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ABSTRACT
Portfolio management is a complex decision-making process to
achieve investment objectives. The initial share evaluation phase
is ordinarily a manual task requiring expert knowledge. The emer-
gence of Graph neural networks (GNNs) allows for modelling dy-
namic systems with non-temporal dependencies. This paper re-
views the literature to examine deep learning solutions to portfolio
management and identify GNN architectures to assess their appli-
cability. Our review identifies two significant weaknesses in the
literature. The first is the deficit of deep learning frameworks for
share evaluation and unified portfolio management. The second is
the deficit of GNN applications in the financial domain.We conclude
that additional research is required to investigate the applicability
of GNN models to the presented problem.
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KEYWORDS
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1 INTRODUCTION
Over the last ten years, deep learning models have superseded clas-
sical machine learning techniques as a powerful tool for recognition,
detection and prediction in a range of domains. Deep learning in-
volves multi-layer computational processing models that effectively
capture the latent features of the data at multiple abstraction levels
[41]. The performance of these models has been aided by improve-
ments in parallel computing technologies and big data collection
techniques [59]. These advances allow supervised learning models
to be effectively and efficiently trained on large datasets. Graph
neural networks (GNN) are a subclass of deep learning models that
are applied to data that is naturally represented by graph structures
[60], or data that has both temporal and spatial dependencies [79].

Portfolio management is a complex phased decision-making
process that aims to achieve a set of investment objectives. The
initial phase involves share evaluation: identifying securities for
inclusion in a portfolio. Share evaluation requires expert domain-
specific knowledge [15] and is not widely automated. Graph neural
networks are an emergent model class that could be applied to
automate portfolio management sub-problems.

This literature review aims to investigate the applicability of
GNNs for price prediction and share evaluation. By reviewing the
literature in this field, we seek to gain an understanding of the

current state-of-the-art techniques, how these have applied to the
financial market time series in the context of portfolio management,
and the gaps existing in the current research, both application and
architectural. This review will also assist in understanding how
GNNmodels can be incorporated into intelligent systems to support
enhanced decision-making.

This literature review will explore five key areas which are of
particular importance to our research objectives. First, we include
a discussion on equity markets and share evaluation. This section
will be followed by a review of time series prediction tasks and
deep learning-based techniques. The third section investigates deep
learning approaches to portfolio management sub-problems. We
then present a detailed treatment of GNNs, in which we will com-
pare state-of-the-art architectures and discuss their application to
portfolio management. The final section surveys metrics and proce-
dures for model validation. In closing, we discuss our findings and
their related importance and conclude with key points extracted
from the reviewed literature.

2 EQUITY MARKETS
An equity market is a financial market that facilitates the exchange
of ownership shares of listed financial securities [15]. Each share
grants the holder fractional ownership of the company and is a
representation of equity interest. Market participants to purchase
shares in a company through exchanges and trade these amongst
other participants. Supply and demand are the key determinants
of share prices, and an investor aims to earn a profit through the
acquisition of and successive sale of shares. This is termed as the
return on investment. Excess returns, or alpha, is a key performance
measure [27] defined as the ratio of portfolio return to a benchmark
return.

2.1 Portfolio Theory
In this subsection, we present the Efficient Market Hypothesis
(EMH) and the implications of counterarguments for investing and
portfolio management. The EMH is an investment theory which
states that the financial market is efficient in reflecting current
information and security prices are immediately and unbiasedly
reflective of available information [18]. The implication is that
neither analysis of financial information nor historical prices would
provide greater returns for an investor than a randomly diversified
portfolio of stocks [50].

However, financial markets are not perfectly efficient as asserted
by Fama [18]. Subsequent research has proved the existence of
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persistent market inefficiencies through both theoretical and em-
pirical means [14] [58] [2] [51]. Barriers in a financial market are
limiting factors to the previously hypothesised market efficiency.
Jensen defined market efficiency with respect to information as
the inability to earn an economic profit based on trading on that
information [32]. The converse implication is that information and
the corresponding market inefficiency present opportunities for
investors to earn a profit.

2.2 Share Evaluation
In this subsection, we introduce portfolio management, discuss
share evaluation and current investor strategies for evaluation.

2.2.1 Overview. Portfolio management is a decision-making pro-
cess that aims to achieve a set of investment objectives. These
objectives are selected by the decision-maker or stakeholders and
principally revolve around risk minimisation [85] and value max-
imisation [67]. Share evaluation is the initial phase of this process.
It involves identifying shares that have suitable risk-return charac-
teristics [15] for inclusion in a portfolio of financial instruments.
This identification process is achieved through detailed research
and analysis. The decision-maker has a reasonable expectation that
the selected shares will generate excess returns and profitability for
the portfolio manager. The shares identified during this phase are
input into the second phase of the portfolio management process:
portfolio construction.

Portfolio construction (commonly termed selection) refers to
determining the optimal allocation and diversification of a set of
shares to maximise returns [21]. A solution to this portfolio selec-
tion problem was pioneered by Markowitz, who introduced the
Mean-Variance model in his seminal paper [52]. This model is a
mathematical framework for constructing a portfolio such that
the expected return is maximised for a certain level of variance or
market risk. Once this second decision-making phase is complete,
the total available capital is divided and invested according to the
identified percentages to construct the optimal portfolio.

