannot
model. In particular, one cannot replicate the uncertainty with
which humans reason. To do this one must use a different form of
reasoning, known as nonmonotonic reasoning. We will focus on

defeasible reasoning, looking in particular at the KLM approach to
defeasible reasoning. This approach provides us with a variety of
definitions for defeasible entailment. Unlike in the classical case,
little work has been done on defining defeasible explanations.

In this review we aim to provide a background for addressing
defeasible explanation. In Section 2 we give an overview of the
relevant theory for propositional logic and classical entailment.
In Section 3 we then examine the work done for explanations in
classical logic. We focus on the justification base approach and look
at the various algorithms defined for this. Then in Section 4 we
motivate the need for nonmonotonic reasoning and begin to look at
defeasible reasoning within the KLM framework. In particular, we
look at two definitions for defeasible entailment, Rational Closure
and Lexicographic Closure. In Section 5 we examine the current
literature for defeasible explanations. Finally, in Section 6 we con-
clude by examining how the current literature forms a basis for
extending explanations to defeasible reasoning.

2 BACKGROUND
2.1 Propositional Logic
In propositional logic, the most basic propositions, which can be
assigned truth values of true or false, are called atoms [2]. Intuitively,
atoms are statements like ’the sun shines’ and ’the sky is blue’.
Atoms are usually denoted using lower case letters such as 𝑝 and 𝑞.
Atoms can be combined together using Boolean operators.

The main Boolean operators are: negation(¬), conjunction(∧),
disjunction(∨), implication(→) and bi-implication (↔). Negation
is a unary operator taking only a single operand, while the rest
are binary operators taking two operands. The Boolean operators
negation, conjunction and disjunction behave similarly to the nat-
ural language words ’not’, ’and’ and ’or’ respectively. Implication
behaves similarly to the word ’implies’, where one expects that if
A is true and A implies B, then B must be true too. Bi-implication
behaves like two directional implication.

Atoms combined together using Boolean operators create what
are known as formulas. Formulas can also be created by combining
other formulas using Boolean operators. This gives us a way to
model more complex information. For an implication 𝛼 → 𝛽 , one
calls 𝛼 the antecedent. One use ⊺ to denote a statement that is
always true and � to denote a statement that is always false. A
finite set of formula is called a knowledge base, denoted 𝒦.

One assigns meaning to atoms using interpretations. Interpreta-
tions model a specific state of the world, where the information
stated in each atom is either true or false. Formally an interpreta-
tions ℐ is a function ℐ ∶ 𝒫 → {𝑇, 𝐹} which assigns a value true (T)
or false (F) to every atom in 𝒫 . The set of all interpretations for
a formula or knowledge base is denoted 𝒰 . We evaluate formulas



under a specific interpretation by breaking them down into their in-
dividual atoms and then using the semantics and precedence order
defined for the various operators to build up the final truth value. If
a formula 𝛼 is true under an interpretation ℐ , one says ℐ is a model
of 𝛼 . The set of all models of 𝛼 is denoted Mod(𝛼) or (︀(︀𝛼⌋︀⌋︀. If 𝛼 has
a model one says 𝛼 is satisfiable. Otherwise, if 𝛼 has not models
and thus is false in all interpretations, one says 𝛼 is unsatisfiable.
For a knowledge base 𝒦, ℐ is a model of 𝒦 if it is a model of all
the formulas in 𝒦. One similarly talks about 𝒦 being satisfiable or
unsatisfiable.

2.2 Logical Consequence
The semantics provided by interpretations in propositional logic
provide a way of defining what is known as logical consequence or
entailment for a propositional knowledge base. Given a knowledge
base 𝒦, one says a formula 𝛼 is the logical consequence of 𝒦,
denoted 𝒦 ⊧ 𝛼 , if in every model of 𝒦 is also a model of 𝛼 . If
𝒦 does not entail 𝛼 , one denotes this 𝒦 ⇑⊧ 𝛼 . We will demonstrate
the intuition behind logical consequence by means of examples.

Example 2.1. Suppose one has a knowledge base 𝒦 containing
the following information:

(1) Birds fly (𝑏 → 𝑓 )
(2) Cats do not like water (𝑐 → ¬𝑤 )
(3) Garfield is a cat (𝑔 → 𝑐)

Following the logic of the natural language sentences, one could
conclude that ’Garfield does not like water’. Expressing this in terms
of propositional logic, one says𝒦 ⊧ 𝑔 → ¬𝑤 since in every model ℐ
of 𝒦 where ℐ(𝑔) = 𝑇 , one must have ℐ(𝑐) = 𝑇 and thus ℐ(𝑤) = 𝐹
as ¬𝑤 must be true, so 𝑔 → ¬𝑤 is true.

Example 2.2. Using the knowledge base from example 3.1, con-
sider the entailment of the formula 𝑔 → 𝑓 , corresponding to the
proposition ’Garfield flies’. 𝒦 ⇑⊧ 𝑔 → 𝑓 since the interpretation ℐ
in which ℐ(𝑏) = 𝐹 , ℐ(𝑓 ) = 𝐹 , ℐ(𝑐) = 𝑇 , ℐ(𝑤) = 𝐹 and ℐ(𝑐) = 𝑇
is a model of 𝒦 but not of 𝑔 → 𝑓 . Intuitively, one can see that if
one follows the logic of the natural language sentences, one cannot
confidently make such a conclusion as there is no way to link the
ideas of ’Garfield’ and ’flying’.

