

CS/IT Honours

Final Paper 2021

Title: Propositional Defeasible Explanation

Author: Emily Morris

Project Abbreviation: PDE

Supervisor(s): Professor Tommie Meyer

Category Min Max Chosen

Requirement Analysis and Design 0 20 0

Theoretical Analysis 0 25 25

Experiment Design and Execution 0 20 0

System Development and Implementation 0 20 0

Results, Findings and Conclusions 10 20 20

Aim Formulation and Background Work 10 15 15

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10 0

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

Propositional Defeasible Explanation
Emily Morris

mrremi007@myuct.ac.za

Department of Computer Science

University of Cape Town

ABSTRACT
Explanations provide a way of showing why an entailment holds

in classical logics and are a crucial aspect of reasoning systems.

However, they have not yet been explored in detail for forms of

defeasible reasoning. The KLM framework presents a way of defin-

ing defeasible reasoning by providing a set of properties it should

adhere to. We explore defining and computing defeasible explana-

tions in the context of the KLM framework for propositional logic,

focusing on two well-known forms of KLM defeasible entailment:

Rational Closure and Lexicographic Closure. We utilize a previously

defined algorithm adaption approach to define defeasible justifica-

tions for Lexicographic Closure and apply a general definition for

defeasible explanation, termed strong explanation, to Rational Clo-

sure. We conclude by proposing an general definition for defeasible

explanation in the context of an extension of the KLM framework.

CCS CONCEPTS
• Computing methodologies → Nonmonotonic, default rea-
soning and belief revision; • Theory of computation → Au-
tomated reasoning;

KEYWORDS
Artificial Intelligence, Knowledge Representation and Reasoning,

Propositional Logic, Justifications, Explanations, Defeasible Rea-

soning, KLM Framework

1 INTRODUCTION
Knowledge Representation and Reasoning is a field within Artificial

Intelligence in which information is modeled using formal logic,

allowing one to apply a set of rules and manipulations related to

a form of reasoning [2]. There are many different forms of logic,

with different levels of expressiveness. Classical logics are unable

to express the idea of typicality. This makes it difficult to represent

exceptional knowledge in a succinct way. To see this, consider the

following example.

Example 1.1. Suppose we know the following information:

(1) Birds fly

(2) Penguins are birds

From these statements we can conclude that ‘penguins fly’. Now

suppose we add a new statement ‘penguins do not fly’ i.e. that

penguins are an exceptional type of bird that do not fly. We can

now infer that penguins both fly and do not fly which removes our

ability to reason about penguins altogether as they can no longer

exist.

For this example to work, we should instead phrase the first fact

as ‘birds typically fly’. This captures an idea of uncertainty that

allows us to later retract our conclusions if we learn information

that contradicts them. This form of reasoning is referred to as

defeasible reasoning. In this paper we focus on a particular approach

to defining defeasible reasoning known as the KLM approach [10],

using propositional logic as a basis.

An important aspect of reasoning is being able to infer new

knowledge from existing information. In addition to being able

to infer new knowledge, it is often useful to know why certain

information is being inferred. In formal logic, this is given by ex-

planations. Explanations are an integral part of reasoning services

that support knowledge base comprehension and thus are a crucial

aspect of using reasoning systems practically.

While explanations have been well explored for classical logics,

little work has been done on extending this to forms of defeasible

reasoning. In this paper, we explore and define defeasible explana-

tion within the context of the KLM framework, focusing on two

forms of defeasible entailment: Rational Closure and Lexicographic

Closure. Sections 2 and 3 provide the relevant background for this

paper. In Section 4, we extend the Lexicographic Closure algorithm

to compute a version of a defeasible justification. In Sections 5 and

6 we explore more general definitions for defeasible explanation

and apply these to Rational Closure.

2 BACKGROUND
2.1 Propositional Logic
The basis for propositional logic [1] is given by what are known

as propositional atoms. A propositional atom represents a basic

statement that can be assigned a value of true or false. We use �
to denote an atom that is always false and ⊺ to denote an atom

that is always true. We can recursively build more complicated

statements, called propositional formulas, from atoms using boolean

operators such as ∧,∨,→ and ¬. We use Greek letters 𝛼, 𝛽, . . . to

denote formulas. Formally, 𝛼 ∶= ⊺ ⋃︀ � ⋃︀ 𝑝 ⋃︀ ¬𝛼 ⋃︀ 𝛼 ∧ 𝛼 ⋃︀ 𝛼 ∨ 𝛼 ⋃︀ 𝛼 → 𝛼 .

The semantics for the operators in the last four combinations are

intuitively analogous to the natural language statements: ‘not 𝛼 ’,
‘𝛼 and 𝛼 ’, ‘𝛼 or 𝛼 ‘ and ‘𝛼 implies 𝛼 ’. For statements of the form

𝛼 → 𝛽 , we refer to 𝛼 as the antecedent.

We assign meaning to atoms using interpretations. An interpre-

tation is a function that assigns a truth value to each atom; in this

way it presents a specific version of the world represented by the

atoms. If a formula 𝛼 evaluates to true according to the truth values

and semantics of the operators for an interpretation ℐ , we call ℐ a

model of 𝛼 .
A finite set of propositional formulas is called a knowledge base.

An interpretation is a model of a knowledge base 𝒦 if it is a model

of all the formulas in 𝒦. We say that 𝒦 entails a statement 𝛼 ,

denoted 𝒦 ⊧ 𝛼 , if every model of 𝒦 is a model of 𝛼 . This gives

us the basis for a simple reasoning system which we demonstrate

with the following example.

Example 2.1. The statements in Example 1.1 have the atoms

‘bird’ (b), ‘penguin’ (p): and ‘fly’ (f) and can be expressed as formu-

las, yielding the knowledge base 𝒦:
(1) Birds fly (𝑏 → 𝑓)

(2) Penguins are birds (𝑝 → 𝑏)

Then to see if we can conclude that ‘penguins fly’ (𝑝 → 𝑓), we

check whether 𝒦 ⊧ 𝑝 → 𝑓 .

2.2 Classical Explanation
In reasoning systems, explanations tell us which statements in a

knowledge base are relevant to the entailment between a knowledge

base and an entailed statement [5]. Justifications are a well explored

approach to explanations for classical logics. A justification for the

entailment of a formula 𝛼 is a minimal subset of a knowledge base

that entails 𝛼 . Note one formula may have many justifications in

a knowledge base. Justifications provide a simple and intuitive

way of summarizing why an entailment holds by showing the

exact formulas in the knowledge base which are responsible for the

entailment. The concept of a justification is best illustrated with an

example.

Example 2.2. Suppose one has a knowledge base 𝒦 containing

the following information:

(1) Birds have feet (𝑏 → 𝑓)

(2) Penguins are birds (𝑝 → 𝑏)

(3) Birds have wings (𝑏 →𝑤)

Then 𝒦 ⊧ 𝑝 → 𝑓 , with the justification 𝒥 = {𝑏 → 𝑓 , 𝑝 → 𝑏}, since
{𝑏 → 𝑓 , 𝑝 → 𝑏} ⊧ 𝑝 → 𝑓 and if any statements are removed, the

entailment no longer holds.

A variety of algorithms have been developed for computing

classical justifications [7]. These algorithms can be classified as

either glass-box or black-box algorithms; in this paper we utilize

a black-box algorithm for computing all justifications for a clas-

sical knowledge base. In black-box algorithms, justifications are

computed independently of the underlying reasoning process. This

means they are not restricted to a single form of logic [9], which

allows us to use this algorithm with propositional logic.

2.3 KLM Defeasible Reasoning
Although there are many approaches to defeasible reasoning, one

approach that has been studied extensively in the literature is that

proposed by Kraus, Lehmann and Magidor (KLM) [10]. This ap-

proach extends propositional logic, introducing a defeasible impli-

cation operator ∣∼ which can be viewed as a defeasible analogue

of →. Defeasible implications (DI) of the form 𝛼 ∣∼ 𝛽 , are read as

‘𝛼 typically implies 𝛽’. So for Example 1.1, we would express ‘birds

typically fly’ as 𝑏 ∣∼ 𝑓 .
We must then define how entailment functions for knowledge

bases that contain defeasible implications. Note we assume that

knowledge bases only contain defeasible implications but can ex-

press any classical formula 𝛼 using the defeasible representation

¬𝛼 ∣∼ � [4]. KLM propose restrictions on the definitions for defea-

sible entailment by giving a set of properties, known as the KLM

properties [10, 12], that they should adhere to. Thus, KLM does not

define a single notion of defeasible entailment but rather defines a

class of defeasible entailment relations that have some interesting

theoretical and computational properties [8]. We refer to defini-

tions for defeasible entailment that satisfy the KLM properties as

LM-rational. We denote defeasible entailment as 𝒦 ∣≈ 𝛼 ∣∼ 𝛽 and

use subscripts to denote a particular definition.

2.4 Rational Closure
Rational Closure (RC) is an LM-rational definition for defeasible

reasoning, proposed by Lehmann and Magidor [12]. Rational Clo-

sure can be defined semantically, using what are known as ranked
interpretations, as well as algorithmically. For the purposes of this

paper, we present only the algorithmic definition.

Casini et al. [4] present an algorithm for Rational Closure which

has two distinct phases. The first, given by BaseRank shown in Al-

gorithm 1, creates a ranking of statements. This is done by defining

a series of subsets 𝐸0, 𝐸1, . . . , 𝐸𝑛, 𝐸∞. Our initial subset 𝐸0 is defined

to contain the classical version of each defeasible implication in

𝒦 i.e. 𝐸0 = {𝛼 → 𝛽 ⋃︀ 𝛼 ∣∼ 𝛽 ∈ 𝒦}. Each subsequent subset 𝐸𝑖 is

then defined to contain all the statements in the previous subset

𝐸𝑖−1 for which we can ‘disprove’ the antecedent using statements

in 𝐸𝑖−1. We denote the first subset for which 𝐸𝑖−1 = 𝐸𝑖 as 𝐸∞.

The differences between these subsets are then used to define a

series of disjoint base ranks (or levels) 𝑅0, 𝑅1, . . . , 𝑅∞. These ranks

represent a specificity ranking for 𝒦 where statements in 𝑅𝑖 are

‘more specific’ than statements in 𝑅𝑖−1. Note that 𝑅∞ contains all

classical statements in defeasible form. We use 𝑏𝑟𝒦(𝛼) to denote
the base rank of a formula in the knowledge base 𝒦 and define

𝑏𝑟𝒦(𝛼 ∣∼ 𝛽) = 𝑏𝑟𝒦(𝛼).

Algorithm 1: BaseRank
Input: A knowledge base 𝒦
Output: An ordered tuple (ℛ0, ...,ℛ𝑛−1,ℛ∞, n)

1 i := 0;

2 𝐸0 :=
Ð→𝒦 ;

3 repeat
4 𝐸𝑖+1 ∶= {𝛼 → 𝛽 ∈ 𝐸𝑖 ⋃︀ 𝐸𝑖 ⊧ ¬𝛼};
5 ℛ𝑖 ∶= 𝐸𝑖 ∖ 𝐸𝑖+1;
6 i := i+1;

7 until 𝐸𝑖−1 = 𝐸𝑖 ;
8 ℛ∞ ∶= 𝐸𝑖−1;
9 n := i-1;

10 return n;

We demonstrate how BaseRank is used to create a ranking for a

knowledge base 𝒦 by means of an example.

Example 2.3. Suppose one has the following defeasible knowl-
edge base 𝒦:

(1) Birds typically fly (𝑏 ∣∼ 𝑓)
(2) Penguins typically do not fly (𝑝 ∣∼ ¬𝑓)
(3) Penguins typically swim (𝑝 ∣∼ 𝑠)
(4) Penguins are birds (𝑝 → 𝑏)

(5) Max is a penguin (𝑚 → 𝑝)

Intuitively, since penguins are a specific type of bird, we would

expect statements about penguins to rank higher than those about

birds. The resulting ranking after applying BaseRank is shown in

2

Figure 1. As an example of the base rank notation, note that from

this ranking we can see 𝑏𝑟𝒦(𝑏) = 𝑏𝑟𝒦(𝑏 ∣∼ 𝑓) = 0.

0 𝑏 ∣∼ 𝑓
1 𝑝 ∣∼ ¬𝑓 , 𝑝 ∣∼ 𝑠
∞ 𝑝 → 𝑏,𝑚 → 𝑝

Figure 1: Base ranking of statements for Example 2.3

The second phase of the Rational Closure algorithm, given by

RationalClosure shown in Algorithm 2, uses the ranking pro-

duced by BaseRank to compute the entailment of a defeasible im-

plication 𝛼 ∣∼ 𝛽 . To do this, we check whether we can ‘disprove’ the

antecedent 𝛼 . If we can, we remove the most general information

from our knowledge base; the information in the lowest rank. We

repeat this process until either we can no longer ‘disprove’ the

antecedent, or only the infinite rank remains. At this point we

compute the final defeasible entailment result using the remaining

ranks, the classical version of our defeasible implication, 𝛼 → 𝛽 ,

and classical entailment.

Algorithm 2: RationalClosure
Input: A knowledge base 𝐾 and a DI 𝛼 ∣∼ 𝛽
Output: true, if 𝐾 ∣≈ 𝛼 ∣∼ 𝛽 , otherwise false

1 (𝑅0, 𝑅1, ..., 𝑅∞, n) := BaseRank(𝐾);

2 i := 0;

3 𝑅 ∶= ⋃𝑗<𝑛𝑖=0 𝑅 𝑗 ;
4 while 𝑅∞ ∪ 𝑅 ⊧ ¬𝛼 and 𝑅 ≠ ∅ do
5 𝑅 ∶= 𝑅 ∖ 𝑅𝑖 ;
6 i := i+1;

7 end
8 return 𝑅∞ ∪ 𝑅 ⊧ 𝛼 → 𝛽 ;

Example 2.4. Suppose one has the knowledge base in Example

2.3 and consider the entailment of the statement ‘Max typically does

not fly’ (𝑚 ∣∼ ¬𝑓). Using RationalClosure, BaseRank is first used
to compute the ranking in Figure 1. Then we start by considering

all the ranks and check whether 𝑅0 ∪ 𝑅1 ∪ 𝑅∞ ⊧ ¬𝑚. Since this

holds, 𝑅0 is removed. Then we check whether 𝑅1 ∪ 𝑅∞ ⊧ ¬𝑚.