2.2.2 Investing Strategies. There are two general investing ap-
proaches employed by market participants: technical analysis and
fundamental analysis. Edwards et al. [16] define technical analy-
sis of financial markets as a technique that provides asset price
forecasts on the basis of visual inspection of historical price action.
Brown and Jennings [7] present a similar definition, instead refer-
ring to future price as private information. Technical analysis is
based on the fundamental assumption that historical price patterns
reoccur in the future and that successive price changes are depen-
dant [15]. Drake comments that technical approaches do not hold
in the long run since these techniques assume that asset prices are
based purely on speculation rather than economic fundamentals
[15].

Fundamental analysis is the evaluation of financial statement
data [1] and factors other than price to guide investment decisions
and predict future price movements. The fundamental analysis
strategy can be further subdivided into two distinct approaches:
value and growth investing. The value investing strategy is based
on the premise that undervalued stocks exist relative to economic
fundamentals; the share price is below its intrinsic value [43]. These

shares are expected to deliver an abnormal return as the price re-
verses towards its intrinsic value. Fama and French [19] pioneered a
formalised methodology for an investment strategy using the value
approach. The growth investing strategy is premised on investing
in high-valued securities that are deemed to have significant fu-
ture growth prospects. These shares are typically associated with
companies with strong earnings growth and innovative technology
[15].

A review study by Chan and Lakonishok concluded that the
majority of empirical research indicated that the value investing
approach earns higher returns than a growth investing strategy.
However, Lev and Srivastava [43] argue that over the last 10-12
years, value investing is failing to deliver excess returns. Despite
inconsistent performance, both strategies are exceedingly popular
and often employed in tandem by portfolio managers [15].

3 TIME SERIES PREDICTION
In this section of the review, we begin with a brief introduction to
time series, categorise prediction tasks and conclude with a review
of deep learning forecasting techniques. The universal procedure
for time series prediction consists of the following six steps: (1)
data partitioning, (2) parameter selection or estimation, (3) model
building, (4) current value prediction, (5) performance evaluation
and (6) future value prediction [56].

Prediction techniques primarily differ in the second and third
stages of this process. The class of parametric methods, including
linear models, require a priori information about the distribution
that governs the data. On the other hand, non-parametric tech-
niques, the focus of this review, initialise and update the model
parameters in an iterative process to minimise the predictive error.

3.1 Background
A univariate time series is a set of random variables {𝑋𝑡 , 𝑡 ∈ 𝑇 },
where 𝑇 is a discrete or continuous index set. Informally, a time
series is a sequence of observations ordered in time. If 𝑇 is discrete,
then 𝑇 = {1, 2, ..., 𝑁 }, else the index set is a finite interval 𝑇 =

{𝑡 | 0 ≤ 𝑡 ≤ 𝑁 }. Each random variable has a probability distribution
𝐹𝑡 , and this collection of random variables is a stochastic process.
For each 𝑡 ∈ 𝑇 , 𝑋𝑡 is a single realization from this distribution, and
thus a time series is a observation of a stochastic process [57]. A
multivariate time series is defined as a set of𝑀 univariate series.

3.2 Prediction Tasks
This subsection presents a brief overview of two prediction task
classes: point prediction and trend prediction. Trend prediction can
be further subdivided into two general sub-problems: multi-step-
ahead prediction and sequence movement prediction.

3.2.1 Point Prediction. Point or one-step-ahead prediction is con-
cerned with predicting the value of a single future observation
conditional on the historical temporal observations. The majority
of conventional linear models [4] and machine learning (ML) tech-
niques [3] apply to this prediction task. Point prediction can be
formulated as a regression problem; a model is fit to the time series
data and outputs a continuous value.
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3.2.2 Movement Prediction. Sezer et. al [61] formulate movement
prediction in terms of a classification problem, in which the ob-
jective of the model is to determine the direction of value change.
Their review found that studies formulate this problem either as
a dual-class or tri-class classification problem; the latter considers
neutral future trends in designing the output layer of the model. The
fitted model outputs a class label corresponding to the predicted
movement of the global trend.

3.2.3 Multi-Step-Ahead Prediction. Multi-step-ahead prediction is
the task of predicting a sequence of values in a time series instead of
the value of a single future observation. Multi-step-ahead prediction
is applicable in multiple domains but involves additional complexity
due to error accumulation. Error accumulation is the propagation of
past error into future predictions. [12] which decreases the model’s
predictive accuracy.

3.2.4 Trend Prediction. The trend of a time series is defined as
𝑇 = {< 𝑙1, 𝑠1 >, ..., < 𝑙𝑛, 𝑠𝑛 >}, computed through piece-wise linear
approximation [37] of the original time series 𝑋𝑡 . The task is for-
mulated as the prediction of the trend component < 𝑙𝑛+1, 𝑠𝑛+1 >.
We describe this as a quasi-combination of both multi-step-ahead
and movement prediction.

3.3 Deep Neural Network Techniques
Sezer et al. [61] note that over the last decade, deep neural network
(DNN) architectures have surpassed the performance of conven-
tional ML models. DNNs are also non-parametric data-driven mod-
els [54] that extract information without a priori knowledge of the
underlying probability distribution. This subsection presents an
overview of relevant DNN model classes and then discusses DNNs
for trend prediction. Point prediction is discussed in a successive
section in the context of financial time series.