Entailment provides onewith away of inferring new information
fromwhat one already knows. There are various efficient algorithms
called SAT solvers for computing entailment in propositional logic.
It is worth noting that entailment is defined on the meta level, rather
than the object level [2]. Intuitively, the object level contains all
elements in the language, for example Boolean operators and atoms,
while the meta level describes information about the language.

2.3 Consequence Relations
Another way of defining entailment, which is independent of the
underlying semantics of the language, is through consequence
relations. A consequence relation is a mathematical relation defined
on the formula in the language. That is, a consequence relation is a
possibly infinite set 𝒳 = {(𝛼1, 𝛽1), ...(𝛼𝑖 , 𝛽𝑖), ...} where 𝛼𝑛 can be a
set of formulas but 𝛽𝑛 is a single formula. One interprets (𝛼, 𝛽) ∈ 𝒳
to mean ’from 𝛼 , one can infer 𝛽’. In this way consequence relations
define a pattern of reasoning for a given language [12]. Not all
relations correspond to valid forms of reasoning however. Generally

one provides a set of properties to restrict the definitions of valid
relations. We will return to the idea of consequence relations in
later sections when we discuss defeasible reasoning.

3 EXPLANATIONS
As humans, when reasoning we are generally able to give evi-
dence as to why we think a specific fact holds. For example, if one
knows that ’birds fly’ and ’penguins are birds’, one could reasonably
conclude that ’penguins fly’. To substantiate ones conclusion, one
would give the two known facts as evidence. In formal logic, expla-
nations express why an entailment holds. This is helpful for large
and complicated knowledge bases where it is not always obvious
why an entailment holds. Explanations give one insight into how
a particular knowledge base works and can aid in the debugging
of knowledge bases [10]. They can also be presented in a way that
enables people unfamiliar with formal logic to allow them to under-
stand reasoning services [3, 18] and can be used to build versions
of formal proofs.

3.1 Justifications
We will focus on a form of explanation known as justifications. A
justification is a minimal subset of a knowledge base that entails the
formula. They provide a simple and intuitive way of summarizing
why an entailment holds by showing the exact formulas in the
knowledge base which are responsible for the entailment. The
notion of a justification is best illustrated with an example.

Example 3.1. Suppose one knows:
(1) Birds fly
(2) Penguins are birds
(3) Birds have wings

While one could give all three facts together as evidence for the
conclusion ’penguins fly’, the fact that ’birds have wings’ does not
actually influence ones conclusion. However, only giving one of
the first two facts as evidence would not be enough to support the
conclusion. So one’s justification for the conclusion ’penguins fly’
would be that ’birds fly’ and ’penguins are birds’.

Formally, 𝒥 ⊆ 𝒦 is a justification of the entailment 𝒦 ⊧ 𝛼 if
𝒥 ⊧ 𝛼 and for all 𝒥 ′ ⊆ 𝒥 ,𝒥 ′ ⇑⊧ 𝛼 . Note one formula may have
many justifications in a knowledge base.

3.1.1 Justification Algorithms. Many algorithms have been de-
veloped for computing justifications. There are two axes of classifi-
cation for these algorithms: single-all-axis and reasoner-coupling-
axis. The single-all-axis differentiates between algorithms that com-
pute all justifications for an entailment and ones that just compute a
single justification for an entailment. Most algorithms that compute
all justifications use a single justification algorithm as a subroutine
[10]. The reasoner-coupling-axis differentiates between glass-box
and black-box algorithms. In glass-box algorithms, justification
computation is built into the reasoning algorithm. This means jus-
tifications are computed during the reasoning process. Black-box
algorithms are independent of the underlying reasoning process
and are computed separately. This makes black-box algorithms
robust and easier to implement, as one can use existing reasoning
algorithms without modification both for computing entailment
and justifications. It also means they are not restricted to a single

2



form of logic, making them more widely applicable [14]. However,
glass-box algorithms perform better than black-box algorithms,
particularly in the case of unsatisfiable knowledge bases [10].

Combining the axes of classification allows us to categorize algo-
rithms that compute all justifications, using the reasoner-coupling-
axis for both the base algorithm and the single-justification sub-
routine algorithm. For example, one can have an All-Black-Box
algorithm with a Single-Glass-Box subroutine.