Since this entailment does not hold, we stop removing ranks and

check whether 𝑅1 ∪ 𝑅∞ ⊧ 𝑚 → ¬𝑓 . Since this entailment holds,

RationalClosure will return true.

0 𝑏 ∣∼ 𝑓
1 𝑝 ∣∼ ¬𝑓 , 𝑝 ∣∼ 𝑠
∞ 𝑝 → 𝑏,𝑚 → 𝑝

Figure 2: Top level of ranking is removed in Example 2.4

3 LEXICOGRAPHIC CLOSURE
As a continuation of Background, in this section we present a de-

scription of Lexicographic Closure (LC), a more permissive LM-

rational definition for defeasible entailment proposed by Lehmann

[11]. Rational Closure is the most conservative form of KLM defea-

sible entailment. Removing entire ranks can lead to statements that

are not related to ‘disproving’ the antecedent also being removed.

Generally, only some statements in the rank are responsible for

‘disproving’ the antecedent. Furthermore, if there are multiple state-

ments within the rank responsible for ‘disproving’ the antecedent,

sometimes only one of these statements needs to be removed. In Lex-

icographic Closure, we remove single statements instead of entire

ranks. Like Rational Closure, Lexicographic Closure can be defined

both semantically and algorithmically; we once again present the

algorithmic definition.

3.1 Sub-Knowledge Base Approach
The Lexicographic Closure algorithm [13] can be seen as a refine-

ment of the Rational Closure algorithm, where we either refine the

ranking or the removal process. For the purposes of this paper, we

rank statements in the same manner as in Rational Closure but

refine the removal of statements. Instead of removing the entire

rank when we can ‘disprove’ the antecedent, we first try removing

statements within the rank with the aim being to remove exactly

the statements responsible for ‘disproving’ the antecedent. Since we

do not initially know which statements these might be and all the

statements have the same rank, there is no obvious way to choose

which statements to remove or in what order to do so. Instead, we

non-deterministically remove statements from the level, consider-

ing all possible ways of removing statements simultaneously, until

either we remove the statements that allow us to ‘disprove’ the

antecedent or the level is empty.

We can do this by simply creating sub-knowledge bases by con-

sidering all subsets of the rank 𝑅𝑖 of a fixed size and then combining

each of these with the remaining ranks𝑅𝑖+1, . . . , 𝑅∞. If𝑛 is the num-

ber of statements in a rank, then if we consider all subsets of size

𝑛 − 𝑥 we are considering all ways of removing 𝑥 statements from

the rank. We then check if we can ‘disprove’ the antecedent in

these sub-knowledge bases. We start with 𝑥 = 1, retaining as much

information as possible. If we can ‘disprove’ the antecedent in all

the sub-knowledge bases, each sub-knowledge base still contains

the statements required to ‘disprove’ the antecedent and thus we

need to remove more statements. We repeat this process, incre-

menting 𝑥 by 1 each time until either we find an 𝑥 for which some

sub-knowledge base does not ‘disprove’ the antecedent, or 𝑥 = 𝑛
in which case we remove the level and repeat the process with the

next level.

Example 3.1. Suppose one has the following defeasible knowl-
edge base 𝒦:

(1) Birds typically have wings (𝑏 ∣∼𝑤)

(2) Birds typically have four toes (𝑏 ∣∼ 4𝑡)
(3) Birds typically have eyes (𝑏 ∣∼ 𝑒)
(4) Penguins typically do not have both wings and four toes

(𝑝 ∣∼ ¬(𝑤 ∧ 4𝑡))
(5) Penguins are birds (𝑝 → 𝑏)

If BaseRank is applied, we achieve the ranking shown in Figure 3.

Consider the entailment of the statement, ‘penguins typically

have eyes’ (𝑝 ∣∼ 𝑒). Taking the ranked knowledge base, we check

whether we can ‘disprove’ p. Since we can, instead of removing

𝑅0, we consider all ways of removing 1 statement from 𝑅0. This

yields the sub-knowledge bases shown in Figure 4 (we show 𝑅1
and 𝑅∞ once to emphasize their inclusion in all sub-knowledge

3

0 𝑏 ∣∼𝑤,𝑏 ∣∼ 4𝑡,𝑏 ∣∼ 𝑒
1 𝑝 ∣∼ ¬(𝑤 ∧ 4𝑡)
∞ 𝑝 → 𝑏

Figure 3: Base ranking of statements for Example 3.1

bases). Since we can no longer ‘disprove’ p in the second and third

sub-knowledge bases, we stop removing statements.

0 𝑏 ∣∼𝑤,𝑏 ∣∼ 4𝑡 0 𝑏 ∣∼𝑤,𝑏 ∣∼ 𝑒 0 𝑏 ∣∼ 4𝑡,𝑏 ∣∼ 𝑒

1 𝑝 ∣∼ ¬(𝑤 ∧ 4𝑡)
∞ 𝑝 → 𝑏

Figure 4: Sub-knowledge bases for Example 3.1

As in Rational Closure, when we can no longer ‘disprove’ the

antecedent, we compute the final entailment result using classical

entailment. However, since we are now working with a collection

of sub-knowledge bases we need to define how we do this. We

define the final entailment result to be true if it is true in all of the
sub-knowledge bases.

3.2 Combined Formula Approach
We can perform the checking of all sub-knowledge bases for a fixed

subset size in a single step by combining the various statements in

these sub-knowledge bases in an appropriate way. The method for

formula combination if based on the following two facts:

(1) 𝒦 ∪ {𝛼 ∨ 𝛽} ⊧ 𝛾 iff 𝒦 ∪ {𝛼} ⊧ 𝛾 and 𝒦 ∪ {𝛽} ⊧ 𝛾
(2) 𝒦 ∪ {𝛼 ∧ 𝛽} ⊧ 𝛾 iff 𝒦 ∪ {𝛼, 𝛽} ⊧ 𝛾

The first fact tells us that if we combine the formulas that differ

between knowledge bases using the ‘or’ binary connective, we can

compute exactly those statements entailed by all the knowledge

bases. The second fact tells us that, in the context of classical entail-

ment, we can treat multiple statements within a knowledge base

as a single statement created by combining the individual state-

ments using the ‘and’ binary connective. Thus we can combine the

multiple sub-knowledge base checks as follows:

(1) When considering a subset {𝛼1, 𝛼2, . . . , 𝛼𝑦 } of a rank 𝑅𝑖 of

size 𝑦, instead consider 𝑆 = 𝛼1 ∧ 𝛼2 ∧ . . . ∧ 𝛼𝑦 .
(2) When considering all possible subsets 𝑆1, 𝑆2, . . . , 𝑆𝑧 of 𝑅𝑖

of size 𝑦 separately, instead consider 𝑆1 ∨ 𝑆2 ∨ . . . ∨ 𝑆𝑧 .
Since the rest of the knowledge base ranks are included in all the

sub-knowledge bases, we simply replace the rank 𝑅𝑖 we are consid-

ering with the combined formula we create. This combined formula

approach provides a way of presenting a succinct algorithmic defi-

nition, given by LexicographicClosure shown in Algorithm 3.

As a full demonstration of LexicographicClosure, consider
the following example.

Example 3.2. Suppose one has the knowledge base 𝒦 presented

in Example 3.1 and consider once again the entailment of the state-

ment 𝑝 ∣∼ 𝑒 . Using LexicographicClosure, we start by ranking𝒦
using BaseRank to achieve the ranking in Figure 3. We then check

whether 𝑅0∪𝑅1∪𝑅∞ ⊧ ¬𝑝 . Since this holds, we consider all ways of

Algorithm 3: LexicographicClosure
Input: A knowledge base 𝒦 and DI 𝛼 ∣∼ 𝛽
Output: true, if 𝐾 ∣≈𝐿𝐶 𝛼 ∣∼ 𝛽 , otherwise false

1 (ℛ0, ...,ℛ𝑛−1,ℛ∞, n) := BaseRank(𝒦);
2 i := 0;

3 ℛ ∶= ⋃𝑗<𝑛𝑗=0 ℛ𝑗 ;

4 whileℛ∞ ∪ℛ ⊧ ¬𝛼 andℛ ≠ ∅ do
5 ℛ ∶= ℛ ∖ℛ𝑖 ;
6 m := |ℛ𝑖 |-1;
7 ℛ𝑖,𝑚 := ⋁𝑋∈Subsets(ℛ𝑖 ,𝑚)⋀𝑥∈𝑋 𝑥 ;
8 whileℛ∞ ∪ℛ∪ {ℛ𝑖,𝑚} ⊧ ¬𝛼 and𝑚 > 0 do
9 m := m-1;

10 ℛ𝑖,𝑚 := ⋁𝑋∈Subsets(ℛ𝑖 ,𝑚)⋀𝑥∈𝑋 𝑥 ;
11 end
12 ℛ ∶= ℛ ∪ {ℛ𝑖,𝑚};
13 i := i+1;

14 end
15 return 𝑅∞ ∪ 𝑅 ⊧ 𝛼 → 𝛽 ;

removing 1 formula from 𝑅0, replacing 𝑅0 with the appropriate com-

bined formula as shown in Figure 5 which is denoted as 𝑅0,2. Now

we check whether 𝑅0,2 ∪ 𝑅1 ∪ 𝑅∞ ⊧ ¬𝑝 . This does not hold, so we

stop removing statements and checkwhether𝑅0,2∪𝑅1∪𝑅∞ ⊧ 𝑝 → 𝑒 .

Since this entailment holds, LexicographicClosure returns true.

0 𝑏 ∣∼𝑤,𝑏 ∣∼ 4𝑡,𝑏 ∣∼ 𝑒
0, 2 (𝑏 ∣∼𝑤 ∧ 𝑏 ∣∼ 4𝑡) ∨ (𝑏 ∣∼𝑤 ∧ 𝑏 ∣∼ 𝑒) ∨ (𝑏 ∣∼ 4𝑡 ∧ 𝑏 ∣∼ 𝑒)
1 𝑝 ∣∼ ¬(𝑤 ∧ 4𝑡)
∞ 𝑝 → 𝑏

Figure 5: Top level of ranking is replaced for Example 3.2

4 WEAK JUSTIFICATIONS FOR
LEXICOGRAPHIC CLOSURE

We begin our work in this paper by considering an adaption of

the Lexicographic Closure algorithm to allow for the computation

of a form of defeasible justification. While justifications and their

computation are clearly defined for classical logics, little work has

been done on defining and computing justifications for forms of

defeasible reasoning. The adaption approach we follow in this sec-

tion is proposed by Chama [5] as a method for computing and

defining defeasible justifications for Rational Closure. We refer to

justifications produced in this algorithm adaption approach as weak
justifications.

4.1 Motivation for the Approach
Whether a statement is defeasibly entailed by a knowledge base

when using Lexicographic or Rational Closure is determined by

whether it is classically entailed by the remaining ranks after the

required removal of statements. It thus makes sense to provide

classical justifications from these remaining ranks as our overall

defeasible justifications.

4

We demonstrated in Section 3 how the Lexicographic Closure

algorithm can be viewed as performing classical entailment checks

in a series of sub-knowledge bases. For the final entailment to hold,

the classical entailment of the classical version of the defeasible

implication must hold in each sub-knowledge base. Thus there must

exist classical justifications for the classical entailment in each of

these sub-knowledge bases. These are the justifications we wish to

compute as our defeasible justifications.

When computing these justifications, it is more appropriate to

use the idea of subsets and sub-knowledge bases rather than our

combined formula representation. This allows us to deal with indi-

vidual formulas and pinpoint exactly those required for the entail-

ment instead of a larger group of formulas.

4.2 Algorithm
The basic idea behind the algorithm we present is to reconstruct the

sub-knowledge bases used in the final entailment computation, and

then apply an algorithm for computing all justification for classical

logics to each of these sub-knowledge bases. To do this, we first

modify LexicographicClosure to create

LexicographicClosureForJustifications shown in Algorithm

7 in Appendix A. This modification is done by introducing a new

variable𝑚, which represents the subset size that is used in the final

classical entailment computation, and returning𝑚 and 𝑖 , the lowest

complete level used in the computation, as an ordered pair along

with the final defeasible entailment result. This provides us with all

the information required to reconstruct the final sub-knowledge

bases.

Example 4.1. Given the knowledge base and query in Exam-

ple 3.2, LexicographicClosureForJustifications returns true,
along with the ordered pair (1, 2).

Since we require our entailment to hold in all sub-knowledge

bases, it does not necessarily make sense to present a single set of

statements as a final justification. If we computed and combined

our various sets of justifications, we could lose information on the

structure of the sub-knowledge bases and thus only provide partial

information as to why the final entailment holds. For example,

some sub-knowledge bases may contain justifications that are not

contained in other sub-knowledge bases, and thus providing one

of these justifications as the final defeasible justification would

be incorrect. We instead want to retain a structure that refers to

which statements are responsible for the entailment in which sub-

knowledge bases. Thus we present a tuple of justifications, where

the 𝑖’th element in the tuple is a justification for the entailment in

the 𝑖’th sub-knowledge base.

If we are working with a complete level i.e.𝑚 = 0, we have a

single knowledge base and thus compute a set of 1-tuples. This is

simply the set of classical justifications in the remaining full levels

and is the set that would have been computed by the adapted algo-

rithm for Rational Closure. Note that if we do not require a level of

structure we can extract single justifications from the tuples, but it

would be difficult to produce these tuples just given a set of justi-

fications. We present ComputeDefeasibleJustifications, given
by Algorithm 4, as a formal algorithm for computing defeasible

justifications for Lexicographic Closure.