3.3.1 Overview. A DNN is a composition of 𝐿 parametric functions
called layers. Each layer 𝑙𝑖 consists of one or more neurons, which
are computational units that transform the input into the layer’s
output. Each of these transformations is a non-linear parametric
function. The parameter vector Θ (weights) link a previous layer’s
input to the current layer’s output. The final output is calculated
through the composition of these non-linear computations. Deep
Multi-layer Perceptrons (DMLP) are a sub-class of DNNs that are
feed-forward only; the architecture contains no loops.

A Convolutional Neural Network (CNN) consists of convolu-
tional layers that transform the input using convolutions. Fawaz
et al. [20] define a convolution as applying a non-linear transfor-
mation 𝜔 (termed a filter) to an input. CNNs are state-of-the-art
techniques for image recognition tasks [40] [68]. However, subse-
quent research has shown that convolutions can be adapted for
time series prediction by reducing the dimensionality of the filters
from two to one [20].

A Recurrent Neural Network (RNN) is a DNN that contains con-
nections between non-successive layers, forming a cycle. These
residual connections enable to network to store internal state and
learn temporal dependencies. These networks can also be trained
using the backpropagation algorithm [26]. LTSM models are a sub-
class of RNN models that can recall values over variable ranges
[20]. LSTM differs by including input and output gates in each

computational unit that prevent error from propagating through
the rest of the network [26]. This improves predictive accuracy and
increases efficacy on long-range sequences.

3.3.2 Deep Neural Networks for Trend Prediction. Lin et. al [46]
propose a hybrid deep neural network model (TreNet) that com-
bines a CNN and LSTM model to predict the future trend. The
CNN component consumes raw time series data whilst the LSTM
model consumes segmented historical trends. These models ex-
tract local and global features to produce an output trend [39]. Lin
et. al demonstrate that their model outperforms existing models.
However, Kouassi and Moodley [39] critique the robustness of the
validation procedures employed by the authors.

Kouassi and Moodley build on the previous work by evaluating
an MLP, CNN and LSTM against the TreNet architecture. Instead
of standard cross-validation with a single test set, Kouassi and
Moodley utilise a walk-forward validation procedure that preserves
the temporal nature of the input data by partitioning the data into
overlapping subsets [38]. Kouassi and Moodley find that TreNet
only infrequently outperforms the general DNN architectures and
by no significant margin. Kouassi and Moodley also [39] explore the
combined algorithm selection and parameter optimisation (CASH)
problem [22] for deep learning models for trend prediction. Their
research output is an experimental platform for AutoML based on
the Bayesian optimisation and Hyperband framework [17]. The
authors demonstrate that AutoML can effectively automate the
search for an optimal model-parameter configuration.

Fawaz et al. [20] published an exhaustive review of deep learning
techniques for time series classification. The authors trained nine
DNNmodels on 97 datasets consisting of both uni- and multivariate
series. The results indicate that the Residual Network (ResNet) [77]
architecture outperforms other evaluated models for both univari-
ate and multivariate forecasting. ResNet is an 11-layer architecture
comprised primarily of residually-connected convolutional layers.
This reduces the effect of the vanishing gradient problem and in-
creases the efficiency of model training [28]. The vanishing gradient
problem refers to partial derivatives computed by the backpropaga-
tion algorithm tending to zero. This effectively halts the learning
procedure as the weights are no longer iteratively updated. The
network depth allows the model to generalise effectively on unseen
data [20], although He et al. [28] note that a significant amount of
training data is usually required to achieve suitable accuracy.

Long, Lu and Cui [47] focus specifically on movement prediction
using multivariate time series data market. The authors propose
Multi-Filter Neural Network (MFNN), a hybrid DNN architecture
similar to ResNet [77] that consists of both convolution and recur-
rent computational units. Long et al. evaluated model performance
against baseline RNN, LSTM and CNN models and conventional
ML techniques. The results demonstrate that MFNN outperforms
all baseline models, measured using both error and profitability
metrics. In addition to conventional validation, Long et al. perform
a market simulation to evaluate model performance. We highlight
the robustness of this evaluation methodology. The inclusion of
profit metric-based evaluation increases the strength of the authors’
claims and dually illustrates its importance for comprehensively
measuring the performance and stability of model applications in
finance. This is the topic of the next section of our review.
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4 DEEP LEARNING FOR PORTFOLIO
MANAGEMENT

To understand the current techniques, we review the literature
on price prediction, portfolio selection and share evaluation using
deep learning approaches. A copious review of 124 papers by Jiang
[33] illustrates the significant body of published literature in this
field, although the majority is focused on forecasting rather than
portfolio management sub-tasks. Also, we comment on the absence
of unified nomenclature. Share evaluation is commonly referred to
as asset or stock (pre)selection, and portfolio selection is termed
optimisation in several papers.

4.1 Price Prediction
Whilst forecasting the future price of a security is not a conventional
component of the portfolio management process, it nonetheless
provides basic decision-support for share evaluation. In their review,
Sezer et al. [61] analyse deep learning model classes for financial
time series forecasting. In contrast to Fawaz et al. work, Sezer et
al. only identify frequently applied model classes without evalu-
ating specific architectures. The absence of experimental results
is a limitation of the study, although it does not detract from the
comprehensive survey of existing deep learning research in the
financial domain.