3.1.2 Black-box algorithms. We will first discuss black-box al-
gorithms for computing a single justification. Single-Black-Box
algorithms have an ’expand and contract’ structure. Intuitively, the
idea is to take a subset of the knowledge base and enlarge it until
it entails the formula. This forms the ’expansion’ phase. Then el-
ements are removed from the set until no unnecessary formulas
remain, guaranteeing that the set is minimal and thus a justifica-
tion. This forms the ’contraction’ phase. There are various ways of
implementing and optimizing the two phases of Single-Black-Box
algorithms. Expansion must be done in such a way that ensures
that the generated entailing subset is not much larger than the final
justification. This can be done by choosing an appropriate selection
function, which determines which formulas should be added dur-
ing each iterative expansion based on the current subset and the
formula being entailed. The selection function is dependent on the
logic system being used. During the contraction phase one aims to
reach the final justification as quickly as possible. Various methods
have been proposed for this, with two of the most important being
the sliding window approach [14] and a divide and conquer strategy
[11]. It has been shown that the divide and conquer strategy is more
efficient[20], making it a preferred method for implementation. For
more expressive logics, such as description logics, one can also
optimize justification computation by constructing a moduleℳ of
𝒦. A module is essentially a subset of 𝒦 with a specific property
[10]. Various definitions for modules in description logics have been
provided that preserve entailment. This means one can compute
justifications with respect toℳ, which is more efficient ifℳ is
smaller than 𝒦.

All justifications for an entailment can be computed using an
adaption of Reiter’s Hitting Set Tree Algorithm [19]. This adapted
algorithm is proposed and proven by Kalyanpur et al[13]. The
algorithm constructs a hitting set tree which contains all the justi-
fications for the entailment as labels of the nodes. A hitting set tree
for a given entailment is a finite tree with the following properties:

● The interior nodes of the tree are labeled with justifications
and the edges as labeled with formulas.

● An edge from node 𝑛1 to node 𝑛2 is labeled with 𝛼 ∈ 𝑛1
such that 𝛼 ⇑∈ 𝑛2

● For any node 𝑛, the formulas labelling the path from 𝑛 to
the root node do not intersect with the justification that
labels of 𝑛

The algorithm uses some predefined single justification algorithm
to compute node labels, which can be either a black-box or glass-box
algorithm.

3.1.3 Glass-Box Algorithms. Much work has been done in terms
of developing glass-box algorithms for computing justifications in
description logics. The algorithms are based on the idea of ’tracing’

[10]. Essentially, in the process of ’tracing’, elements derived in the
reasoning process are labeled according to the original formula in
the knowledge base they are related to. In the case of description
logics such as𝒜ℒ𝒞, axioms added using the rules in the consistency
algorithm are labeled according to the axiom that caused the rule
to be invoked. This idea of axiom pinpointing is similar to the ap-
proach used in SAT solvers when computing minimal unsatisfiable
subsets [1]. For propositional logic, justifications are analogous to
minimal unsatisfiable subsets. Some work has been done in terms of
modifying SAT solvers to include the idea of tracing in the compu-
tation of minimal unsatisfiable subsets [24]. While this has mainly
been used as a way of proving unsatisfiability, it also provides a
way of computing justifications.

3.2 Comparing Justifications
As previously stated, there can be more than one justification for
a given entailment. This introduces the idea of whether certain
justifications are better than others. For example, one might favour
a justification that contains the smallest number of formulas. In
unsatisfiable knowledge bases, one might want only satisfiable jus-
tifications, which would allow one to verify whether the entailment
holds independent of the contradiction in the knowledge base. One
could also focus on producing concise justifications, known as fine-
grained justifications. While justifications are minimal in terms of
the formulas they contain, the formulas themselves might contain
information that is not relevant to the entailment. Justifications are
also at risk of ’masking’, where a single justification may contain
more than one reason for entailment. We will illustrate these ideas
with reference to an example.

Example 3.2. Suppose one has a knowledge base 𝒦 containing
the following information:

(1) Birds fly and have wings (𝑏 → 𝑓 ∧𝑤 )
(2) Penguins are birds and have wings (𝑝 → 𝑏 ∧𝑤 )
(3) If something flies, it is happy and sings (𝑓 → ℎ ∧ 𝑠)
(4) If something is happy, a bird and has wings then it jumps

(ℎ ∧ 𝑏 ∧𝑤 → 𝑗 )
Consider whether𝒦 entails the statement 𝑝 → 𝑗 or ’Penguins jump’.
One has that 𝒦 ⊧ 𝑝 → 𝑗 and there is only a single justification,
namely 𝒥 = 𝒦. But the information about flying things singing
is not relevant to our entailment, meaning one can remove the
information about singing, reducing the formula 𝑓 → ℎ ∧ 𝑠 to
𝑓 → ℎ, and retain the entailment. As an example of masking, note
that as part of our entailment, one requires that ’penguins have
wings’. One could say a penguin has wings either because it is a
penguin or because it is a bird. This gives one two reasons within a
single justification as to why the entailment holds.

Thus reduction and simplification on an axiomatic level could
be used to define better justifications. Fine-grain justifications seek
to provide a way of doing this.

Horridge [10] presents a formal definition for fine-grain justi-
fications in the case of description logics. Horridge also presents
various versions of masking. Two types of fine-grained justifica-
tions are defined: Laconic Justifications and Precise Justifications.
Intuitively, Laconic Justifications are justifications whose axioms
contain no unnecessary information for the entailment. Precise

3



Justifications build off Laconic Justifications and highlight the parts
of axioms that must be changed during knowledge base repair.
The set of Laconic Justifications, which is shown to be infinite, is
further refined to create a set of Preferred Laconic Justifications,
which is finite. The latter set contains Laconic Justifications that are
syntactically similar to the original axioms in the knowledge base.
Additionally, each reason for entailment in the original knowledge
base is represented by a Laconic Justification in the set of Preferred
Laconic Justifications, addressing the issue of masking.