Algorithm 4: ComputeDefeasibleJustifications

Input: A knowledge base 𝒦 and DI 𝛼 ∣∼ 𝛽
Output: Set of all justifications for 𝐾 ∣≈𝐿𝐶 𝛼 ∣∼ 𝛽

1 (ℛ0, ...,ℛ𝑛−1,ℛ∞, n) := BaseRank(𝒦);
2 (i, m) := LexicographicClosureForJustifications(𝒦, 𝛼 ∣∼ 𝛽);
3 ℛ ∶= ⋃𝑗<𝑛𝑗=𝑖 ℛ𝑗 ;

4 𝒥 := ∅;
5 if m > 0 then
6 subsets := Subsets(𝑅𝑖−1, m);

7 x := 0;

8 for S in subsets do
9 ℱ := 𝑆 ∪ℛ∪ℛ∞;

10 𝒥𝑖 := ComputeAllJustifications(ℱ , 𝛼 → 𝛽);
11 x := x+1;

12 end
13 𝒥 := 𝒥0 × 𝒥1 × . . . × 𝒥𝑥−1;
14 else
15 𝒥 := ComputeAllJustifications(ℛ ∪ℛ∞);
16 return 𝒥 ;

Example 4.2. Suppose one has the knowledge base from Exam-

ple 3.2. Consider the defeasible justifications for the entailment of

the statement ‘penguins typically have eyes’ (𝑝 ∣∼ 𝑒). This entail-
ment has the sub-knowledge bases shown in Figure 4. Thus the

justifications for the entailment in each sub-knowledge base are as

follows:

𝒥0 = {{𝑏 ∣∼𝑤, 𝑝 ∣∼ ¬(𝑤 ∧ 4𝑡), 𝑏 ∣∼ 4𝑡, 𝑝 → 𝑏}}
𝒥1 = {{𝑝 → 𝑏,𝑏 ∣∼ 𝑒}}
𝒥2 = {{𝑝 → 𝑏,𝑏 ∣∼ 𝑒}}

The set of all justifications is then the cross product of these sets.

Therefor there is a single defeasible justification:

({𝑏 ∣∼𝑤, 𝑝 ∣∼ ¬(𝑤 ∧ 4𝑡), 𝑏 ∣∼ 4𝑡, 𝑝 → 𝑏},
{𝑝 → 𝑏,𝑏 ∣∼ 𝑒}, {𝑝 → 𝑏,𝑏 ∣∼ 𝑒})

This example also serves to illustrate that, unlike in Rational

Closure, we might still be able to ‘disprove’ our antecedent 𝛼 in

some of the sub-knowledge bases we reconstruct. Thus some of

our justifications for the final entailment may include justifications

for ¬𝛼 . For example, the justification in 𝒥0 in Example 4.2 is a

justification for ¬𝑝 . In a justification for ¬𝛼 , we have essentially
lost our ability to reason about 𝛼 and thus these justifications are

more informative about the sub-knowledge base structure than the

actual formula entailment.

While it is important to maintain the sub-knowledge base struc-

ture in our defeasible justifications, this approach is only effective

when there are justifications that contain statements in the subset

rank level. Otherwise, if all the justifications are contained in higher

ranks, our tuple may have the same justification for each element

and thus will have the same level of description as a single set. To

potentially avoid this, we can use the combined formula approach

along with the algorithm for defeasible justifications for Rational

Closure to verify whether information in the subset rank is a part

of the final entailment, before using this more refined algorithm.

5

5 STRONG JUSTIFICATIONS FOR RATIONAL
CLOSURE

While weak justifications present an intuitive and simple approach

to defining defeasible explanation, their level of description is lim-

ited.We are only presenting information as to why the final classical

entailment holds and are thus disregarding the rest of the reasoning

process. In this section, we apply a more comprehensive defini-

tion for defeasible explanation, referred to as strong explanation,

proposed by Brewka et al. [3] to KLM style reasoning, to produce

what we refer to as strong justifications. In particular, we look at

defining what constitutes a strong justification for Rational Closure

and explore an algorithm for computing these strong justifications.

5.1 Motivation
One of the reasons why justifications work well in classical rea-

soning is due to the property of monotonicity, which means that

anything entailed by a justification is entailed by the knowledge

base. However, in the defeasible case, the rest of the knowledge

base might contain information contradictory to the information

in our justification. Brewka et al. [3] address this by extending the

definition of a justification to include an extra property that states

that if we add any statements to our justification, the justification

should still defeasibly entail our statement.

This strengthening of the classical justification definition presents

an interesting approach to defining defeasible explanation by view-

ing it as extension of a well established form of classical explanation.

Thus, since this definition is proposed as a general definition for

all forms of defeasible reasoning, we wish to assess the appropri-

ateness of its application as a definition for defeasible explanation

within the KLM framework. In this initial assessment we restrict

ourselves to just considering Rational Closure due to its level of

simplicity.

5.2 Overview of the Approach
Since weak justifications are a subset of our knowledge base that

entail our statement, they seem to present a good basis for defining

strong justifications. However, not all weak justifications fulfil the

extended criteria of strong justifications. As an example of such a

weak justification, consider the following defeasible entailment.

Example 5.1. Suppose one has a knowledge base 𝒦 containing

the following information:

(1) If something walks it typically does not fly (𝑤 ∣∼ ¬𝑓)
(2) Pigeons typically fly (𝑝 ∣∼ 𝑓)
(3) Pigeons typically walk (𝑝 ∣∼𝑤)

This knowledge base has the ranking shown in Figure 6. Consider

the entailment of the statement ‘if something is a pigeon and it

walks then it typically flies’ (𝑝 ∧𝑤 ∣∼ 𝑓). The weak justification

for this statement is𝒲 = {𝑝 ∣∼ 𝑓 }.

0 𝑤 ∣∼ ¬𝑓
1 𝑝 ∣∼𝑤, 𝑝 ∣∼ 𝑓
∞

Figure 6: Base ranking of statements for Example 5.1

Now consider what happens when the statement 𝑤 ∣∼ ¬𝑓 is

added to𝒲 . Ranking𝒲 ∪ {𝑤 ∣∼ ¬𝑓 } yields the ranking shown in

Figure 7. However, now when computing the entailment of 𝑝 ∧𝑤 ∣∼
𝑓 , 𝑅0 ⊧ ¬(𝑝 ∧𝑤) and so 𝑅0 is removed. But then ∅ ⊧ (𝑝 ∧𝑤) → 𝑓

is computed as the final entailment result, which does not hold.

Thus𝒲 is not a strong justification since𝒲 ∪{𝑤 ∣∼ ¬𝑓 } does not

entail our statement.

0 𝑤 ∣∼ ¬𝑓 , 𝑝 ∣∼ 𝑓
∞

Figure 7: Base ranking of subset for Example 5.1

The issue that arises in Example 5.1 is that we can add infor-

mation to our weak justification that allows us to ‘disprove’ the

antecedent 𝛼 of our entailed statement but not ‘disprove’ all the an-

tecedents of our statements in our weak justification. This leads to

some of the statements in our weak justification getting ‘mixed into’

lower ranks in which we can still ‘disprove’ 𝛼 . These statements are

then removed during the process of the algorithm, causing our final

entailment computation to return false since𝒲 contains exactly

those statements required to ensure the final entailment holds.

However, we can take our weak justification𝒲 in Example 5.1

and extend it to create the set 𝒮 = {𝑝 ∣∼ 𝑓 , 𝑝 ∣∼𝑤}which is a strong
justification. In 𝒮 , we have addressed our previous issue by adding

statements to𝒲 to ensure that whenever we can ‘disprove’ the

antecedent of our entailed statement 𝛼 we can also ‘disprove’ all the

antecedents of the statements in𝒲 . Essentially, to create a strong

justification from a weak justification𝒲 , we are looking to extend

𝒲 to create a set 𝒮 such that, no matter what statements we add

to 𝒮 from our original knowledge base 𝒦, the following partition

is maintained when we rank our statements.

0
[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀

can ‘disprove’ 𝛼 in these

ranks

⋮
𝑥

𝑥 + 1
[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀

cannot ‘disprove’ 𝛼 and𝒲
is contained in these ranks

⋮
∞

We also need to perform this extension in a manner that ensures

the final set is minimal and thus adheres to the original justification

criterion of minimality.

5.3 Algorithm
To create the partition described in the previous section, we need

to look at all the ways of ‘disproving’ our various antecedents in

the context of the ranking of the original knowledge base. We need

to ensure a weak justification is always ranked above our ways

of ‘disproving’ 𝛼 , which are all the justifications for ¬𝛼 in 𝒦. We

denote a justification for ¬𝛼 as 𝒥¬𝛼 . To do this, we start by first

defining the rank of a subset 𝒦′ of a knowledge base 𝒦 to be the

rank of the lowest ranked statement in𝒦′ in the ranking of𝒦. This
provides a useful way of defining the ranking of our justifications

by classifying them by the minimum rank we have to remove in

order for the justification to no longer hold in 𝒦.
6

Example 5.2. Consider the knowledge base 𝒦 in Figure 8 and

consider the subset 𝒦′ = {4𝑡 ∣∼ ¬𝑓 , 𝑠𝑝 ∣∼ 𝑓 }. The statement 4𝑡 ∣∼
¬𝑓 has rank 2 in𝒦 and the statement 𝑠𝑝 ∣∼ 𝑓 has rank 3 in𝒦. Thus
𝒦′ has rank 2 in 𝒦.

0 𝑎 ∣∼ ¬𝑤
1 𝑏 ∣∼𝑤,𝑏 ∣∼ 𝑓 ,𝑏 ∣∼ 𝑗
2 𝑝 ∣∼ ¬𝑓 , 4𝑡 ∣∼ ¬𝑓 , 4𝑡 ∣∼ 𝑏, 4𝑡 ∣∼ ¬ 𝑗
3 𝑠𝑝 ∣∼ 𝑓
∞ 𝑝 → 𝑏, 𝑠𝑝 → 𝑝,𝑏 → 𝑎

Figure 8: Base ranking of statements for Example 5.2

We restrict ourselves to considering strong justifications for

entailments where all justifications 𝒥¬𝛼 and weak justifications

have finite rank. This means we can build up a sequences of subsets

(𝐾0, 𝐾1, . . . , 𝐾𝑥) where:

(1) 𝑏𝑟𝐾𝑖
(𝛾) = 𝑖

(2) For all 𝐾
′ ⊂ 𝐾𝑖 , 𝑏𝑟𝐾 ′(𝛾) < 𝑏𝑟𝐾𝑖

(𝛾)
We create such sequences for our weak justification𝒲 and for all

𝒥¬𝛼 with 𝛾 = 𝛼 for 𝒥¬𝛼 and 𝛾 = 𝛼 ∧ ¬𝛽 for𝒲 . To create these

sequences, we choose an appropriate initial subset to be 𝐾1 (either

𝒲 or 𝒥¬𝛼) and then define each successive set 𝐾𝑖 to be a minimal

set which contains the preceding set 𝐾𝑖−1 and simultaneously ‘dis-

proves’ all the antecedents of the statements in 𝐾𝑖−1, checking to
ensure criteria (1) and (2) are fulfilled by 𝐾𝑖 .

Essentially, these sequences represent the minimal ways of ‘push-

ing up’ our justifications 𝒥¬𝛼 and our weak justification, where

each subsequent set pushes the justification up by one rank. How-

ever, while we wish to consider all the possible ways of ‘pushing

up’ our justifications 𝒥¬𝛼 , we only wish to consider some of the

ways of ‘pushing up’ the weak justification. These are the ways

in which the weak justification is ranked higher than the rank of

the highest ranked justification 𝒥¬𝛼 in 𝒦 in the final set of the

sequence. As an illustration of why we require this, consider the

following example.

Example 5.3. Suppose one has the knowledge base in Figure

8 and consider the entailment of the statement (𝑠𝑝 ∧ 4𝑡) ∣∼ 𝑓 ,

which has the weak justification 𝒲 = {𝑠𝑝 ∣∼ 𝑓 }. Now consider

the justification 𝒥¬𝛼 = {𝑏 ∣∼ 𝑓 , 4𝑡 ∣∼ ¬𝑓 , 4𝑡 ∣∼ 𝑏} and two possible

ways of ‘pushing up’ 𝒲 and 𝒥¬𝛼 , shown in Figure 9.

0 𝑎 ∣∼ ¬𝑤
1 𝑏 ∣∼𝑤, 𝑠𝑝 ∣∼ 𝑓
∞ 𝑠𝑝 → 𝑝,𝑏 → 𝑎, 𝑝 → 𝑏

(a) ‘Pushing up’ 𝒲

0 𝑎 ∣∼ ¬𝑤
1 𝑏 ∣∼𝑤, 𝑏 ∣∼ 𝑓
2 4𝑡 ∣∼ ¬𝑓 , 4𝑡 ∣∼ 𝑏
∞ 𝑏 → 𝑎

(b) ‘Pushing up’ 𝒥¬𝛼

Figure 9: Base ranking of statements for Example 5.3

There is no way of adding statements from the ranking in (a) to

𝒲 to ensure that𝒲 is ‘pushed above’ 𝒥¬𝛼 in the ranking shown

in (b), since the statements in ranking (a) can give𝒲 a maximum

ranking of 1, while 𝒥¬𝛼 also has a ranking of 1.