Sezer et al. found that the majority of reviewed literature pre-
ferred RNN, LSTM, and Hybrid models. The prevalence of the ap-
plication of these models is consistent across different financial
markets, including equity, indices, bond and cryptocurrency. Sezer
et al. conclude that approximately half of the reviewed papers
evaluate the RNN and LSTM models. We note that hybrid models
that combine the RNNs with an LSTM or CNN or RNNs combined
with CNNs have also increased in popularity. Tealab [71] found
that hybrid models produced more accurate predictions compared
to standalone models, although we note his contribution is not a
comprehensive review of the literature. An important aspect of
prediction is the length of the forecasting horizon [3]. Our review
of the literature illustrates the proposed models are successively ap-
plied to both one-step- [10] andmulti-step-ahead [29] [9] prediction
tasks.

4.2 Portfolio Selection
In this subsection, we discuss deep learning techniques for port-
folio selection. Recall that portfolio management is defined as the
decision-making process of proportional allocation and redistribu-
tion [35] of investable capital into a set of securities to maximise
return. We can thus formulate portfolio selection as an optimisation
problem. Although a recent study by Tsang et al. [72] proposes a
DNN-based sub-network architecture, we find that current tech-
niques presented in the recent literature are predominately based
on deep reinforcement learning (DRL) frameworks [35] [31] [75].

RL is a multi-stage decision-making process in which an RL
agent learns to map states to action to maximise a reward. This
finding is unsurprising; reinforcement learning can be defined as an
optimisation technique that seeks to maximise a numerical perfor-
mance [69] measure to find an optimal solution. This is consistent
with the objectives of the portfolio management process.

In their two recent contributions [34] [35], Jiang and Liang pro-
pose a deep reinforcement learning framework for cryptocurrency
asset portfolio management. The authors assume a liquid market
and negligible investment market influence. A CNN model com-
putes a portfolio weight vector is input into the objective function
that is iteratively maximised to compute the optimal policy. This
diverges from previously discussed CNN architectures that perform
point or trend prediction. The experimental results indicate that
the CNN produced the maximal portfolio return, although a DNN
exhibited more stable performance over eight experimental runs
than the CNN. Jiang et al. [35] build on their previous work by
constructing the policy functions (formulated previously directly
as a weight vector) using CNN, RNN and LSTM models. The study
results demonstrate that the proposed framework outperformed all
surveyed portfolio selection methods, including their previous DRL
framework. We note that the scope of the studies is constrained to
the cryptocurrency market, which may exhibit different dynamics
to other financial markets.

Huang et al. [31] propose a similar DRL framework although
their study differs in using an algorithm that consists of dual DNNs
to learn the optimal reward function. The authors compare four
DRL-selected portfolios with a Chinese stock market benchmark.
The results demonstrate that the agent-selected portfolios generate
excess returns. The proposed architecture also produced greater re-
turns than classical equal-weight and mean-variance optimisation
[52] strategies. The authors were able to sufficiently demonstrate
the robustness of their DRL framework, but not generalisability;
the experiments were only conducted using Chinese stock market
securities. An important limitation to note of the reviewed publica-
tions is manual asset pre-selection, effectively bypassing the share
evaluation phase of the portfolio management process. Addition-
ally, the conditions of market liquidity and negligible capital impact
may not consistently hold.

4.3 Share Evaluation
In this subsection, we discuss techniques for identifying shares for
portfolio inclusion. This process is also defined as preselection in
the literature.

Fu et al. [25] conducted a study of both ML and DNN models.
To label the candidate securities, the study draws inspiration from
the Sharpe Ratio, a measure of a company’s profit to risk [62]. The
authors constructed features representing both technical and fun-
damental signals and apply a Genetic Algorithm (GA) to conduct
a feature-space optimal subset search, a method first proposed by
Yang and Honavar [83]. GAs are a family of meta-heuristic ML
models inspired by evolution [53] that iteratively optimise a set
of candidate solutions. Yang et al. [82] devise a similarly inspired
framework for share evaluation, but combine both fundamental
factors and predicted returns of the candidate securities. However,
their research is less relevant as only optimisation techniques [13],
and not DNNs, are applied to price prediction and share evaluation.
Fu et al. found that a stacked DNN-based model predicts the maxi-
mally returning portfolio, measured using excess return. However,
the study is limited by only evaluating the models on Chinese stock
market data. Furthermore, the research fails to evaluate other deep
learning architectures.
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4.4 Unified Portfolio Management
Our search has illustrated that recent contributions have begun to
focus on end-to-end portfolio management. Leon et al. [42] conduct
both share evaluation and portfolio selection, although their study
evaluates only unsupervised learning techniques. Leon et al. [42]
use clustering algorithms to identify an optimal set of shares and
apply optimisation techniques to select a portfolio with maximised
returns.

Both Ta et al. [70] and Wang et al. [76] use an LSTM model
to perform share evaluation based on the predicted price. This
prediction is performed using identified technical features. The
results of both studies demonstrated that the LSTM model for share
evaluated combined with Mean-Variance Optimization (MVO) for
the portfolio selection phase produced the highest returns. Both sets
of authors use square- and absolute-error metrics to evaluate the
performance of the LSTMmodel for price prediction. Returnmetrics
are used to evaluate the performance of the predicted portfolios.

In our search of the literature, we state, to the best of our knowl-
edge, that Ma et al. [49] have produced the most comprehensive
study of DNN models for both share evaluation and portfolio selec-
tion. Building on the methodology of the aforementioned papers,
Ma et al. compared a DMLP, LSTM and CNN to baseline ML and
ARIMA models. Diverging from the previous work, Ma et al. use
only historical price data to predict future return. Whilst the results
indicated that LSTM outperforms the other DNN-based models, a
Random Forest [5] MLmodel produced the overall lowest predictive
error. The authors evaluate both MVO and the Omega ratio [36] for
optimisation of the portfolio weights, similarly finding that MVO
selects the optimal portfolio.