4 DEFEASIBLE REASONING
Classical logics are limited in terms of the information they can
convey. This is because they exhibit the property of monotonicity.
Intuitively this means that adding more information to a knowl-
edge base does not change any information one has previously
inferred. Thus when one adds statements to the knowledge base,
one cannot retract previously entailed knowledge. We will provide
an illustrative example as to why this can be restrictive.

Example 4.1. Suppose one has a knowledge base𝒦 that contains
the following information:

(1) Birds fly (𝑏 → 𝑓 )
(2) Penguins are birds (𝑝 → 𝑏)

It is shown have seen in a previous example that𝒦 entails ’penguins
fly’. Now suppose one adds a new statement ’penguins do not
fly’, given by the propositional formula 𝑝 → ¬𝑓 . One can now
infer that penguins both fly and do not fly which removes one’s
ability to reason about penguins as they can no longer exist. More
formally the atomic proposition of penguin must be false in every
interpretation.

For this example to work, one should instead phrase the first
fact as ’birds typically fly’. This captures an idea of uncertainty
that allows one to later retract inferred statements if one learns
information that contradicts them. To reason with this element of
uncertainty in formal logic one needs to use a version of nonmono-
tonic reasoning. We will focus on defeasible reasoning. Over the
years various forms of defeasible reasoning have been developed.
An overview of the various approaches is given in [12]. We will
focus on the KLM-style of defeasible reasoning, first proposed by
Kraus, Lehmann and Magidor (KLM)[15].

4.1 KLM Framework
KLM extend Propositional Logic to enable defeasible reasoning
by including a new Boolean operator, denoted ⋃︀∼, and allowing
defeasible implications of the form 𝛼 ⋃︀∼ 𝛽 , where 𝛼 and 𝛽 are propo-
sitional formulas. Informally, a defeasible implication 𝛼 ⋃︀∼ 𝛽 means
’typically, if 𝛼 then 𝛽’ [7]. We will focus on KLM-style rational
defeasible implications, the semantics of which are given by ranked
interpretations. The question then arises as to how one should
define entailment when defeasible implications are present. Un-
like in the classical case, there is no single definition for defeasible
entailment (⋃︀≈). KLM proposes restrictions on the definitions for de-
feasible entailment by giving a set of properties, known as the KLM
properties, they should adhere to. Thus, the KLM framework does
not define a specific way of performing defeasible reasoning, but

rather acts as a guidance as to how KLM believes reasonable defea-
sible reasoning should behave. The KLM properties for defeasible
entailment are as follows:

(1) 𝐾 ⋃︀≈ 𝛼 ⋃︀∼ 𝛼 (Ref)
(2) 𝛼≡𝛽,𝐾 ⋃︀≈𝛼 ⋃︀∼𝛾

𝐾 ⋃︀≈𝛽 ⋃︀∼𝛾
(LLE)

(3) 𝐾 ⋃︀≈𝛼 ⋃︀∼𝛽,𝛽⊧𝛾

𝐾 ⋃︀≈𝛼 ⋃︀∼𝛾
(RW)

(4) 𝐾 ⋃︀≈𝛼 ⋃︀∼𝛽,𝐾 ⋃︀≈𝛼 ⋃︀∼𝛾

𝐾 ⋃︀≈𝛼 ⋃︀∼𝛽∧𝛾
(And)

(5) 𝐾 ⋃︀≈𝛼 ⋃︀∼𝛾,𝐾 ⋃︀≈𝛽 ⋃︀∼𝛾

𝐾 ⋃︀≈𝛼∨𝛽 ⋃︀∼𝛾
(Or)

(6) 𝐾 ⋃︀≈𝛼 ⋃︀∼𝛽,𝐾 ⋃︀≈𝛼 ⋃︀∼𝛾

𝐾 ⋃︀≈𝛼∧𝛽 ⋃︀∼𝛾
(CM)

(7) 𝐾 ⋃︀≈𝛼 ⋃︀∼𝛾,𝐾 ⋃︀⇑≈𝛼 ⋃︀∼¬𝛽

𝐾 ⋃︀≈𝛼∧𝛽 ⋃︀∼𝛾
(RM)

One calls any form of defeasible entailment that satisfies these
properties LM-Rational. Note that property six is implied by the
rest of the properties, but it included to remain consistent with how
the properties were introduced. KLM provided the intuition behind
these properties when they were defined [15, 17]. Before consid-
ering defeasible entailment, we will first discuss preferential and
ranked interpretations, which provide semantics for ⋃︀∼. They also
provide a basis for definitions of LM-Rational forms of defeasible
entailment.

4.1.1 Preferential Interpretations. The semantics KLM define for
⋃︀∼ are based off the class of preferential logics, proposed by Shoman
[21–23]. This extends the semantics of classical logic by introducing
an ordering of interpretations, which can be viewed as an order
of typicality. A statement is then said to be true if it holds in the
most ’typical’ interpretations. In their initial work, KLM defined
defeasibility on the meta-level, defining a preferential consequence
relationship using a version of the first six KLM properties given
above. KLM then defined a preferential interpretation, which con-
sists of a set of states, a mapping from the set of states to the set of
propositional interpretations and a strict partial order defined on
the set of states. Preferential interpretations are shown to define
preferential consequence relationships.