To ensure we are constructing only the appropriate ways of

‘pushing up’ our weak justification, we use the 𝐸 subsets described

for BaseRank in Section 2.4. By choosing statements from the set 𝐸𝑖 ,

we are ensuring that these statements can be ‘pushed up’ to a rank

of at least 𝑖 . Thus we initially select statements for simultaneously

‘disproving’ the antecedents of our statements in𝒲 from the set

𝐸𝑛 , where 𝑛 is the rank of the highest ranked justification 𝒥¬𝛼
in 𝒦. We then work backwards through the 𝐸 sets, continuously

choosing the minimum number of statements from 𝐸𝑖 required to

‘disprove’ the statements we previously added from 𝐸𝑖+1, until we
have a sequence in which the rank of the weak justification in the

final set of the sequence is higher than 𝑛. This will be the minimum

number of statements we need to ‘push’ 𝒲 above any justification

𝒥¬𝛼 in 𝒦.
We present ComputeSubsetSequences, shown in Algorithm 5,

as a formal algorithm for computing the appropriate sequences for

weak justifications. This uses the recursive algorithm Sequences,
shown in Algorithm 6, as a sub-process. Proposition 5.4, which is

proven in Appendix B, states that ComputeSubsetSequences will
always compute an appropriate sequence for some weak justifica-

tion.

Proposition 5.4. Let 𝒦 be a knowledge base and 𝛾 a formula.
Provided 𝑏𝑟𝒦(𝛾) ≠ ∞, ComputeSubsetSequences returns at least
one sequence of sets.

Algorithm 5: ComputeSubsetSequences

Input: A knowledge base 𝒦, a formula 𝛼 , the rank n

≤ 𝑏𝑟𝒦(𝛼) required for 𝛼 in the final subset of a

sequence

Output: Set of all sequences (𝐾1, 𝐾2, ..., 𝐾𝑛), where 𝛼 has

𝑏𝑟𝐾𝑖
(𝛼) = 𝑖 , and each 𝐾𝑖 is minimal

1 i := 0;

2 𝐸0 :=
Ð→𝒦 ;

3 repeat
4 𝐸𝑖+1 ∶= {𝛼 → 𝛽 ∈ 𝐸𝑖 ⋃︀ 𝐸𝑖 ⊧ ¬𝛼};
5 i := i+1;

6 until 𝐸𝑖−1 = 𝐸𝑖 ;
7 𝐸∞ := 𝐸𝑖−1;
8 sequences := Sequences((𝐸0, . . . , 𝐸∞), 𝛼, (∅), 𝑛, 1);
9 return sequences;

Note in Sequences, MinimalExtension(𝛼 , 𝐴, 𝐵) computes the set

of all sets𝑀 where𝑀 is attained by adding the minimum number

of statements from 𝐴 to 𝐵 so that 𝐵 entails 𝛼 and Minimize(𝐴, 𝛼)
returns true if we can remove statements from 𝐴 and maintain the

ranking of 𝛼 in 𝐴. As a demonstration of how

ComputeSubsetSequences derives a sequence for a weak justifica-

tion, consider the following example.

Example 5.5. Consider the knowledge base𝒦 in Figure 8 and the

weak justification𝒲 = {𝑠𝑝 ∣∼ 𝑓 } for the entailment of (𝑠𝑝∧4𝑡) ∣∼ 𝑓 .
Since the highest ranked justification for ¬(𝑠𝑝 ∧ 4𝑡) in 𝒦 has rank

2, 𝒲 must have a rank of 3. Thus the algorithm computes the

7

Algorithm 6: Sequences
Input: A knowledge base 𝒦= (𝐸0, 𝐸1, ...𝐸∞), a formula 𝛼 ,

the current sequence of subsets (𝐾0, . . . , 𝐾𝑖−1), the
rank n of 𝛼 in the final subset of the sequence, the

index i of the current subset

Output: A set of sequences of length n

1 if 𝑖 > 𝑛 then
2 return {(𝐾0, . . . , 𝐾𝑖−1)};
3 𝒜 := ¬𝛼 ∧ (⋀𝛽∈Antecedents(𝐾𝑖−1) ¬𝛽);
4 S := MinimalExtension(𝒜, 𝐸𝑛−𝑖 , 𝐾𝑖−1);
5 ℱ := ∅;
6 if S ≠ ∅ then
7 for 𝐾𝑖 in S do
8 if 𝑏𝑟𝐾𝑖

(𝛼) = 𝑖 and Minimize(𝐾𝑖 , 𝛼) is False then
9 ℱ :=

ℱ ∪ Sequences(𝒦, 𝛼, (𝐾0, . . . , 𝐾𝑖−1, 𝐾𝑖), 𝑛, 𝑖 + 1);
10 end
11 end
12 return ℱ ;

sequences of subsets (𝐾0, 𝐾1, 𝐾2, 𝐾3, 𝐾4) where:

𝐾0 = ∅
𝐾1 = {𝑠𝑝 ∣∼ 𝑓 }
𝐾2 = 𝐾1 ∪ {𝑝 ∣∼ ¬𝑓 , 𝑠𝑝 → 𝑝}
𝐾3 = 𝐾2 ∪ {𝑏 ∣∼ 𝑓 , 𝑝 → 𝑏}
𝐾4 = 𝐾3 ∪ {𝑏 ∣∼𝑤,𝑎 ∣∼ ¬𝑤,𝑏 → 𝑎}

Wedefine a similar algorithm ComputeGeneralSubsetSequences
with a similar sub-process GeneralSequences, shown in Algo-

rithms 8 and 9 respectively in Appendix B, for computing all the

‘pushing up’ sequences for the justifications 𝒥¬𝛼 . However, since
we do not require these justifications to achieve a particular rank,

we do not have to compute the 𝐸 subsets as in lines 1-7 of

ComputeSubsetSequences. Instead we can work with the classical

version of 𝒦. In our sub-process algorithm, instead of checking

if we have reached a required 𝑛 value to return our sequence, we

now return our sequence when we can no longer ‘disprove’ our

antecedents in a minimal manner that adheres to our required cri-

teria i.e. when ℱ is empty. Proposition 5.6 states the soundness

and completeness of ComputeSubsetSequences and is proven in

Appendix B.

Proposition 5.6. Let𝒦 be a knowledge base and𝛾 a formula. Pro-
vided 𝑏𝑟𝒦(𝛾) ≠ ∞, ComputeGeneralSubsetSequences computes
exactly𝑀 ⊆ 𝒦 such that for all𝑀′ ⊂ 𝑀,𝑏𝑟𝑀′(𝛾) < 𝑏𝑟𝑀(𝛾) i.e. M is
minimal in terms of the ranking of 𝛾 .

Given the ability to compute these sequences, we now define our

method for extending weak justifications to strong justifications.

If we choose a specific sequence for a weak justification, we can

use the subsets in the sequence to ensure that whenever one of our

justifications 𝒥¬𝛼 is ‘pushed up’ the ranks in some subset of 𝒦, so
is our weak justification. To do this, we start by considering each

sequence 𝒥 for each justification 𝒥¬𝛼 individually and look at all

the ways of adding the minimum number of statements from our

weak justification ‘pushing up’ sequence to ensure that the weak

justification is ‘pushed above’ 𝒥¬𝛼 in each subset in the sequence

𝒥 . We start with 𝒮 containing our weak justification and then

iterate through each subset 𝐾
𝒥
𝑖 in 𝒥 , checking whether we can

‘disprove’ the antecedents of our statements in 𝒮 using 𝐾
𝒥
𝑖 and

𝒮 . If we cannot, we use 𝐾𝒲𝑖+1 from our weak justification sequence

and consider all the ways of adding the minimum number of re-

quired statements to 𝒮 so that together 𝐾
𝒥
𝑖 and 𝒮 ‘disprove’ all

the antecedents of the statements previously in 𝒮 . We repeat this

process until we have considered all sets in the sequence. Essen-

tially, what we have done is create all the minimal sets 𝑆 that ensure

that whenever 𝒥¬𝛼 has rank 𝑗 in our sequence, our weak justifi-

cations has at least rank 𝑗 + 1. This process is formally defined by

StrongSequences shown in Algorithm 10 in Appendix B. Proving

soundness and completeness for this algorithm is left as future

work.

Having constructed all these minimal sets 𝑆 for each sequence

for our justifications 𝒥¬𝛼 , we now consider all possible ways of

taking an 𝑆 set for each sequence and combining them. We then

take the smallest such set as our strong justification 𝒮 . Minimiz-

ing in this manner ensures that the final set created is minimal

and thus is a strong justification. This full process is defined by

StrongJustification, shown in Algorithm 11. Proposition 5.7

states the correctness of StrongJustification. Both the algo-

rithm and the proof are presented in Appendix B

Proposition 5.7. Let 𝒦 be a knowledge base and 𝛼 ∣∼ 𝛽 a de-
feasible implication. Provided 𝑏𝑟𝒦(𝛼) ≠ ∞, StrongJustification
returns a strong justification for the entailment 𝒦 ∣≈ 𝛼 ∣∼ 𝛽 .

Example 5.8. Consider once again the knowledge base 𝒦 in Fig-

ure 8 and the entailment of the statement (𝑠𝑝∧4𝑡) ∣∼ 𝑓 . This has the
weak justification and ‘pushing up’ sequence shown in Example

5.5. 𝒦 has the justification ‘pushing up’ sets shown in Appendix B.

Using StrongJustification we compute:

𝒮 = {𝑠𝑝 ∣∼ 𝑓 , 𝑝 ∣∼ ¬𝑓 ,𝑏 ∣∼ 𝑓 , 𝑠𝑝 → 𝑝, 𝑝 → 𝑏}

5.4 Limitations of the Approach
While we have defined strong justification as an extension of weak

justifications, not every weak justification can be extended to cre-

ate a strong justification. As an illustration of this, consider the

following example.

Example 5.9. Suppose one has the knowledge base 𝒦 shown in

Figure 10 and consider the entailment of the statement 𝑠𝑝 ∧ 𝑝 ∣∼
𝑚 ∨𝑤 . This entailment has two weak justifications:

(1) 𝒲1 = {𝑠𝑝 ∣∼ 𝑓 , 𝑓 ∣∼𝑚}
(2) 𝒲2 = {𝑠𝑝 ∣∼ 𝑓 , 𝑓 ∣∼𝑤}

𝒲1 cannot be extended to create a strong justification. If initially

𝒮 =𝒲1, then to ensure 𝒮 ∪ {𝑝 ∣∼ ¬𝑓 } ∣≈𝑅𝐶 𝑠𝑝 ∧ 𝑝 ∣∼𝑚 ∨𝑤 , the
statements {𝑙 ∣∼ ¬𝑥, 𝑓 ∣∼ 𝑤,𝑤 ∣∼ 𝑥,𝑤 → 𝑙} need to be added to

𝒮 . Then 𝒮 = {𝑙 ∣∼ ¬𝑥, 𝑓 ∣∼ 𝑤,𝑤 ∣∼ 𝑥,𝑤 → 𝑙, 𝑠𝑝 ∣∼ 𝑓 , 𝑓 ∣∼ 𝑚}. But
now if 𝑓 ∣∼ 𝑚 is removed from 𝒮 , we still have 𝒮′ ∣≈ 𝑠𝑝 ∧ 𝑝 ∣∼
𝑚 ∨𝑤 for all 𝒮′ ⊆ 𝒮 ⊆ 𝒦. Thus due to the minimality property

of strong justifications,𝒲1 cannot be extended to create a strong

justification.

8

0 𝑝 ∣∼ ¬𝑓 , 𝑙 ∣∼ ¬𝑥
1 𝑠𝑝 ∣∼ 𝑓 , 𝑓 ∣∼𝑚, 𝑓 ∣∼𝑤,𝑤 ∣∼ 𝑥
∞ 𝑤 → 𝑙

Figure 10: Base ranking for statements in Example 5.9

Sequences ensures that we only ever use those weak justifica-

tions that can be extended to form strong justifications; we are

unable to create a minimal ‘pushing up’ sequence for𝒲1 and thus

it is not suitable for extension.

It is also not the case that all strong justifications can be defined

as an extension of a weak justification. As a demonstration of this

fact, consider the following example.

Example 5.10. Suppose one has a knowledge base 𝒦 shown

in Figure 11 and consider the entailment of the statement 𝑝 ∣∼ 𝑠 .
This has the weak justification𝒲 = {𝑝 ∣∼ ¬𝑓 ,¬𝑓 ∣∼ 𝑠}. However,
consider rather ℬ = {𝑏 ∣∼ 𝑠, 𝑝 → 𝑏} as the base set for extension. ℬ
is not a weak justification since it contains information removed

during the Rational Closure algorithm. However, ℬ can be extended

to form the strong justification

𝒮 = {𝑏 ∣∼ 𝑠,¬𝑓 ∣∼ 𝑠, 𝑟 ∣∼𝑤,¬𝑓 ∣∼ ¬𝑤,¬𝑓 ∣∼ 𝑟, 𝑝 → 𝑏}.
First notice 𝒮 ∣≈𝑅𝐶 𝑝 ∣∼ 𝑠 . Now consider what happens if any

statements are added to 𝒮 . If we add any statements that cause ℬ
to be thrown away, namely 𝑝 ∣∼ ¬𝑓 , the set then contains𝒲 and

so the entailment still holds.

0 𝑏 ∣∼ 𝑓 ,𝑏 ∣∼ 𝑠, 𝑟 ∣∼𝑤
1 𝑝 ∣∼ ¬𝑓 ,¬𝑓 ∣∼ ¬𝑤,¬𝑓 ∣∼ 𝑟,¬𝑓 ∣∼ 𝑠
∞ 𝑝 → 𝑏

Figure 11: Base ranking of statements for Example 5.10

Strong justifications that are not derived from weak justifica-

tions lack intuitive similarity to the reasoning process since they

seem to present the information required to ‘disprove’ the actual

information we used as part of our conclusion.

6 GENERAL KLM DEFEASIBLE
EXPLANATION

Strong justificationsmay not provide the level of description that we

require from a defeasible explanation for KLM style reasoning. For

Rational Closure, due to the minimality requirement, if information

is included in all the ways of ‘pushing up’ the justifications 𝒥¬𝛼
it will not be included in the final strong justification. Thus, a

strong justification may only present partial information about

the ranking involved in the final entailment. However, since the

ranking of statements is an integral part of the KLM reasoning

process, depending on the application of the explanation, we may

want to fully capture the ranking in our explanation. In this section

we present a general definition for defeasible explanation in the

context of an extension of the KLM framework that aims to convey

the notion of the ranking involved in the entailment. Intuitively,

along with presenting the information that influences the final

entailment, we also want to provide reasoning as to why this was

the most ‘specific’ information used.