We comment on several observations about the literature dis-
cussed. Firstly, a deep learning approach is applied only to the share
evaluation component, using a price forecasting strategy. The ex-
perimental results provide evidence contrary to the hypothesis of
DNN outperformance. Secondly, each study is limited by its model
evaluation; whilst it is robust, data from a single financial mar-
ket fails to demonstrate the generality of the models. Finally, we
note that the current literature provides an empirical foundation
for further investigation of price prediction as a proxy for share
evaluation.

5 GRAPH NEURAL NETWORKS
Graph Neural Networks (GNN) are a subclass of deep learning
models first proposed by Scarselli et al. [60].We review the literature
to understand state-of-the-art architectures and GNN applications
to portfolio management.

5.1 Background
Data and the relationships between objects can be modelled graph-
ically in almost every domain. This observation of naturally occur-
ring graph structures in systems motivated Scarselli et al. [60] to in-
troduce a novel neural network architecture that extended existing
supervised neural network methods to process graphically-encoded
non-Euclidean data. Historically, RNNs [24] [66] andMarkov chains
[73] applied to graph-based problems, notably exploited by Brin and
Page [6] for search engine creation. In their recent review on GNN

methods and applications, Zhou et al. [88] comment that the afore-
mentioned techniques, although successful, relied on converging to
a solution, which constrains their generalisability to other systems
in which convergence is impossible. Moreover, Zhou et al. note that
recent advances in the field of deep learning have supported the
development of GNN-based architectures. Wu et al. attribute the
success of GNN models to its properties of permutation-invariance,
local connectivity and compositionality [78].

Mathematically, a graph is a pair 𝐺 = (𝑉 , 𝐸), where 𝑉 the set of
nodes (data objects) and 𝐸 the set of edges (relationships between
data). A feature vector 𝑋𝑣 is associated with each node 𝑣 ∈ 𝑉 . The
labels of a node 𝑣 , edge 𝑒 = (𝑣,𝑢) or graph𝐺 are real-valued vectors.
The adjacency matrix 𝐴 ∈ R𝑁×𝑁 is a mathematical representation
of a graph𝐺 , with 𝐴𝑖 𝑗 > 0 for (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 and 𝐴𝑖 𝑗 = 0 for (𝑣𝑖 , 𝑣 𝑗 ) ∉
𝐸.

GNN models are designed to perform two distinct predictive
tasks: node classification and graph classification. Node classifica-
tion refers to the model objective of learning a representation vector
ℎ𝑣 for 𝑣 ∈ 𝑉 and a function 𝑓 , such that the predicted node label is
𝑦𝑣 = 𝑓 (ℎ𝑣) [81]. In node classification applications, 𝑓 is conditional
on 𝑣 , and hence the classification or regression is dependant on
the node properties [60]. Graph classification tasks instead learn
a representation vector ℎ𝐺 and a function 𝑔 to predict the graph
label 𝑦𝐺 [81]. The function 𝑔 is independent of any node 𝑣 ∈ 𝑉 and
thus unconditional on the node-level properties of the graph.

The representation vector ℎ𝐺 can be described as the global fea-
tures of the graph, and similarly, ℎ𝑣 are the node-level local features.
The learning algorithm for GNNs implements a neighbourhood
aggregation strategy [81]. The representation vectorℎ𝑣 is initialised
to the feature vector𝑋𝑣 and iteratively by aggregating the represen-
tation vectors of neighbouring nodes 𝑁 (𝑣) = {𝑣 ∈ 𝑉 | (𝑣,𝑢) ∈ 𝐸}.
This recursive update procedure of each vector ℎ𝑣 for 𝑣 ∈ 𝑉 cap-
tures the network structure and neighbourhood-level local features.

5.2 Architectures
RNN-based approaches [45] are vulnerable to the vanishing gradi-
ent problem [28] and ineffective on long-range temporal sequences.
Diffusion Convolutional Recurrent Neural Network (DCRNN) [45]
is one such example of a hybrid architecture, extracting spatial
information and passing the output into an RNN to learn temporal
dependencies [88]. CNN models can be adapted to learn temporal
dependencies using one-dimensional convolutions but require an
exceptionally deep network for learning to be effective [79]. Spatial-
temporal graph convolutional networks (STGCN) [86] [65] models
are CNN-based approaches frequently applied to spatial-temporal
graph modelling tasks.

Existing literature incorrectly assumes that the graph reflects
real dependencies [79]. In practical systems, a dependency can exist
if an edge is absent from the graph, nor does an edge always imply a
relation between nodes. Additionally, prior knowledge of this graph
structure is assumed and the models rely on a fixed adjacency ma-
trix. This approach is unsuitable for systems with hidden or implicit
spatial dependencies, like financial markets. In this subsection, we
present a detailed comparison of three graph neural network ar-
chitectures that overcome these limitations: Graph WaveNet [79],
MTGNN [78] and StemGNN [8].
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5.2.1 Graph WaveNet. Graph WaveNet (GWN) is a hybrid deep
learning architecture for spatial-temporal graph modelling. Wu et
al. define a spatial-temporal graph𝐺 as consisting of a set of nodes
𝑉 , where each node 𝑣 has dynamic input features [79]. Zhou et al.
define graphs with time-varying input features as dynamic graphs
[88].