4.1.2 Ranked Interpretations. Lehmann and Magidor[17] refine
preferential interpretations to create ranked interpretations by
defining conditions which restrict the partial order for the inter-
pretation. These restrictions cause the ordering to create a series
of non-empty levels, where interpretations on the lower levels are
more ’typical’. The definition for a preferential consequence re-
lation is also extended to define a rational consequence relation,
which satisfies all seven of the KLM properties above. Ranked in-
terpretations are shown to define rational consequence relations.
Furthermore, every rational consequence relation can be defined by
a ranked interpretation. Lehmann and Magidor also address defea-
sibilty on the object level, providing semantics for the operator ⋃︀∼
using ranked interpretations. A defeasible implication 𝛼 ⋃︀∼ 𝛽 holds
in a ranked interpretationℛ, if for all the most typical interpreta-
tions in which 𝛼 is true (the models of 𝛼 on the lowest level which
contains an interpretation that satisfies 𝛼), 𝛽 is true too. It is worth
noting any propositional formula 𝛼 can be written as an equivalent
defeasible implication ¬𝛼 ⋃︀∼ � [7].

4.1.3 Defeasible Entailment. We now address defining a version
of defeasible entailment. KLM define preferential entailment [15]

4



and Lehmann and Magidor define rank entailment [17]. Both of
these forms of entailment are still monotonic, but they provide a
basis for defining a form of nonmonotonic entailment based off
preferential semantics. Two such forms of defeasible entailment
are Rational Closure, proposed by Lehmann and Magidor [17],
and Lexicographic Closure, proposed by Lehmann [16]. Both of
these approaches are LM-Rational. Rational Closure is the more
conservative form of defeasible entailment, falling under what is
known as prototypical reasoning. Lexicographic Closure on the
other hand is a form of presumptive reasoning. The key difference
between these two types of reasoning how is much one assumes
based on the information given. In prototypical reasoning, one
assumes things to be true if they are true in the most ’typical’ cases
but in presumptive reasoning, one assumes something to be true if
there is no evidence to the contrary. It is worth mentioning there
are other reasonable forms of defeasible entailment that are not
LM-Rational, for example Relevant Closure [6]. This highlights the
fact that the KLM approach is not the only valid method for defining
defeasible entailment.

4.2 Rational Closure
Rational Closure can be defined in terms of a ranked interpretation
or a ranking of statements in the knowledge base. First we will
provide the ranked interpretation that defines Rational Closure,
then we will discuss Rational Closure’s definition using ranked
statements and the algorithm this provides.

4.2.1 Ranked Interpretation. Lehmann and Magidor [17] define
an ordering on all the rational consequence relations, with the
minimal element of this ranking corresponding to the rational
consequence relation known as Rational Closure. Casini et al [7]
provide a related definition by imposing an ordering ⪯𝐾 on all the
ranked interpretations that are models of a knowledge base𝒦. One
hasℛ1 ⪯𝐾 ℛ2 if for all 𝑢 ∈ 𝒰 , one hasℛ1(𝑢) ≤ℛ2(𝑢). This intro-
duces another layer of typicality, where the ranked interpretations
further down the ranking represent the more ’typical’ ranked inter-
pretations. Giordano et al [9] show that there is a unique minimal
modelℛ𝐾𝑅𝐶 for 𝒦, where interpretations are as ’pushed down’ as
possible. One says a defeasible implication 𝛼 ⋃︀∼ 𝛽 is in the Rational
Closure of 𝒦 ifℛ𝐾𝑅𝐶 is a model of 𝛼 ⋃︀∼ 𝛽 . Since Rational Closure is
defined in terms of ranked interpretations, it is LM-Rational.

4.2.2 Ranked Formulas. An alternative definition for Rational
Closure is given through the ranking of statements in the knowl-
edge base using each formula’s base rank. First, we define some
necessary concepts. Lehmann and Magidor [17] define the material-
isation of a defeasible knowledge base K, denoted

Ð→
K , where every

defeasible implication is replaced by classical implication. Formally,
for a knowledge base𝒦,

Ð→
K = {𝛼 → 𝛽 ⋃︀𝛼 ⋃︀∼ 𝛽 ∈ 𝐾}. One then defines

a formula 𝛼 to be exceptional with respect to a knowledge base 𝒦
if
Ð→
K ⊧ ¬𝛼 [1994]. Intuitively, 𝛼 is exceptional with respect to 𝒦

if one can ’disprove’ 𝛼 using formulas in 𝒦. Using the concept of
exceptionality, one can define a series of subsets of 𝒦 using the
function 𝜀(𝐾) = {𝛼 ⋃︀∼ 𝛽 ⋃︀ 𝛼 is exceptional with respect to K}. One
defines 𝐸𝐾0 = 𝐾 and successively set 𝐸𝐾𝑖+1 = 𝜀(𝐸