6.1 Definition
Casini et al. [4] present an extension of the KLM framework, mo-

tivating for additional properties that any reasonable definition

for defeasible entailment should adhere to. This form of defeasible

reasoning is termed rational defeasible entailment. Both Rational

Closure and Lexicographic Closure are forms of rational defeasible

entailment. In fact, any form of rational defeasible entailment can

be expressed as a refinement of Rational Closure. A rational defea-

sible entailment relation can be defined by a base rank preserving
rank function, which ranks all the formulas that can generated from

a particular set of atoms. Essentially the knowledge base defines a

particular ranked model, the definition of which depends on the

version of rational defeasible entailment we are using, which in

turn defines a base rank preserving rank function r. This can be

used in a generalized version of the rational closure algorithm [4]

to compute defeasible entailment. We can also say 𝒦 ∣≈ 𝛼 ∣∼ 𝛽 iff

r(𝛼) = ∞ or 𝑟(𝛼) < 𝑟(𝛼 ∧ ¬𝛽).
Unlike in Rational Closure, the statements in the ranks of the

general rational defeasible entailment algorithm are not those from

our original knowledge base. So to provide explanations that relate

to our original knowledge base, we instead revert to considering

how our statements influence the ranked model, which in turn

influences the ranking function. We propose a general definition

for explanations for rational defeasible entailment which we refer

to as Minimal Rank Establishing Sets (MRES).

Definition 6.1. For a knowledge base 𝒦, base rank preserving

rank function r and defeasible implication 𝛼 ∣∼ 𝛽 , we define a

Minimal Rank Establishing Set to be a subset𝑀 of 𝒦 such that:

(1) If 𝑟𝒦(𝛼) = ∞, 𝑟𝑀(𝛼) = ∞ and for all𝑀
′ ⊂ 𝑀,𝑟𝑀(𝛼) ≠ ∞.

(2) If 𝑟𝒦(𝛼) ≠ ∞, 𝑟𝑀(𝛼 ∧ ¬𝛽) > 𝑟𝒦(𝛼) and for all 𝑀
′ ⊂

𝑀,𝑟𝑀′(𝛼 ∧ ¬𝛽) < 𝑟𝑀(𝛼 ∧ ¬𝛽).

This definition explicitly captures the ranking involved in the

final entailment.

6.2 Algorithm for Rational Closure
The base rank preserving rank function associated with Rational

Closure is the base rank function 𝑏𝑟𝒦. Thus for Rational Closure
the idea of an MRES relates to the ‘pushing up’ sequences for

weak justifications we defined in Section 5. In fact, we can adapt

ComputeSubsetSequences and Sequences to create ComputeMRES
and MRESSequences shown in Algorithms 12 and 13 in Appen-

dix C respectively. These algorithms compute all the MRESs for a

knowledge base 𝒦 and a defeasible implication 𝛼 ∣∼ 𝛽 .
If the antecedent 𝛼 has finite rank, the main change required

for ComputeSequence is the length of the sequence it computes.

Currently it only computes 𝑛 sets, meaning that the formula 𝛾

passed in will have a rank of at most 𝑛 in the sets in the sequence.

However, for an MRES we want to consider all sets in which 𝛾 has

rank at least n. Thus instead of immediately returning the sequence

when we have 𝑛 sets, we want to continue iterating until no more

sets can be created. At this point we can return the sequence. Then

if we take all the sets with an index greater than or equal to 𝑛 in a

sequence, we will have exactly the MRESs for the entailment. We

also need to account for MRESs when 𝛼 has infinite rank. This can

be done by computing all the justification 𝒥¬𝛼 with infinite rank

9

and then iterating to ‘disprove’ all of the antecedents, adding the

minimal number of statements in each iteration. Note this will only

involve using statements with infinite rank and thus we do not

have to construct a sequence as with the finite case. Proposition 6.2,

which is proven in Appendix C, states that ComputeMRES is sound
and complete.

Proposition 6.2. Let 𝒦 be a knowledge base and 𝛼 ∣∼ 𝛽 a defea-
sible implication.

(1) If𝑏𝑟𝐾(𝛼) ≠ ∞, ComputeMRES(𝒦, 𝛼∧¬𝛽 ,𝑏𝑟𝐾(𝛼)+1) returns
exactly the MRESs for 𝒦 ∣≈𝑅𝐶 𝛼 ∣∼ 𝛽 .

(2) If 𝑏𝑟𝐾(𝛼) = ∞, ComputeMRES(𝒦, 𝛼 ,∞) returns exactly the
MRESs for 𝒦 ∣≈𝑅𝐶 𝛼 ∣∼ 𝛽

As a demonstration of ComputeMRES and MRESs for Rational

Closure in general, consider the following example.

Example 6.3. Suppose one has a knowledge base 𝒦 containing

the following statements:

(1) Birds typically fly (𝑏 ∣∼ 𝑓)
(2) Birds typically eat bugs (𝑏 ∣∼ 𝑒)
(3) Penguins typically do not fly (𝑝 ∣∼ ¬𝑓)
(4) Penguins typically swim (𝑝 ∣∼ 𝑠)
(5) Special penguins typically fly (𝑠𝑝 ∣∼ 𝑓)
(6) Special penguins are penguins (𝑠𝑝 → 𝑏)

(7) Penguins are birds (𝑝 → 𝑏)

This has the ranking shown in Figure 12 (a). Consider the en-

tailment of the statement ‘if something is a penguin or a special

penguin, it typically swims’ (𝑝 ∨ 𝑠𝑝 ∣∼ 𝑠). The MRES for this entail-

ment is shown in Figure 12 (b), with a more detailed explanation

shown in Appendix C.

0 𝑏 ∣∼ 𝑓 ,𝑏 ∣∼ 𝑒
1 𝑝 ∣∼ ¬𝑓 , 𝑝 ∣∼ 𝑠
2 𝑠𝑝 ∣∼ 𝑓
∞ 𝑠𝑝 → 𝑝, 𝑝 → 𝑏

(a) Original knowledge
base

0 𝑏 ∣∼ 𝑓
1 𝑝 ∣∼ ¬𝑓 , 𝑝 ∣∼ 𝑠
∞ 𝑠𝑝 → 𝑝 , 𝑝 → 𝑏

(b) MRES for the
entailment

Figure 12: Base ranking of statements for Example 6.3

If we refer to the natural language sentences, we can see how

this explanation can be partitioned into the information we used to

make the final conclusion (shown in blue) and the reason why this

was the most specific information used.

Given that all forms of rational defeasible entailment can be

defined as a refinement of Rational Closure, we propose that one

could define a general algorithm for computing MRESs by refining

the algorithm used for Rational Closure in an appropriate manner.

7 RELATEDWORK
Horridge [7] provides and investigates a variety of algorithms for

computing classical justifications. Horridge also presents an in-

depth analysis of the efficiency of these various algorithms.

Chama [5] presents an adaption of the Rational Closure algo-

rithm for the computation of justifications for Rational Closure

defeasible entailment. Chama uses algorithms presented by Hor-

ridge as a basis for computing justifications. The approach here

resembles the reasoning process for Rational Closure: after elimi-

nating less specific ranks, we rely on classical tools to reason about

the knowledge base, only in this case we use classical justification

instead of classical entailment.

Brewka et al. [3] take a different approach for defining defeasible

justifications. Brewka et al. present an abstract idea of a defeasible

justification that is claimed to work for all forms of defeasible

reasoning, called a strong explanation.

8 CONCLUSIONS
In this paper, we explored a variety of approaches for defining and

computing explanations for defeasible entailment in the context of

the KLM framework for propositional logic. We found that what

we term weak justifications provided an intuitive way of defining

simple explanations for the algorithmic definition of Lexicographic

Closure, as they have previously done for Rational Closure.

We investigated applying strong explanations as a definition for

defeasible explanation in the KLM framework, focusing on Rational

Closure. We found, that for Rational Closure, weak justifications

provided a basis for extension to this more expressive form of

explanation and proposed and partially proved the correctness of

an algorithm for extending weak justifications to form what we

referred to as strong justifications. However, we also found that not

all strong justifications can be defined as an extension of a weak

justification and that not every weak justification can be extended

to create a strong justification.

Finally, we presented a general definition for defeasible explana-

tion, Minimal Rank Establishing Sets, in the context of an extension

of the KLM framework presented by Casini et al. [4], and suggested

and proved an algorithm for Rational Closure that computes such

explanations. This form of defeasible explanation aims to explicitly

capture the ranking involved in the reasoning process.

9 FUTUREWORK
Since weak justification algorithms have been developed and seem

implementable for Lexicographic Closure and Rational Closure,

future work could involve optimizing and implementing these algo-

rithms as a part of a basic reasoning system to provide justifications

for these forms of defeasible entailment.

Future work could also involve further investigating strong jus-

tifications for KLM style defeasible reasoning. This could involve

proving and then refining the current approach for Rational Clo-

sure to present a more efficient algorithm that also accounts for the

creation of strong justifications when the antecedent has an infinite

ranking, or disproving the current approach and proposing an alter-

native one. Having accomplished this, one could also generalize the

approach to allow for the computation of strong justifications for

other forms of KLM defeasible entailment such as Lexicographic

Closure.

Finally, one can also consider defining a general way of comput-

ing Minimal Ranking Establishing Sets for other forms of rational

defeasible entailment, building on the algorithm suggested for Ra-

tional Closure. This could also involve defining a general definition

for weak justifications within the extended framework proposed

by Casini et al.

10

REFERENCES
[1] Mordechai Ben-Ari. 2012. Propositional Logic: Formulas, Models, Tableaux.

Springer London, London, 7–47. https://doi.org/10.1007/978-1-4471-4129-7_2

[2] Ronald J. Brachman and Hector J. Levesque. 2004. Knowledge representation and
reasoning. Elsevier.

[3] Gerhard Brewka, Matthias Thimm, and Markus Ulbricht. 2019. Strong inconsis-

tency. Artificial Intelligence 267 (2019), 78–117.
[4] Giovanni Casini, Thomas Meyer, and Ivan Varzinczak. 2019. Taking defeasible

entailment beyond rational closure. In European Conference on Logics in Artificial
Intelligence. Springer, 182–197.

[5] Victoria Chama. 2020. Explanation for defeasible entailment. Master’s thesis.

University of Cape Town.

[6] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato. 2015.

Semantic characterization of rational closure: From propositional logic to de-

scription logics. Artificial Intelligence 226 (2015), 1–33.
[7] Matthew Horridge. 2011. Justification based explanation in ontologies. Ph. D.

Dissertation. University of Manchester.

[8] Adam Kaliski. 2020. An overview of KLM-style defeasible entailment. Master’s

thesis. University of Cape Town.

[9] Aditya Anand Kalyanpur. 2006. Debugging and repair of OWL ontologies. Ph. D.
Dissertation.

[10] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. 1990. Nonmonotonic

reasoning, preferential models and cumulative logics. Artificial intelligence 44,
1-2 (1990), 167–207.

[11] Daniel Lehmann. 1995. Another perspective on default reasoning. Annals of
mathematics and artificial intelligence 15, 1 (1995), 61–82.

[12] Daniel Lehmann and Menachem Magidor. 1992. What does a conditional knowl-

edge base entail? Artificial intelligence 55, 1 (1992), 1–60.
[13] Matthew Morris, Tala Ross, and Thomas Meyer. 2020. Algorithmic definitions

for KLM-style defeasible disjunctive Datalog. South African Computer Journal
32, 2 (2020), 141–160.

11

https://doi.org/10.1007/978-1-4471-4129-7_2

A WEAK JUSTIFICATIONS FOR
LEXICOGRAPHIC CLOSURE

Algorithm 7: LexicographicClosureForJustifications
Input: A knowledge base 𝒦 and DI 𝛼 ∣∼ 𝛽
Output: true, if 𝐾 ∣≈𝐿𝐶 𝛼 ∣∼ 𝛽 , otherwise false, and an

ordered pair (𝑖,𝑚) describing a rank and subset size

1 (ℛ0, ...,ℛ𝑛−1,ℛ∞, n) := BaseRank(𝒦);
2 i := 0;

3 m := 0;

4 ℛ ∶= ⋃𝑗<𝑛𝑗=0 ℛ𝑗 ;

5 whileℛ∞ ∪ℛ ⊧ ¬𝛼 andℛ ≠ ∅ do
6 ℛ ∶= ℛ ∖ℛ𝑖 ;
7 m := |ℛ𝑖 |-1;
8 ℛ𝑖,𝑚 := ⋁𝑋∈Subsets(ℛ𝑖 ,𝑚)⋀𝑥∈𝑋 𝑥 ;
9 whileℛ∞ ∪ℛ∪ {ℛ𝑖,𝑚} ⊧ ¬𝛼 and𝑚 > 0 do
10 m := m-1;

11 ℛ𝑖,𝑚 := ⋁𝑋∈Subsets(ℛ𝑖 ,𝑚)⋀𝑥∈𝑋 𝑥 ;
12 end
13 ℛ ∶= ℛ ∪ {ℛ𝑖,𝑚};
14 i := i+1;

15 end
16 return 𝑅∞ ∪ 𝑅 ⊧ 𝛼 → 𝛽 , (i, m);

B STRONG JUSTIFICATIONS FOR RATIONAL
CLOSURE

Algorithm 8: ComputeGeneralSubsetSequences

Input: A knowledge base 𝒦, a formula 𝛼

Output: Set of all sequences (𝐾0, 𝐾1, ..., 𝐾𝑛), where 𝛼 has

𝑏𝑟𝐾𝑖
(𝛼) = 𝑖 , and each 𝐾𝑖 is minimal

1 sequences := GeneralSequences(Ð→𝒦 , 𝛼, (∅), 1);
2 return sequences;

Proposition B.1. Let 𝒦 be a knowledge base, 𝛾 a formula and
𝑀 ⊆ 𝒦 such that for all𝑀′ ⊆ 𝑀,𝑏𝑟𝑀′(𝛾) < 𝑏𝑟𝑀(𝛾) i.e. M is minimal
in terms of the ranking of 𝛾 . Let 𝑖 = 𝑏𝑟𝒦(𝛾). Provided 𝑖 ≠ ∞, we can
express M as a sequence of set (𝐾0, 𝐾1, . . . , 𝐾𝑖) such that

(1) 𝑏𝑟𝐾𝑗
(𝛾) = 𝑗

(2) For all 𝐾 ′ ⊂ 𝐾𝑗 , 𝑏𝑟𝐾 ′(𝛾) < 𝑏𝑟𝐾𝑗
(𝛾)

Proof. Let M, 𝒦 and 𝛾 be as described in Proposition B.1. We

will construct a sequence of sets and prove that this sequence

adheres to conditions (1) and (2).