The GWN architecture consists of temporal convolution (Gated
TCN) and graph convolution (GCN) modules. The GCN module
consists of a self-adaptive adjacency matrix that requires no prior
knowledge and is learnt using the stochastic gradient descent al-
gorithm, although can be seeded with prior spatial knowledge
(graph structure) if available. The TCN module consists of one-
dimensional convolutions that capture long-range temporal se-
quences [55] whilst avoiding the vanishing gradient problem. The
GCN module extracts node-level features using neighbourhood fea-
ture aggregation. The model outputs the predicted sequence over
the entire prediction horizon.

Wu et al. evaluate the architecture on traffic network datasets
[45]. The study results demonstrate that GWN outperformed both
the temporal models and spatial-temporal models, although the
latter by a reduced margin. The authors find that the model trained
with the prior graph structure produces the lowest error. Further,
the self-adaptive adjacency matrix without prior information pro-
duced reasonable performance. We note that results tentatively sug-
gest that GWN suitable for application to problems without knowl-
edge of the graphical structure. Schleifer, McCreery and Chitters
[63] propose several modifications to the GWN architecture (subse-
quently termed GWN++) and model hyperparameters to improve
its performance. Their results demonstrate that minor adjustments
positively impact performance with only nominal degradation of
computational efficiency. We remark that the evaluation methodol-
ogy is a significant limitation of both studies. GWN and GWN++
are compared against a minimal set of spatial-temporal models and
on relatively small-scale datasets. The authors fail to demonstrate
the applicability of the GWN architecture in multiple domains.

5.2.2 MTGNN. MTGNN is a generic framework proposed by Wu
et al. [78] with an explicit focus on multivariate time series fore-
casting. Wu et al. posit that existing spatial-temporal graph neural
networks are not suitable for modelling multivariate time series
due to two distinct factors: unavailability of prior structural infor-
mation and the sub-optimality of the graph structure [78]. GWN
can accommodate unknown graph structures, although the archi-
tecture does not update the graph structure during model training.
MTGNN consists of a distinct graph learning layer that extracts the
adaptive graph adjacencymatrix. TheMTGNN architecture exhibits
several similarities to GWN. A neighbourhood aggregation strategy
learns spatial dependencies and the TCN module extracts tempo-
ral dependencies. MTGNN avoids the vanishing gradient problem
by including residual and skip intra- and inter-layer connections.
However, model learning uses a strategy that splits the input into
subgroups and is thus more computationally efficient than GWN.
We note that this becomes more apparent on larger datasets, unlike
those used by Wu et al. in model evaluation. Wu et al. [78] conduct
a robust evaluation of MTGNN against a selection of non-GNN
models for one-step-ahead forecasting and both RNN-based and
STGNN-based models for multi-step-ahead forecasting, including

DCRNN [45], STGCN [86] and GWN [79]. MTGNN outperforms
the evaluated models for one-step-ahead forecasting tasks. We note
that the performance of MTGNN is consistent with the explicit
spatial dependencies exhibited by the datasets. Further, the results
demonstrate the model’s generalisability. The results indicate that
whilst MTGNN is performant, it is unable to achieve state-of-the-art
[11] [87] performance for the multistep-ahead predictive task. How-
ever, MTGNN achieves parity with the performance of DCRNN and
STGCN without the prior availability of an adjacency matrix. This
is a significant finding given that DCRNN [45] and STGCN [86]
rely on a fixed adjacency matrix. We note that MTGNN and GWN
can perform sufficiently without prior knowledge of the graph
structure.

5.2.3 StemGNN. Spectral Temporal Graph Neural Network [8] is
a hybrid architecture for multivariate time series forecasting that
captures inter-series correlations and temporal dependencies in the
spectral domain. The spectral component of the model diverges
from previously discussed architectures which extract spatial depen-
dencies. Spectral-Temporal GNN models are trained on the spectral
representation of the graph [88] using graph signal processing tech-
niques first introduced by Shuman et al. [64]. A graph signal 𝑥 is
transformed into the spectral domain by a Fourier transform F ,
a convolution operator is applied to the spectral signal, and the
inverse Fourier transform F −1 is applied to transform the signal
into its original representation [88]. StemGNN consists of a Latent
Correlation Layer to automatically learn correlations between time
series without a pre-defined graph structure. However, StemGNN
improves on previous architectures in the literature that ignore
inter-series correlations and thus do not jointly capture temporal
and multivariate dependencies.

Cao et al. comprehensively evaluate StemGNN against baseline
and state-of-the architectures, including GWN, on nine separate
datasets. The study results demonstrate that StemGNN consistently
outperforms the evaluated models on all datasets without prior
knowledge of the graph. In the included analysis on traffic fore-
casting applications, Cao et al. also note that StemGNN produces
excellent predictive performance without reducing interpretabil-
ity [8]. We note that the experimental results illustrate the gener-
alisability of the StemGNN architecture. Additionally, compared
to prior graph knowledge, the correlation layer captures hidden
structural dependencies more effectively, evidenced by the superior
performance of StemGNN against models such as DCRNN [45] and
STGCN [86] that require a fixed adjacency matrix. The authors
conclude that StemGNN produces state-of-the-art performance on
these datasets. However, we note that the study is limited by exclud-
ing MTGNN [78] from the model evaluation; the authors’ claim is
less justified. We remark that evaluating MTGNN presents a more
representative comparison given its specific focus on multivariate
time series.