𝐾
𝑖 ) until one reaches

𝑖 where 𝐸𝐾𝑖+1 = 𝐸
𝐾
𝑖 . For this 𝑖 one sets 𝐸𝐾∞ = 𝐸𝐾𝑖 . The base rank

of a formula 𝛼 , denoted 𝑏𝑟(𝛼), is then defined to be the smallest 𝑖
such that 𝛼 is not exceptional with respect to 𝐸𝐾𝑖 . For a defeasible
statement, 𝑏𝑟(𝛼 ⋃︀∼ 𝛽) is defined as 𝑏𝑟(𝛼). For a knowledge base
𝒦 and a defeasible formula 𝛼 ⋃︀∼ 𝛽 , one then says 𝛼 ⋃︀∼ 𝛽 is in the
Rational Closure of 𝒦 if 𝑏𝑟(𝛼) < 𝑏𝑟(𝛼 ∧ ¬𝛽) or 𝑏𝑟(𝛼) =∞ [9].

4.2.3 Algorithm. The base rank definition for Rational Closure
provides an algorithm for computing Rational Closure. The basic
idea is to rank formulas in the knowledge base based on their level
of specificity, with more general statements having a lower rank.
When is comes to computing entailment, if there is an inconsis-
tency, one throws away the most general information until the
inconsistency is resolved. Then one computes entailment from the
remaining knowledge base using classical entailment. To do this,
one first materializes the knowledge base and partitions it into lev-
elsℛ0 ...ℛ𝑛−1,ℛ∞, grouping formulas based on their base ranks.
Intuitively, the base rank of a formula is related to how defeasible
or typical it is, with formulas with a lower rank being more atyp-
ical. Therefor the partitioning of the knowledge base into these
levels provides us with a specificity ranking of the formulas. Now
to check whether a formula 𝛼 ⋃︀∼ 𝛽 if entailed by 𝒦, one checks
whetherℛ0 ∪ ... ∪ℛ𝑛−1 ∪ℛ∞ ⊧ ¬𝛼 . If this entailment holds, one
removes the lowest levelℛ0 and checks again. This continues until
either the entailment no longer holds or only 𝑅∞ remains. At this
point, one computes ℛ𝑖 ∪ ... ∪ℛ𝑛−1 ∪ℛ∞ ⊧ 𝛼 → 𝛽 , where 𝑖 is
the level at which 𝛼 is no longer exceptional, and returns this as
the entailment result. This algorithm reduces defeasible entailment
to a series of classical entailment checks, making it efficient to
implement with current classical reasoners.

4.3 Lexicographic Closure
Lehman [16] presents a form of Defeasible Entailment known as
Lexicographic Closure. Like Rational Closure, Lexicographic Clo-
sure can be defined using both a ranked interpretation and by rank-
ing formulas. We present the ranked formula definition in terms
of an algorithm. Both definitions use the concept of a ’seriousness’
ordering. Lehmann describes two aspects of seriousness: the num-
ber of formulas an interpretation violates and the specificity of the
violated formulas, where specificity is given by the base rank of a
formula. These two criteria give one two separate orderings which
one combines in a lexicographic manner, treating the specificity
criterion as the principle criterion.

4.3.1 Ranked Interpretation. To create the ranked interpretation
corresponding to Lexicographic Closure, one orders interpretations
by the specificity of the formulas they violate, then refines this
ordering using the number of formulas they violate. Casini et al[7]
show how one can obtain Lexicographic Closure from Rational
Closure, making Lexicographic Closure a refinement of Rational
Closure. One can obtain the ranked interpretation that defines Lex-
icographic Closure by taking the ranked interpretation that defines
Rational Closure and ranking interpretations within levels accord-
ing to the number of formulas they satisfy, with interpretations
satisfying more formulas having a lower rank. Formally, one de-
fines a ranking ⪯𝐾𝐿𝐶 where for 𝑢, 𝑣 ∈ 𝒰 , 𝑣 ⪯𝐾𝐿𝐶 𝑢 if ℛ𝐾𝑅𝐶(𝑢) = ∞,
orℛ𝐾𝑅𝐶(𝑣) <ℛ

𝐾
𝑅𝐶(𝑢), orℛ

𝐾
𝑅𝐶(𝑣) =ℛ

𝐾
𝑅𝐶(𝑣) and𝐶

𝐾
(𝑣) ≥ 𝐶

𝐾
(𝑢),

where 𝐶𝐾(𝑣) = #{𝛼 ⋃︀∼ 𝛽 ∈ 𝐾 ⋃︀ 𝑣 ∈ 𝑀𝑜𝑑(𝛼 → 𝛽)} and # denotes the
5



size of the set. One then says a formula 𝛼 ⋃︀∼ 𝛽 is in the Lexicographic
Closure of a knowledge base 𝒦 if the ranked interpretation derived
from the ordering ⪯𝐾𝐿𝐶 , denoted 𝑅

𝐾
𝐿𝐶 , is a model of 𝛼 ⋃︀∼ 𝛽 .