Firstly 𝑖 = 𝑏𝑟𝑀(𝛾). We recursively construct a sequence of sets

as follows:

● 𝑀0 = 𝑀
● 𝑀𝑥+1 = MinimizeSet(𝑀𝑥 ∖ 𝑅𝑀𝑥

0
,𝛾)

Algorithm 9: GeneralSequences
Input: A materialized knowledge base 𝒦, a formula 𝛼 , the

current sequence of subsets (𝐾0, . . . , 𝐾𝑖−1), the index
𝑖 of the current subset

Output: A set of sequences of varying lengths

1 𝒜 := ¬𝛼 ∧ (⋀𝛽∈Antecedents(𝐾𝑖−1) ¬𝛽);
2 S := MinimalExtension(𝒜,𝒦, 𝐾𝑖−1);
3 ℱ := ∅;
4 if S ≠ ∅ then
5 for 𝐾𝑖 in S do
6 if 𝑏𝑟𝐾𝑖

(𝛼) = 𝑖 and Minimize(𝐾𝑖 , 𝛼) is False then
7 ℱ := ℱ ∪

GeneralSequences(𝒦, 𝛼, (𝐾0, . . . , 𝐾𝑖−1, 𝐾𝑖), 𝑖+1);

8 end
9 end

10 if ℱ = ∅ then
11 ℱ := {(𝐾0, . . . , 𝐾𝑖−1)};
12 return ℱ ;

MinimizeSet(A, 𝛾) returns the smallest subset A’ of A such that

𝑏𝑟𝐴′(𝛾) = 𝑏𝑟𝐴(𝛾). If we set
𝐾0 = ∅, 𝐾1 = 𝑀𝑖−1, . . . , 𝐾𝑗 = 𝑀𝑖−𝑗 , . . . , 𝐾𝑖 = 𝑀𝑖−𝑖 = 𝑀0

we claim we have constructed an appropriate sequence. We will

prove this is the case by first proving the statement ‘For𝑀𝑦 ,𝑀𝑦 is
minimal and 𝑏𝑟𝑀𝑦

(𝛾) = 𝑖 −𝑦’ using induction on y.

(BC) Let y = 0. Thus𝑀0 = 𝑀 . By assumption M is minimal and

𝑏𝑟𝑀(𝛾) = 𝑖 = 𝑖 − 0 = 𝑖 −𝑦. Our statement is true for our base case.

(IH) Let 𝑛 ∈ N with 0 ≤ 𝑛 < 𝑖 and suppose our statements is

true for𝑀𝑛 . We wish to show the statement is true for𝑀𝑛+1. We

derive 𝑀𝑛+1 from 𝑀𝑛 by removing all statements with rank 0 in

𝑀𝑛 from𝑀𝑛 and minimizing the resulting set. It thus follows from

the construction that𝑀𝑛+1 is minimal and so we must just prove

that 𝑏𝑟𝑀𝑛+1
(𝛾) = 𝑖 − (𝑛 + 1). Let

𝐸
𝑀𝑛

0
, 𝐸
𝑀𝑛

1
, . . . , 𝐸

𝑀𝑛

𝑖−𝑛−1, 𝐸
𝑀𝑛

𝑖−𝑛, . . . , 𝐸
𝑀𝑛∞

be the E sets for𝑀𝑛 . If we define𝑀
′ = 𝑀𝑛∖𝑅𝑀𝑛

0
we have𝑀

′ = 𝐸𝑀𝑛

1
.

Thus

𝐸
𝑀
′

0
= 𝐸𝑀𝑛

1
, 𝐸
𝑀
′

1
= 𝐸𝑀𝑛

2
, . . . , 𝐸

𝑀
′

𝑖−𝑛−1 = 𝐸𝑀𝑛

𝑖−𝑛, 𝐸
𝑀
′

𝑛 = 𝐸𝑀𝑛

𝑖−𝑛+1
Since 𝑏𝑟𝑀𝑛

(𝛼) = 𝑖 − 𝑛, we have that 𝐸𝑀𝑛

𝑖−𝑛 is the first 𝐸𝑥 such that

𝐸
𝑀𝑛
𝑥 ⇑⊧ ¬𝛼 . Thus 𝐸𝑀

′

𝑖−𝑛−1 is the first 𝐸𝑥 for M’ for which 𝐸
𝑀
′

𝑥 ⇑⊧
¬𝛼 and so 𝑏𝑟𝑀′(𝛼) = 𝑖 − 𝑛 − 1 = 𝑖 − (𝑛 + 1). Finally note that

𝑏𝑟𝑀′(𝛾) = 𝑏𝑟𝑀𝑛+1
(𝛾) since 𝑀𝑛+1 = MinimizeSet(𝑀′). So we have

𝑏𝑟𝑀𝑛+1
(𝛾) = 𝑖 − (𝑛 + 1) and thus are done.

Finally, since𝑏𝑟𝑀𝑦
(𝛾) = 𝑖−𝑦 and𝐾𝑗 = 𝑀𝑖−𝑗 ,𝑏𝑟𝐾𝑗

(𝛾) = 𝑏𝑟𝑀𝑖−𝑗
(𝛾) =

𝑖 − (𝑖 − 𝑗) = 𝑗 and 𝐾𝑗 is minimal. Thus our sequence satisfies both

criteria and so we are done. □

Proposition B.2. Let𝒦 be a knowledge base and𝛾 a formula. Pro-
vided 𝑏𝑟𝒦(𝛾) ≠ ∞, ComputeGeneralSubsetSequences computes
exactly𝑀 ⊆ 𝒦 such that for all𝑀′ ⊂ 𝑀,𝑏𝑟𝑀′(𝛾) < 𝑏𝑟𝑀(𝛾) i.e. M is
minimal in terms of the ranking of 𝛾 .

12

Proof. Firstly note that since 𝒦 is finite, MinimalExtension will

eventually return an empty set and thus the algorithm will always

terminate. To prove Proposition B.2, we need to show that:

(1) Every𝐾𝑖 in every sequence isminimal i.e. if𝐾
′ ⊂ 𝐾𝑖 , 𝑏𝑟𝐾 ′(𝛾) <

𝑏𝑟𝐾𝑖
(𝛾)

(2) Every𝑀 ⊆ 𝒦 such that for all𝑀
′ ⊆ 𝑀,𝑏𝑟𝑀′(𝛾) < 𝑏𝑟𝑀(𝛾)

appears in a sequence.

The proof of (1) is trivial, since as part of the computation we

check if each 𝐾𝑖 is minimal before adding it to a sequence.

The proof of (2) follows from Proposition B.1. We can express M

as a sequence (𝐾0, 𝐾1, . . . , 𝐾𝑖) by using the construction presented

in the proof for Proposition B.1. We need to show we can construct

this sequence using the approach given in GeneralSequences. We

have 𝐾0 = ∅ by construction so trivially 𝐾0 will be in a sequence.

We will once again use induction to show that each 𝐾𝑗 for 𝑗 > 0 is
a part of a sequence.

(BC) Let j = 1. Then since 𝑏𝑟𝐾1
(𝛾) = 1, 𝐾1 ⊂ 𝒦 such that 𝐾1 ⊧ ¬𝛾

and𝐾1 is minimal. Thus𝐾1 will be a part of S =MinimalExtension(𝒜 =
¬𝛾,𝒦,∅) and since𝑏𝑟𝐾1

(𝛼) = 1 and𝐾1 is minimal,𝐾1 will be added

to a sequence (𝐾0, 𝐾1, . . .).
(IH) Let 1 ≤ 𝑗 < 𝑖 and suppose 𝐾𝑛 is part of a sequence. We wish

to show 𝐾𝑛+1 will be added to a sequence. To do this we need to

show:

(a) 𝐾𝑛+1 ∖𝐾𝑛 is a minimal extension of 𝐾𝑛 that allows us to

entail 𝒜 = ¬𝛾 ∧ (⋀𝛽∈Antecedents(𝐾𝑛) ¬𝛽)
(b) 𝐾𝑛+1 is minimal

(c) 𝑏𝑟𝐾𝑛+1
(𝛼) = 𝑛 + 1

For the proof of (a), note that 𝐾𝑛+1 = 𝑀𝑖−𝑛−1 and 𝐾𝑛 = 𝑀𝑖−𝑛 .
Since we get 𝑀𝑖−𝑛 by removing 𝑅

𝑀𝑖−𝑛−1

0
from 𝑀𝑖−𝑛−1 and min-

imizing, we have 𝑀𝑖−𝑛 ⊆ 𝐸𝑀𝑖−𝑛−1

1
. Thus 𝑀𝑖−𝑛−1 ⊧ ¬𝛽1 ∧ ¬𝛽2 ∧

. . . for 𝛽𝑥 ∈ Antecedents(𝑀𝑖−𝑛). Let 𝑋 = 𝑀𝑖−𝑛−1 ∖ 𝑀𝑖−𝑛 . Sup-
pose X is not minimal i.e. we can disprove all the antecedents

in 𝑀𝑖−𝑛 using some subset X’ of X. But then 𝑏𝑟𝑀𝑖−𝑛∪𝑋 ′(𝛾) ≥
𝑛 + 1 = 𝑏𝑟𝑀𝑖−𝑛−1

(𝛾) with 𝑀𝑖−𝑛 ∪𝑋 ′ ⊂ 𝑀𝑖−𝑛−1, which contradicts

the minimality of𝑀𝑖−𝑛−1. Thus X must be minimal. Also note since

𝑀𝑖−𝑛 ⊆ 𝑀𝑖−𝑛−1 and 𝑀𝑖−𝑛 = 𝐾𝑛 ⊧ ¬𝛾 since it is part of the se-

quence, we must have𝑀𝑖−𝑛−1 ⊧ ¬𝛾 . So X will be returned by S =

MinimalExtension(𝒜,𝒦, 𝐾𝑛)when𝒜 = ¬𝛾∧(⋀𝛽∈Antecedents(𝐾𝑛) ¬𝛽),
allowing as to create𝐾𝑛+1. Conditions (2) and (3) are satisfied based
on our definition of the sequence in the proof for Proposition B.1.

So 𝐾𝑛+1 will be added to a sequence and thus we are done.

Since each set in the sequence for M appears in a sequence, this

means M itself appears in a sequence since𝑀 = 𝐾𝑖 . □

Proposition B.3. Let 𝒦 be a knowledge base and 𝛾 a formula.
Provided 𝑏𝑟𝒦(𝛾) ≠ ∞, ComputeSubsetSequences returns at least
one sequence of sets.

Proof. Let 𝒦 and 𝛾 be as described in Proposition B.3. Firstly

note that since Sequences recurses to a maximum depth of n+1 for

each sequence, the algorithm must always terminate. Now consider

𝑀 ⊆ 𝒦 such that 𝑏𝑟𝑀(𝛾) = 𝑏𝑟𝒦(𝛾) = 𝑗 and for any 𝑀
′ ⊂ 𝑀 ,

𝑏𝑟𝑀′(𝛾) < 𝑏𝑟𝑀(𝛾) and let 𝑛 ∈ N with 𝑛 < 𝑗 . By Proposition B.1, we

can compute a sequence (𝐾0, 𝐾1, . . . , 𝐾𝑛, . . . , 𝐾𝑗) using the approach

given in the proof. We claim if we take (𝐾0, 𝐾1, . . . , 𝐾𝑛), we will
have a sequence computed by ComputeSubsetSequences.

First we will prove that for each𝑀𝑠 = 𝐾𝑗−𝑠 , we have that𝑀𝑠 ⊆
𝐸
𝑀
𝑠 . We will prove this by induction on s.

(BC) Let s = 1. 𝑀1 is constructed by taking 𝐾
′ = 𝑀0 ∖ 𝑅𝑀0

0
=

𝑀 ∖ 𝑅𝑀
0

and minimizing it. Thus𝑀1 ⊆ 𝐾 ′ ⊆ 𝐸𝑀1 .

(IH) Let 1 ≤ 𝑠 < 𝑗 and suppose𝑀𝑠 ⊆ 𝐸𝑀𝑠 . We wish to show that

𝑀𝑠+1 ⊆ 𝐸𝑀𝑠+1. We construct 𝑀𝑠+1 by taking 𝐾
′ = 𝑀𝑠 ∖ 𝑅𝑀𝑠

0
and

minimizing it. Since𝑀𝑠 ⊆ 𝐸𝑀𝑠 , 𝐸
𝑀𝑠

0
⊆ 𝐸𝑀𝑠 and thus 𝐸

𝑀𝑠

1
⊆ 𝐸𝑀𝑠+1. But

𝑀𝑠+1 ⊆ 𝐾 ′ ⊆ 𝐸𝑀𝑠

1
⊆ 𝐸𝑀𝑠+1 and so we are done.