5.3 Graph Neural Networks for Portfolio
Management

5.3.1 Existing Applications. In their discussion of GNN applica-
tions, Zhou et al. [88] subdivide applications into two categories:
structural and non-structural. Structural applications involve the
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application of GNNs to data that exhibits an explicit relational struc-
ture. On the other hand, non-structural applications refer to GNNs
that applied to data that has implicit or hidden relations [88]. We
note that multivariate stock market data is a class member of non-
structured data; system modelling does not expose the relational
schema, nor can the data be easily encoded into a graph structure.
After a thorough survey, we state to the best of our knowledge
that research is yet to be published on the application of GNNs to
portfolio management. Zhou et al. [88] review also fails to identify
any publications that investigate this research question. Instead,
they find that the primary non-structural applications are focused
on image processing [30] [80] and natural language processing
[84], for which there exists a significant body of recent literature.
Our review did identify a GNN-based architecture for dual-class
movement prediction in the stock market by Li et al. [44]. Their
research is notable for their encoding of the non-structural data.
This graphical structure is the topic of the subsequent section.

5.3.2 Graph Structure Formulation. LSTM Relational Graph Con-
volutional Network (LSTM-GCN) [44] uses the correlation between
shares to capture non-temporal dependencies and encode them in a
graphical structure. Li et al. assume that shares are dependant and
thus the correlation is representative of the latent non-temporal
structure. The correlation matrix is calculated using historical price
data. Li et al. motivate this choice by noting that the historical data
encompasses prior market movements [44]. The graph is combined
with fundamental data and fed into the LSTM-GCNmodel to predict
future trend movement. LSTM-GCN is evaluated against baseline
ML and LSTM classification models. Although the study is limited
by the scope of its evaluation, it demonstrates the potential for
using a correlation matrix to represent prior relational knowledge
for prediction tasks using GNN models.

5.3.3 Applicability. To assess their applicability to the finance do-
main, we discuss the strengths and weaknesses of the aforemen-
tioned GNN architectures. These properties are summarised in table
1. Principally, we note that none of the reviewed GNN architectures
are evaluated on stockmarket data. MTGNN is the only architecture
that is applied in the finance domain. However, the performance is
evaluated on an exchange-rate series; the currency exchange mar-
ket exhibits unique dynamics. As noted previously, whilst MTGNN
and StemGNN are sufficiently general, they are untested on stock
market time series.

Recall that in contrast to GWN and MTGNN, StemGNN extracts
dependencies in the spectral domain instead of the spatial domain.
However, based on the comprehensive experimental results pre-
sented for several distinct domains, we posit that this does not affect
applicability. GWN, MTGNN and StemGNN are all able to automat-
ically learn the graphical structure without prior knowledge. As
discussed, this overcomes the limitations of alternative GNN archi-
tectures. We note that this adaptive capability is especially relevant
for non-structural applications. A notable weakness of StemGNN
is that in its explicit focus on general modelling cases, it fails to
accommodate prior knowledge if available. GWN and MTGNN are
both more flexible architectures and allow for the adjacency matrix
to be initialised. We note that the models are uniformly evaluated
using an identical set of evaluation metrics. This supports both the
reproducibility of the presented results and a robust evaluation of

model performance on other datasets. Without experimental results
and the absence of relevant literature, we cannot infer their per-
formance. However, based on the comprehensive review presented
in the previous section, we posit that the identified architectures
apply to stock market times series data. Furthermore, the studies
demonstrate that GWN, MTGNN and StemGNN can perform both
one-step-ahead and multi-step-ahead predictive tasks. This facility
is consistent with the predictive tasks performed by DNN-based
solutions for price forecasting.

6 MODEL VALIDATION
An important component of any research is the evaluation of the
performance and robustness of a system or model. Suitable eval-
uation metrics and validation procedures are required to validate
the out-of-sample performance and accurately compare the model
against alternative solutions. Zhou et al. [88] remark that incon-
sistent evaluation procedures can result in disparate performance
results. This subsection briefly surveys the preferred validation and
evaluation metrics in the literature.

6.1 Validation Procedures
Splitting the dataset into a train, validation and test set is a ubiq-
uitous practice in the evaluation of non-linear models. Whilst the
precise ratio differs in the literature recent contributions [79] [78]
[74] [8] use a 60:20:20 split of the dataset. The purpose of the valida-
tion set is to optimise the model hyperparameters before evaluating
the out-of-sample performance on the test set. Conventional vali-
dation procedures are not suited to time series prediction due to
their failure to preserve temporal dependencies [38]. Walk-forward
validation is the preferred procedure that uses a sliding window
over the dataset to partition the data. There are two variants of
walk-forward validation widely used in the literature [33]: rolling
and successive. Rolling validation uses distinct segments of the
dataset for training and validation whilst consecutive validation
procedures use overlapping subsets, incrementally increasing the
window size and concurrently the training set.

6.2 Evaluation Metrics
Conventional evaluation metrics can be subdivided into two cat-
egories: classification and regression. These metric classes corre-
sponds to the associated prediction task. In their review, Sezer et
al. [61] identifies the prevalent use of the Accuracy, Precision and
Recall metrics in the literature. Our survey of the literature finds
that Mean Absolute Percentage Error (MAPE), Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) are the most commonly
used regression metrics.