4.3.2 Ranked Formulas. One can also derive a ranking of state-
ments for Lexicographic Closure from Rational Closure. This deriva-
tion will be presented in the form of an algorithm. Once again, one
takes the ranking of statements that defines Rational Closure and
refines it. This is done by adding extra levels which contain weak-
ened versions of formulas from the knowledge base. The idea is
that instead of removing an entire level of information when an
inconsistency arises, one instead wants to remove the formula caus-
ing the inconsistency. This is done by weakening the more general
information.

The algorithm works by initially ranking formulas in a knowl-
edge base 𝒦 according to the base rank algorithm in Rational Clo-
sure. Then, when checking whether 𝒦 defeasibly entails a formula
𝛼 ⋃︀∼ 𝛽 , one starts by checking whetherℛ0 ∪ ...∪ℛ𝑛−1 ∪ℛ∞ ⊧ ¬𝛼 .
However, now if the entailment holds, instead of removing and
entire level, one instead weakens the lowest level,ℛ0. This is done
by taking all subsets of size 𝑥 − 1, where 𝑥 is the number of ele-
ments in the level, creating a single formula equivalent to all the
formulas in the subset by joining them using conjunction, and then
joining all these combined formulas using disjunction to create a
single, final formula. This is equivalent to considering all the ways
of removing a formula fromℛ0. If 𝛼 is not exceptional with respect
to the rest of the levels and this weakened version ofℛ0, one com-
putes entailment using classical entailment as before. Otherwise
one weakens ℛ0 again, this time considering all subsets of size
𝑥 − 2. If one reaches the point where one is taking subsets of size
zero, one throws awayℛ0 completely and starts the same process
with the next level. In the same way that one did not throw away
the lowest level in Rational Closure, one also does not weaken it in
Lexicographic Closure.

All the weakened levels can be computed and inserted before
entailment computation begins. This allows for the Lexicographic
Closure algorithm to fit into a more general pattern for defeasible
entailment proposed by Casini et al [7]. However, in practice this
would result in a large amount of unnecessary computation, as
higher levels often do not need their weakened versions to be
added.

5 DEFEASIBLE JUSTIFICATIONS
While much research has been done concerning classical justifica-
tions and their computation, little work has been done in extending
this to defeasible reasoning. To the best of our knowledge, the only
work done on this within the KLM framework is by Chama[8].
Chama provides an extension of Rational Closure algorithm for
𝒜ℒ𝒞 to include the computation of justifications. The definition
follows naturally due to the fact that Rational Closure can be re-
duced to a series of classical entailment checks. This allows for the
ideas of classical justifications to be used. The extended algorithm
ranks the axioms in the knowledge base as before. It then computes
at which level the antecedent for the formula being entailed it no
longer exceptional. This tells one how much information on needs
to remove before a justification can be computed. Finally, all the ax-
ioms from ranks less than the calculated level are removed from the

materialized knowledge base and all justifications are calculated
using classical justification methods. Chama uses an All-Black-
Box algorithm with a Single-Black-Box subroutine. While this may
make for a simpler algorithmic definition, it it worth noting that in
practice the algorithm could be more efficiently implemented if it
used one of the glass-box algorithms for justification computation.
The defeasible justifications computed are a subset of the classical
justifications that would have been computed from the materialisa-
tion of the knowledge base. This could also be viewed as a way of
comparing justifications, where one prefers justifications that are
valid in both the defeasible and classical cases, rather than just the
classical case.

Brewka et al [5] take a different approach for defining non-
monotonic justifications. Brewka et al present an abstract idea of a
nonmonotonic justification that works for all forms of nonmono-
tonic reasoning, called a strong explanation. One of the reasons
why justifications work well in monotonic reasoning is that any-
thing entailed by a justification is entailed by the knowledge base.
However, in the nonmonotonic case, the rest of the knowledge base
might contain information contradictory to the entailment. Thus
one could have a justification for an entailment when the entailment
does not in fact hold. Brewka et al address this by extending the
definition of a justification to include an extra property. A subset 𝒥
of a nonmonotonic knowledge base 𝒦 is a strong explanation for a
formula 𝛼 if it is a minimal subset of 𝒦 that entails and for all 𝒥 ′

where 𝒥 ⊆ 𝒥 ′ ⊆ 𝐾 , 𝒥 ′ also entails 𝛼 . The definition of entailment
here is dependent on the logic.

6 CONCLUSIONS
We have shown how one can use formal logic to model information
and perform reasoning. Entailment allows us to infer new infor-
mation and draw conclusions from knowledge bases containing
information of interest. We have also demonstrated that classical
logic it too restrictive, motivating for a switch to nonmonotonic
logic which allows one to reason with uncertainty. In particular we
looked at defeasible reasoning with respect to the KLM framework
and discuss two approaches for defeasible entailment within the
framework, Rational Closure and Lexicographic Closure.

We discussed various applications and motivations for explana-
tions for entailment. We then focused on justifications as a form of
explanation, examining various algorithms for justification compu-
tation and looking at ways of differentiating between the appropri-
ateness of justifications when there is more than one justification
for an entailment. We briefly mention aspects related to the effi-
ciency of justification computation algorithms, but do not focus on
this as we are interested in the more theoretical aspects.