Thuswe have that𝐾𝑥 = 𝑀𝑗−𝑥 ⊆ 𝐸𝑀𝑗−𝑥 . Since 𝑗 > 𝑛, we have 𝑗−1 ≥
𝑛 and thus 𝑗−𝑥 ≥ 𝑛−(𝑥−1). So𝐾𝑥 ⊆ 𝐸𝑀𝑗−𝑥 ⊆ 𝐸𝑀𝑛−(𝑥−1) ⊆ 𝐸

𝒦
𝑛−(𝑥−1) ⊆

𝐸
𝒦
𝑛−𝑥 . So 𝐾𝑥 is contained in 𝐸

𝒦
𝑛−𝑥 for each x and thus can be used

to create an extension for 𝐾𝑥−1, meaning we are not limited by this

restriction. So we can follow the same proof structure as the second

half of the proof for Proposition 5.6 to prove that (𝐾0, 𝐾1, . . . , 𝐾𝑛)
is in fact computed and returned by ComputeSubsetSequence.

□

Algorithm 10: StrongSequences
Input: A sequence𝒩 = (𝑆0, 𝑆1, . . . , 𝑆𝑛) for a formula 𝛼 , the

formula 𝛼 , a sequenceℳ= (𝐽0, 𝐽1, . . . , 𝐽𝑚) for a
formula 𝛽 where𝑚 < 𝑛, the formula 𝛽 , the index 𝑖 of

the current subset, the current minimal entailing set

𝒮
Output: A set of sets 𝒮 such that 𝑏𝑟𝒮∪𝐽𝑖 (𝛼) > 𝑏𝑟𝒮∪𝐽𝑖 (𝛽)

for all 𝑖 ≤𝑚 and 𝒮 is minimal

1 if i > m then
2 return {𝒮};
3 𝒜 := ¬𝛼 ∧ (⋀𝛽∈Antecedents(𝒮) ¬𝛽);
4 ℬ := MinimalExtension(𝒜, 𝑆𝑖+(𝑛−𝑚), 𝐽𝑖 ∪ 𝒮);
5 ℱ := ∅;
6 for x in ℬ do
7 S’ = (𝑥 ∖ 𝐽𝑖) ∪ 𝒮 ;
8 if 𝑏𝑟𝑥(𝛼) = 𝑏𝑟𝑥(𝛽) + 1 and Minimize(𝑆, 𝛼, 𝑆′) is False

then
9 ℱ := ℱ ∪ StrongSequences(𝒩 , 𝛼,ℳ, 𝑖 + 1, 𝑆

′);
10 end
11 end
12 𝒮 := ℱ ;
13 return 𝒮 ;

Note that in the StrongSequences algorithm we use a different

version of Minimize(𝐴,𝛼, 𝐵) where it returns true if we can remove

statements 𝑥 ∈ 𝐵 from 𝐴 and maintain the same ranking for 𝛼 in 𝐴.

Proposition B.4. Given a sequence𝒩 = (𝑆0, 𝑆1, . . . , 𝑆𝑛) for a for-
mula 𝛾 where 𝑏𝑟𝑆𝑖 = 𝑖 , a formula 𝛾 , a sequenceℳ= (𝐽0, 𝐽1, . . . , 𝐽𝑚)
for a formula 𝛽 where 𝑏𝑟 𝐽𝑖 (𝛽) = 𝑖 and 𝑚 < 𝑛, the formula 𝛽 , the
index 0 and the empty set as input, StrongSequences computes all
minimal sets S such that:

(1) 𝑏𝑟𝑆∪𝐽𝑖 (𝛾) > 𝑏𝑟𝑆∪𝐽𝑖 (𝛽) for all 0 ≤ 𝑖 ≤𝑚.
(2) Condition (1) does not hold for any 𝑆′ ⊂ 𝑆 .

Proposition B.4 is yet to be proven.

13

Algorithm 11: StrongJustification
Input: A knowledge base 𝒦, the DI 𝛼 ∣∼ 𝛽 for the

entailment

Output: A strong justification 𝒮
1 𝒥 := ComputeGeneralSubsetSequences(𝒦, 𝛼);
2 m := max{𝑏𝑟𝒦(𝑗) ∶ 𝑗 ∈ 𝒥 };
3 sequences = ComputeSubsetSequences(𝒦, 𝛼 ∧ ¬𝛽,𝑚 + 1);
4 Choose K’ = (𝐾0, 𝐾1, . . . , 𝐾𝑚+1) from sequences;

5 n := |𝒥 |;

6 Let 𝑆1, 𝑆2, . . . , 𝑆𝑛 be the set of minimal entailing sets

associated with each sequence;

7 for 𝐽𝑖 in 𝒥 do
8 𝑆𝑖 := StrongSequences(𝐾 ′, 𝛼 ∧ ¬𝛽, 𝐽𝑖 , 𝛽, 0,∅);
9 end

10 ℬ = {𝑠1 ∪ 𝑠2 ∪ . . . ∪ 𝑠𝑛 ∶ 𝑠𝑖 ∈ 𝑆𝑖};
11 x = min{|X| : 𝑋 ∈ ℬ};
12 Choose 𝒮 from ℬ such that ⋃︀𝒮⋃︀ = 𝑥 ;
13 return S;

Observation 1. Giordano et al. [6] 𝒦 ∣≈𝑅𝐶 𝛼 ∣∼ 𝛽 iff 𝑏𝑟𝒦(𝛼) <
𝑏𝑟𝒦(𝛼 ∧ ¬𝛽) or 𝑏𝑟𝒦(𝛼) = ∞

Proposition B.5. Let 𝒦 be a knowledge base and 𝛼 ∣∼ 𝛽 a de-
feasible implication. Provided 𝑏𝑟𝒦(𝛼) ≠ ∞, StrongJustification
returns a strong justification for the entailment 𝒦 ∣≈𝑅𝐶 𝛼 ∣∼ 𝛽 .

Proof. Let 𝒦 and 𝛼 ∣∼ 𝛽 be as described in Proposition B.5.

Firstly note that if all the sub-processes of StrongJustification
terminate, so will StrongJustification. Also note that by Propo-

sition B.3, sequences is non-empty and thus we can always choose

a K’ to use for strengthening. Finally, note 𝒥 will always be non-

empty. In the case where 𝑏𝑟𝒦(𝛼) = 0, it will just contain ∅. So
StrongJustification will always return some set 𝒮 .

To show that 𝒮 returned by StrongJustification is a strong

justification, we must show that:

(1) For any 𝒮 ⊆ 𝑆′ ⊆ 𝐾 , 𝑆′ ∣≈𝑅𝐶 𝛼 ∣∼ 𝛽
(2) For any 𝑆

′′ ⊂ 𝒮 , condition (1) does not hold.

For the proof of (1), suppose 𝒮 ⊆ 𝑆′ ⊆ 𝐾 and let M be such that

𝑏𝑟𝑀(𝛼) = 𝑏𝑟𝑆′(𝛼) and for all 𝑀
′ ⊂ 𝑀,𝑏𝑟𝑀′(𝛼) < 𝑏𝑟𝑀(𝛼). By

Proposition B.2, M is part of a sequence computed by

ComputeGeneralSubsetSequences. Let 𝒮𝑀 be the minimal entail-

ing set for this sequence included in 𝒮 . So 𝒮𝑀 ∪𝑀 ⊆ 𝒮 ∪𝑀 ⊆ 𝑆′
and thus 𝑏𝑟𝑆′(𝛼 ∧ ¬𝛽) ≥ 𝑏𝑟𝒮∪𝑀(𝛼 ∧ ¬𝛽) ≥ 𝑏𝑟𝒮𝑀∪𝑀(𝛼 ∧ ¬𝛽) >
𝑏𝑟𝒮𝑀∪𝑀(𝛼). But 𝑏𝑟𝒮𝑀∪𝑀(𝛼) = 𝑏𝑟𝑀(𝛼) = 𝑏𝑟𝑆′(𝛼) since 𝑆𝑀 ∪𝑀 ⊆
𝑆
′
and M is minimal. Thus 𝑏𝑟𝑆′(𝛼 ∧ ¬𝛽) > 𝑏𝑟𝑆′(𝛼) and so 𝑆

′ ∣≈𝑅𝐶
𝛼 ∣∼ 𝛽 .

For the proof of (2), let 𝑆
′′ ⊂ 𝒮 and let 𝑧 ∈ 𝒮∖𝑆′′. Let 𝑆1, 𝑆2, . . . , 𝑆𝑚

be the minimal entailing sets that contained x and 𝑋1, 𝑋2, . . . , 𝑋𝑛

be their associated sequences. If 𝑏𝑟𝑥𝑖∪𝑆′′(𝛼 ∧¬𝛽) > 𝑏𝑟𝑥𝑖∪𝑆′′(𝛼) for
all 𝑥𝑖 in each 𝑋 𝑗 , then there is some minimal subset 𝐽 𝑗 of 𝑆

′′
that

ensures this condition for each j. But then, by Proposition B.4, each

of there 𝐽 𝑗 would have been computed for each sequence and thus

𝑆
′′ ⊆ ℬ. Since 𝑆′′ ⊂ 𝒮 , ⋃︀𝑆′′⋃︀ < ⋃︀𝒮⋃︀. But this contradicts the fact that
𝒮 is chosen to be a set of minimum size in ℬ. Thus S’ cannot exist
and so 𝒮 is in fact minimal. □

Example B.6. We provide a full demonstration of the algorithm

from Example 5.8 which uses the knowledge base in Figure 8 and the

entailment query (𝑠𝑝∧4𝑡) ∣∼ 𝑓 . We have only oneweak justification

𝒲 = {𝑠𝑝 ∣∼ 𝑓 }. Thus we have a single sequence returned by

ComputeSubsetSequences, namely (𝐾0, 𝐾1, 𝐾2, 𝐾3, 𝐾4) with:

𝐾0 = ∅
𝐾1 = {𝑠𝑝 ∣∼ 𝑓 }
𝐾2 = 𝐾0 ∪ {𝑝 ∣∼ ¬𝑓 , 𝑠𝑝 → 𝑝}
𝐾3 = 𝐾1 ∪ {𝑏 ∣∼ 𝑓 , 𝑝 → 𝑏}
𝐾4 = 𝐾2 ∪ {𝑏 ∣∼𝑤,𝑎 ∣∼ ¬𝑤,𝑏 → 𝑎}

There are 9 justifications for ¬(𝑠𝑝 ∧ 4𝑡).
(1) 𝐽1 = {𝑎 ∣∼ ¬𝑤,𝑏 ∣∼ 𝑤, 4𝑡 ∣∼ 𝑏,𝑏 → 𝑎}. This has the associ-

ated sequences:

(a) 𝐾
𝐽1
0
= ∅, 𝐾 𝐽1

1
= 𝐽1

(2) 𝐽2 = {𝑏 ∣∼ 𝑓 , 4𝑡 ∣∼ ¬𝑓 , 4𝑡 ∣∼ 𝑏}. This has the associated

sequences:

(a) 𝐾
𝐽2
0
= ∅, 𝐾 𝐽2

1
= 𝐽2, 𝐾 𝐽2

2
= 𝐾 𝐽2

1
∪{𝑏 ∣∼𝑤,𝑏 → 𝑎, 𝑎 ∣∼ ¬𝑤}

(3) 𝐽3 = {𝑏 ∣∼ 𝑗, 4𝑡 ∣∼ ¬ 𝑗, 4𝑡 ∣∼ 𝑏}. This has the associated

sequences:

(a) 𝐾
𝐽3
0
= ∅, 𝐾 𝐽3

1
= 𝐽3, 𝐾 𝐽3

2
= 𝐾 𝐽3

1
∪{𝑏 ∣∼𝑤,𝑏 → 𝑎, 𝑎 ∣∼ ¬𝑤}

(4) 𝐽4 = {𝑠𝑝 ∣∼ 𝑓 , 𝑝 ∣∼ ¬𝑓 , 𝑠𝑝 ∣∼ 𝑝}. This has the associated
sequences:

(a) 𝐾
𝐽4
0
= ∅, 𝐾 𝐽4

1
= 𝐽4, 𝐾 𝐽4

2
= 𝐾 𝐽4

1
∪ {𝑏 ∣∼ 𝑓 , 𝑝 → 𝑏}, 𝐾 𝐽4

3
=

𝐾
𝐽4
2
∪ {𝑏 ∣∼𝑤,𝑏 → 𝑎, 𝑎 ∣∼ ¬𝑤}

(5) 𝐽5 = {𝑏 ∣∼ 𝑓 , 𝑝 ∣∼ ¬𝑓 , 𝑝 → 𝑏, 𝑠𝑝 → 𝑝}. This has the associ-
ated sequences:

(a) 𝐾
𝐽5
0
= ∅, 𝐾 𝐽5

1
= 𝐽5, 𝐾 𝐽5

2
= 𝐾 𝐽5

1
∪ {𝑏 ∣∼ 𝑤,𝑏 → 𝑎, 𝑎 ∣∼

¬𝑤}.
(6) 𝐽6 = {𝑎 ∣∼ ¬𝑤,𝑏 ∣∼ 𝑤, 𝑝 → 𝑏, 𝑠𝑝 → 𝑝,𝑏 → 𝑎}. This has the

associated sequence:

(a) 𝐾
𝐽6
0
= ∅, 𝐾 𝐽6

1
= 𝐽6.