Recent literature [23] [48] has supported the suitability of ab-
solute error metrics. MAPE and MAE are generically expressed
metrics that have superior interpretability, motivating its use. Note
that RMSE is sensitive to large prediction errors by design, which
can be undesirable in certain instances. Financial forecasting mod-
els also supplement standard measures with profit metrics [47] to
validate performance. Sezer et al. [61] and Jiang [33] find that Cu-
mulative Return, Excess Return and Sharpe Ratio [62] metrics are
overwhelmingly selected. These metrics are also commonly used
in the literature for DNN-based portfolio management [70] [76].
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Table 1: Comparison of GNN Architectures

Reference Architecture Type Evaluation Metrics Applications Strengths Weaknesses

[79] Graph WaveNet Spatial-Temporal MAPE, MAE, RMSE Traffic Learns graph structure automatically Reduced accuracy without prior graph structure
Accepts prior knowledge Unproven generality

[63] Graph WaveNet++ Spatial-Temporal MAPE, MAE, RMSE Traffic Improved accuracy Reduced computational efficiency
[78] MTGNN Spatial-Temporal MAPE, MAE, RMSE Traffic, Solar, Electricity, FOREX Learns graph structure automatically Outperformed for multi-step-ahead prediction

Accepts prior knowledge
Supports uni- and multivariate series

[8] StemGNN Spectral-Temporal MAPE, MAE, RMSE Traffic, Solar, Electricity, ECG Learns graph structure automatically Cannot accept prior knowledge
Interpretable extracted graphs
Supports uni- and multivariate series

In their seminal paper on GNNs, Scarselli et al. [60] select Ac-
curacy and Relative Error to measure the predictive performance
of the models. In contrast to earlier work, state-of-the-art architec-
tures, including GWN [79], MTGNN [78], Auto-STGCN [74] and
StemGNN [8] use MAPE, RMSE and MAE metrics in unison. Mul-
tiple evaluation metrics support a robust evaluation of the model
against benchmarks and other state-of-the-art models and can mit-
igate the impact of sensitive metrics on the experimental results.

7 CONCLUSIONS
This paper has reviewed several areas that are both implicitly and
explicitly related to our research objectives. The EMH [18] can be
described as the impetus for portfolio management but not as its
theoretical underpinning. Rather, we find the emergence of counter-
arguments have proved the existence of market inefficiencies [58]
[51]. It is these structural and information inefficiencies in financial
markets that provide economic opportunities for individuals to gen-
erate a return on investment through portfolio management. We
identified the development of contrasting investing strategies with
distinct methodologies. Furthermore, the literature has illustrated
that comparatively higher returns are earned using value investing.
This finding supports an underlying value investing strategy for
future intelligent systems.

We discussed time series prediction tasks and reviewed non-
linear deep learning architectures for general forecasting. We found
that deep learning models have achieved a high degree of accuracy
for prediction tasks in several domains [20], although the literature
does not exemplify a singular model class that outperforms other
techniques. Existing research has focused on multiple approaches,
including hybrid architectures which have achieved state-of-the-art
[77]. Considering deep learning architectures in the context of port-
folio management, we categorised techniques by sub-problem. We
found that RNNs, CNNs and hybridmodels are prevalent techniques
for price prediction problems; this finding is unsurprising given that
RNN and LSTM models are designed to learn temporal dependen-
cies. The reviewed studies indicate that RL-based frameworks [34]
[35] are the predominant technique for portfolio selection, which
we note is consistent with its formulation as an optimisation prob-
lem. We identified solutions [25] [82] to share evaluation, although
the research did not comprehensively evaluation the models nor
demonstrate generality. We also reviewed literature [70] [76] that
proposed a unified framework for portfolio management but uses
classical optimisation methods for portfolio selection rather than
DNNs. The contributions are notable for evaluating shares based
on their predicted returns. This is a promising approach for future
research to investigate.

GNN models are a successful class of techniques for modelling
data with explicit or latent non-temporal dependencies. Our review
identified and compared three state-of-the-art architectures: GWN
[79], MTGNN [78] and StemGNN [8]. The studies comprehensively
documented the experimental methodology and results. We remark
that the authors are justified in their performance claims based on
the presented evidence. However, their performance is untested
on stock market time series, which presents a significant oppor-
tunity. We surmise that existing research has focused on explicit
relational structured data that illustrate the advantages of GNN
models more clearly. We assessed the applicability of the identified
GNN architectures through a comparison of their features and eval-
uation methodologies. We posit that they are applicable to the price
prediction problem, and by extension, share evaluation [49]. Also,
we found that current architectures are evaluated using identical
metric sets, which develops a standard for future research to be
appropriately evaluated.

In conclusion, the literature has evidenced that opportunities
for profiting from financial markets are consistently present. Our
review has demonstrated that deep learning approaches are state-
of-the-art for portfolio management sub-problems but have been
primarily developed in isolation rather than in an end-to-end frame-
work. We have identified gaps in the state-of-the-art; there are
few unified DNN-based solutions for automated share evaluation
and portfolio selection and an absence of research investigating
GNN-based solutions. Possible future directions for research should
investigate the applicability and stability of GNN models to non-
structured data in the financial domain. This research should focus
on stock markets and develop solutions for price prediction and
share evaluation. Also, further study is required to explore intelli-
gent DNN-based systems for portfolio management. This research
also should consider the inclusion of GNNs in intelligent systems.
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