Finally, we looked at the limited existing literature for defea-
sible explanations. Chama’s work is representative of how one
can extend existing algorithms to allow for the computation of
justifications in a defeasible setting. Since Lexicographic Closure
is a refinement of Rational Closure, extending the algorithm for
Lexicographic Closure in a similar way would provide a way of
computing defeasible justifications when using the Lexicographic
Closure algorithm.

Chama does not address justifications in terms of the semantic
definition of Rational Closure. We showed that Rational Closure has

6



both a semantic and algorithmic definition, but Chama only pro-
vides an algorithmic definition for defeasible justifications. When
trying to define defeasible explanations on a more abstract level,
deriving a semantic definition might prove helpful. Brewka et al’s
definition for strong explanations highlights the main issue one
faces when computing defeasible justifications. It also provides a
good starting point for developing a set of properties for defeasible
explanations.

REFERENCES
[1] Franz Baader and Rafael Penaloza. 2010. Axiom pinpointing in general tableaux.

Journal of Logic and Computation 20, 1 (2010), 5–34.
[2] Mordechai Ben-Ari. 2012. Mathematical logic for computer science. (2012).
[3] Stefan Borgwardt, Anke Hirsch, Alisa Kovtunova, and Frederik Wiehr. 2020. In

the Eye of the Beholder: Which Proofs are Best?. In Proc. of the 33th Int. Workshop
on Description Logics (DL 2020).

[4] Ronald J. Brachman and Hector J. Levesque. 2004. Knowledge representation and
reasoning. Elsevier.

[5] Gerhard Brewka, Matthias Thimm, and Markus Ulbricht. 2019. Strong inconsis-
tency. Artificial Intelligence 267 (2019), 78–117.

[6] Giovanni Casini, Thomas Meyer, Kodylan Moodley, and Riku Nortjé. 2014. Rel-
evant closure: A new form of defeasible reasoning for description logics. In
European Workshop on Logics in Artificial Intelligence. Springer, 92–106.

[7] Giovanni Casini, Thomas Meyer, and Ivan Varzinczak. 2019. Taking defeasible
entailment beyond rational closure. In European Conference on Logics in Artificial
Intelligence. Springer, 182–197.

[8] Victoria Chama. 2020. Explanation for defeasible entailment. Master’s thesis.
University of Cape Town.

[9] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato. 2015.
Semantic characterization of rational closure: From propositional logic to de-
scription logics. Artificial Intelligence 226 (2015), 1–33.

[10] Matthew Horridge. 2011. Justification based explanation in ontologies. Ph.D.
Dissertation. University of Manchester.

[11] Ulrich Junker. 2004. Preferred explanations and relaxations for over-constrained
problems. In AAAI-2004.

[12] Adam Kaliski. 2020. An overview of KLM-style defeasible entailment. Master’s
thesis. University of Cape Town.

[13] Aditya Kalyanpur, Bijan Parsia, MatthewHorridge, and Evren Sirin. 2007. Finding
all justifications of OWLDL entailments. In The SemanticWeb. Springer, 267–280.

[14] Aditya Anand Kalyanpur. 2006. Debugging and repair of OWL ontologies. Ph.D.
Dissertation.

[15] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. 1990. Nonmonotonic
reasoning, preferential models and cumulative logics. Artificial intelligence 44,
1-2 (1990), 167–207.

[16] Daniel Lehmann. 1995. Another perspective on default reasoning. Annals of
mathematics and artificial intelligence 15, 1 (1995), 61–82.

[17] Daniel Lehmann and Menachem Magidor. 1992. What does a conditional knowl-
edge base entail? Artificial intelligence 55, 1 (1992), 1–60.

[18] Tu Anh Thi Nguyen. 2013. Generating natural language explanations for entail-
ments in ontologies. Ph.D. Dissertation. The Open University.

[19] Raymond Reiter. 1987. A theory of diagnosis from first principles. Artificial
intelligence 32, 1 (1987), 57–95.

[20] Kostyantyn Shchekotykhin, Gerhard Friedrich, and Dietmar Jannach. 2008. On
computing minimal conflicts for ontology debugging. Model-Based Systems 7
(2008).

[21] Yoav Shoham. 1987. Nonmonotonic Logics: Meaning and Utility.. In IJCAI, Vol. 10.
Citeseer, 388–393.

[22] Yoav Shoham. 1987. Reasoning about change: time and causation from the stand-
point of artificial intelligence. Ph.D. Dissertation. Yale University.

[23] Yoav Shoham. 1987. A Semantical Approach to Nonmonotonic Logics. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 227–250.

[24] Lintao Zhang and Sharad Malik. 2003. Validating SAT solvers using an indepen-
dent resolution-based checker: Practical implementations and other applications.
In 2003 Design, Automation and Test in Europe Conference and Exhibition. IEEE,
880–885.

7


	Abstract
	1 Introduction
	2 Background
	2.1 Propositional Logic
	2.2 Logical Consequence
	2.3 Consequence Relations

	3 Explanations
	3.1 Justifications
	3.2 Comparing Justifications

	4 Defeasible Reasoning
	4.1 KLM Framework
	4.2 Rational Closure
	4.3 Lexicographic Closure

	5 Defeasible Justifications
	6 Conclusions
	References