(7) 𝐽7 = {4𝑡 ∣∼ ¬𝑓 , 𝑠𝑝 ∣∼ 𝑓 }. This has the associated sequences:
(a) 𝐾

𝐽7
0
= ∅, 𝐾 𝐽7

1
= 𝐽7, 𝐾 𝐽7

2
= 𝐾 𝐽7

1
∪ {𝑏 ∣∼ 𝑓 , 4𝑡 ∣∼ 𝑏, 𝑝 ∣∼

¬𝑓 , 𝑠𝑝 → 𝑝}, 𝐾 𝐽7
3
= 𝐾 𝐽7

2
∪ {𝑝 → 𝑏,𝑏 ∣∼ 𝑤,𝑎 ∣∼ ¬𝑤,𝑏 →

𝑎}.
(b) 𝐾

𝐽7
0
= ∅, 𝐾 𝐽7

1
= 𝐽7, 𝐾 𝐽7

2
= 𝐾 𝐽7

1
∪ {𝑏 ∣∼ 𝑗, 4𝑡 ∣∼ 𝑏, 4𝑡 ∣∼

¬ 𝑗, 𝑠𝑝 → 𝑝}, 𝐾 𝐽7
3
= 𝐾 𝐽7

2
∪ {𝑝 → 𝑏,𝑏 ∣∼ 𝑤,𝑎 ∣∼ ¬𝑤,𝑏 →

𝑎}.
(8) 𝐽8 = {𝑏 ∣∼ 𝑓 , 4𝑡 ∣∼ ¬𝑓 , 𝑠𝑝 → 𝑝, 𝑝 → 𝑏}. This has the associ-

ated sequences:

(a) 𝐾
𝐽8
0
= ∅, 𝐾 𝐽8

0
= 𝐽8, 𝐾 𝐽8

1
= 𝐾 𝐽8

1
∪{𝑏 ∣∼𝑤,𝑎 ∣∼ ¬𝑤,𝑏 ∣∼ 𝑎}

(9) 𝐽9 = {𝑏 ∣∼ 𝑗, 4𝑡 ∣∼ ¬ 𝑗, 𝑠𝑝 → 𝑝, 𝑝 → 𝑏}. This has the associ-
ated sequences:

(a) 𝐾
𝐽9
0
= ∅, 𝐾 𝐽9

1
= 𝐽9, 𝐾 𝐽9

2
= 𝐾 𝐽9

1
∪ {𝑏 ∣∼ 𝑤,𝑎 ∣∼ ¬𝑤,𝑏 →

𝑎}.
We use StrongSequences to compute the set of all minimum sets

which ensure that 𝑏𝑟𝑆∪𝐽𝑖 (𝛼 ∧ 𝛽) > 𝑏𝑟𝑆∪𝐽𝑖 (𝛼) for each of these

sequences above. The largest set required is that for the sequences

for 𝐽7, these both return the set 𝒮 = {𝑠𝑝 ∣∼ 𝑓 , 𝑝 ∣∼ ¬𝑓 ,𝑏 ∣∼ 𝑓 , 𝑠𝑝 →
𝑝, 𝑝 → 𝑏}. All the other sets returned for the other sequences are

subsets of this set, and thus taking the minimum combination of

14

these sets we get we will always get the strong justification:

𝒮 = {𝑠𝑝 ∣∼ 𝑓 , 𝑝 ∣∼ ¬𝑓 ,𝑏 ∣∼ 𝑓 , 𝑠𝑝 → 𝑝, 𝑝 → 𝑏}

C GENERAL KLM DEFEASIBLE
EXPLANATION

Algorithm 12: ComputeMRES

Input: A knowledge base 𝒦, a formula 𝛼 , the minimum

rank 𝑛 ≤ 𝑏𝑟𝒦(𝛼) required for 𝛼 in the final subset of

a sequence

Output: The set of all MRESs for the entailment

1 i := 0;

2 𝐸0 :=
Ð→𝒦 ;

3 repeat
4 𝐸𝑖+1 ∶= {𝛼 → 𝛽 ∈ 𝐸𝑖 ⋃︀ 𝐸𝑖 ⊧ ¬𝛼};
5 i := i+1;

6 until 𝐸𝑖−1 = 𝐸𝑖 ;
7 𝐸∞ := 𝐸𝑖−1;
8 if n =∞ then
9 MRES := ComputeAllJustifications(𝐸∞,¬𝛼);

10 previous := ∅;
11 repeat
12 previous := MRES;

13 for S in MRES do
14 𝒜 := ¬𝛼 ∧ (⋀𝛽∈Antecedents(𝑆) ¬𝛽);
15 S’ := ComputeAllJustifications(𝐸∞,𝒜);
16 MRES = (MRES∖𝑆) ∪ 𝑆′
17 end
18 until MRES = previous;
19 else
20 sequences := MRESSequences((𝐸0, . . . , 𝐸∞), 𝛼, (∅), 𝑛, 1);
21 MRES := { 𝐾𝑖 ∈ 𝑋 : 𝑋 ∈ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 and 𝑖 ≥ 𝑛}
22 return MRES;

Observation 2. Giordano et al. [6] For every knowledge base 𝒦
and 𝛼 a formula, 𝑏𝑟𝐾(𝛼) =𝑚𝑖𝑛{𝑖 ∶ there is a𝑣 ∈ (︀(︀𝛼⌋︀⌋︀𝑠 .𝑡 .𝑅𝑅𝐶𝒦 (𝑣) =
𝑖}

Proposition C.1. Let 𝒦 be a knowledge base and 𝛼 ∣∼ 𝛽 a defea-
sible implication.

(1) If𝑏𝑟𝐾(𝛼) ≠ ∞, ComputeMRES(𝒦, 𝛼∧¬𝛽 ,𝑏𝑟𝐾(𝛼)+1) returns
exactly the MRESs for 𝒦 ∣≈𝑅𝐶 𝛼 ∣∼ 𝛽 .

(2) If 𝑏𝑟𝐾(𝛼) = ∞, ComputeMRES(𝒦, 𝛼 ,∞) returns exactly the
MRESs for 𝒦 ∣≈𝑅𝐶 𝛼 ∣∼ 𝛽

Proof. Let 𝒦, 𝛼 ∣∼ 𝛽 be as described in Proposition C.1. There

are two separate courses for the algorithm, determined by𝑏𝑟𝐾(𝛼) ≠
∞ or 𝑏𝑟𝐾(𝛼) = ∞. For the former, note since 𝒦 is finite,

MinimalExtension(𝒜, 𝐸𝑛−𝑖 , 𝐾𝑖−1) will eventually return an empty

set and thus MRESSequences will terminate and so

ComputeMRES will terminate. For the latter, note since 𝐸∞ is finite,

ComputeMRES will terminate.

For the proof of (1), first note 𝑏𝑟𝑀(𝛼) = ∞ iff 𝑅∞ ⊧ ¬𝛼 . To see

this first note if 𝑅∞ ⊧ ¬𝛼 , since 𝑅∞ ⊆ 𝐸𝑖 and 𝑏𝑟𝑀(𝛼) = 𝑚𝑖𝑛{𝑖 ∶

Algorithm 13:MRESSequences

Input: A knowledge base 𝒦= (𝐸0, 𝐸1, ...𝐸∞), a formula 𝛼 ,

the current sequence of subsets (𝐾0, . . . , 𝐾𝑖−1), the
rank 𝑛 that is the minimum rank 𝛼 can have in the

final subset of the sequence, the index i of the

current subset

Output: A set of sequences of length at least 𝑛

1 𝒜 := ¬𝛼 ∧ (⋀𝛽∈Antecedents(𝐾𝑖−1) ¬𝛽);
2 S := MinimalExtension(𝒜, 𝐸𝑛−𝑖 , 𝐾𝑖−1);
3 ℱ := ∅;
4 if S ≠ ∅ then
5 for 𝐾𝑖 in S do
6 if 𝑏𝑟𝐾𝑖

(𝛼) = 𝑖 and Minimize(𝐾𝑖) is False then
7 ℱ := ℱ ∪

MRESSequences(𝒦, 𝛼, (𝐾0, . . . , 𝐾𝑖−1, 𝐾𝑖), 𝑛, 𝑖 +
1);

8 end
9 end

10 if ℱ := ∅ and 𝑖 > 𝑛 then
11 ℱ = {(𝐾0, . . . , 𝐾𝑖−1)};
12 return ℱ ;

𝐸𝑖 ⇑⊧ ¬𝛼}, 𝐸𝑖 ⊧ ¬𝛼 for all i and thus 𝑏𝑟𝑀(𝛼) = ∞. If 𝑏𝑟𝑀(𝛼) = ∞,

for all 𝛼 ∣∼ 𝛽 ∈ 𝑀,𝛼 ∣∼ 𝛽 ∈ 𝑅∞. But 𝑅∞ ⊧ ¬𝛾 for all 𝛾 ∣∼ 𝜁 ∈ 𝑅∞.

Thus 𝑅∞ ⊧ ¬𝛼1. Now to show that any S in MRES given by the

algorithm, note that 𝑆 ⊧ ¬𝛽 for all 𝛽 ∈ Antecedents(𝑆). Thus S =

𝑅
𝑆∞ and 𝑆 ⊧ ¬𝛼 , so 𝑏𝑟𝑆(𝛼) = ∞. Finally, since S is a justification, it

is minimal and thus S is an MRES. Too see that any MRES M will be

computed by this algorithm, note that 𝑀 = 𝑅𝑀∞ and 𝑏𝑟𝑀(𝛼) = ∞.

Thus 𝑀 ⊧ (¬𝛼 ∧ 𝛽1 ∧ . . .) for 𝛽𝑖 ∈ Antecedents(𝑀) and since M

is an MRES, M is minimal. This means M is a justification for

(¬𝛼 ∧ 𝛽1 ∧ . . .) and so it will be computed by the algorithm.

For the proof of (2) we need to show:

(a) Each set in a sequence produced by ComputeMRES(𝒦,𝛼∧¬𝛽 ,
𝑛 = 𝑏𝑟𝐾(𝛼) + 1) with index greater than or equal to n is an

MRES.

(b) If M is a MRES for 𝒦 and 𝛼 ∣∼ 𝛽 , M is a part of a sequence

in ComputeMRES(𝒦, 𝛼 ∧ ¬𝛽 , 𝑛 = 𝑏𝑟𝐾(𝛼) + 1) and has an

index greater than or equal to n.

For the proof of (a), note that in a sequence (𝐾0, 𝐾1, . . . , 𝐾𝑛, . . .),
each 𝐾𝑖 is minimal and 𝑏𝑟𝐾𝑖

(𝛼 ∧ ¬𝛽) = 𝑖 by construction. Thus if

we take any set 𝐾𝑖 with 𝑖 ≥ 𝑛, we have 𝑏𝑟𝐾𝑖
= 𝑖 ≥ 𝑛 = 𝑏𝑟𝒦(𝛼) + 1 >

𝑏𝑟𝒦(𝛼). Thus 𝐾𝑖 is a MRES.

For the proof of (b), let M be a MRES. Note since M is minimal

and 𝑏𝑟𝑀(𝛼 ∧ ¬𝛽) ≠ ∞, by Proposition B.1 we can construct a

sequence (𝐾0, 𝐾1, . . . , 𝐾𝑗) where 𝑗 = 𝑏𝑟𝑀(𝛼 ∧ ¬𝛽). Following a

similar proof to Proposition B.3, we note that taking extensions

from 𝐸𝑛−𝑖 does not affect us choosing extensions for creating 𝐾𝑥+1
from 𝐾𝑥 . Thus following the same proof as the second half of the

proof for Proposition B.2, we have that each 𝐾𝑖 will be a part of a

sequence and since M is a MRES, 𝑗 = 𝑏𝑟𝑀(𝛼 ∧ ¬𝛽) > 𝑏𝑟𝒦(𝛼) and
so 𝑗 ≥ 𝑏𝑟𝒦(𝛼) + 1 = 𝑛. Thus 𝐾𝑗 will be part of a sequence returned

1

Proof base on correspondence with Tommie Meyer

15

by ComputeMRES(𝒦, 𝛼 ∧¬𝛽 , 𝑛 = 𝑏𝑟𝐾(𝛼)+ 1) and will have an index

𝑗 ≥ 𝑛. □

Example C.2. Suppose one has a knowledge base 𝒦 containing

the following statements:

(1) Birds typically fly (𝑏 ∣∼ 𝑓)
(2) Birds typically eat bugs (𝑏 ∣∼ 𝑒)
(3) Penguins typically do not fly (𝑝 ∣∼ ¬𝑓)
(4) Penguins typically swim (𝑝 ∣∼ 𝑠)
(5) Special penguins typically fly (𝑠𝑝 ∣∼ 𝑓)
(6) Special penguins are penguins (𝑠𝑝 → 𝑏)

(7) Penguins are birds (𝑝 → 𝑏)

This has the ranking shown in Figure 13 (a). Consider the en-

tailment of the statement ‘if something is a penguin or a special

penguin, it typically swims’ (𝑝 ∨ 𝑠𝑝 ∣∼ 𝑠). We have 𝑏𝑟𝒦(𝑝 ∨ 𝑠𝑝) = 1,
thus ComputeMRES(𝒦, (𝑝∨𝑠𝑝)∧¬𝑠 , 2) uses MRESSequences to com-

pute the sequence (𝐾0, 𝐾1, 𝐾2) where:

𝐾0 = ∅
𝐾1 = {𝑝 ∣∼ 𝑠, 𝑠𝑝 → 𝑝}
𝐾2 = 𝐾1 ∪ {𝑏 ∣∼ 𝑓 , 𝑝 ∣∼ ¬𝑓 , 𝑝 → 𝑏}

Taking𝐾2 then gives us the MRES for this entailment. The MRES

for this entailment is shown in Figure 13 (b).

0 𝑏 ∣∼ 𝑓 ,𝑏 ∣∼ 𝑒
1 𝑝 ∣∼ ¬𝑓 , 𝑝 ∣∼ 𝑠
2 𝑠𝑝 ∣∼ 𝑓
∞ 𝑠𝑝 → 𝑝, 𝑝 → 𝑏

(a) Original knowledge
base

0 𝑏 ∣∼ 𝑓
1 𝑝 ∣∼ ¬𝑓 , 𝑝 ∣∼ 𝑠
∞ 𝑠𝑝 → 𝑝 , 𝑝 → 𝑏

(b) MRES for the
entailment

Figure 13: Base ranking of statements for Example C.2

16

