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ABSTRACT
Stock markets are dynamic systems that exhibit both tempo-
ral and non-temporal dependencies. The recent emergence
of spatial-temporal graph neural networks allows for mod-
elling multivariate time series data generated from systems
with explicit or latent structure. This research addresses two
weaknesses in the literature by investigating the applicability
of spatial-temporal graph neural networks for Johannesburg
Stock Exchange price prediction and the suitability of a cor-
relation matrix to encode prior structural information for
forecasting tasks. Our results demonstrate that the evaluated
graph neural network models achieve suitable performance
for forecasting tasks over variable prediction horizons. How-
ever, the results exemplify that inter-stock correlations do
not accurately capture stock market dependencies, and fur-
ther, a correlation matrix is an unsuitable encoding of prior
information.
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• Computing methodologies → Neural networks.
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1 INTRODUCTION
Graph neural networks (GNN) are a class of deep neural
network (DNN) models that process graphically-encoded
multivariate data. Spatial-temporal GNNs are a variant that
model multivariate data exhibiting both spatial and temporal
dependencies. This data forms a spatial-temporal graph that
consists of a set of nodes, each with dynamic node-level
temporal inputs [27] and a predefined graph structure. The
existing literature has demonstrated GNN applications to
traffic network, energy and medical datasets, but there is a
notable deficit of price prediction studies.
A stock market is a financial market that facilitates the

exchange of ownership shares of listed financial securities
[7]. Stock markets are dynamic systems that can exhibit
linear and non-linear dependencies. Pair-wise price corre-
lations between shares typify explicit linear dependencies.

A correlation matrix provides a mechanism for encoding
these multivariate correlations in a graphical structure. Fur-
thermore, recent studies [22] [15] that evaluate DNNs have
illustrated that price forecasting can function as a proxy
for identifying suitable securities for investment, a process
termed share evaluation.
The existing literature naively presumes that the graph

reflects concrete dependencies [27]. Furthermore, the litera-
ture assumes prior knowledge of the graph structure and the
proposed models require predefined structure, an unsuitable
prerequisite for stock market prediction. In this paper, we
address two principal weaknesses in the literature. Firstly,
we evaluate the applicability of three state-of-the-art GNN
architectures for Johannesburg Stock Exchange (JSE)-listed
share price prediction. These architectures are applied to
prediction problems in other domains, but without evidence,
we cannot infer their stock market predictive performance.
Secondly, we assess the suitability of a correlation matrix to
capture market dependencies and encode structural informa-
tion and test the hypothesis that multivariate correlations
can improve share price prediction accuracy.

2 BACKGROUND AND RELATEDWORK
2.1 Problem Formulation
A time series is a sequence of real-valued observations or-
dered in time. Formally, a univariate time series is a set of
random variables {𝑋𝑡 , 𝑡 ∈ 𝑇 }, where 𝑇 = {1, 2, ..., 𝑀}. A
multivariate time series X ∈ R𝑁×𝑀 is defined as a set of 𝑁
univariate series.

Mathematically, a graph is a pair 𝐺 = (𝑉 , 𝐸), where 𝑉 de-
notes the set of nodes and 𝐸 the set of edges 𝑒 = (𝑣,𝑢). A fea-
ture vector𝑋𝑣 is associated with each node 𝑣 ∈ 𝑉 . The neigh-
borhood of a node is defined as 𝑁 (𝑣) = {𝑣 ∈ 𝑉 | (𝑣,𝑢) ∈ 𝐸}.
The adjacency matrix A ∈ R𝑁×𝑁 is a mathematical represen-
tation of a graph 𝐺 , with 𝐴𝑖 𝑗 > 0 for (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸, 𝐴𝑖 𝑗 = 0 for
(𝑣𝑖 , 𝑣 𝑗 ) ∉ 𝐸 and 𝑁 denotes the number of nodes.
In a stock market multivariate spatial-temporal graph,

each node 𝑣 is a stock, and the feature vector 𝑋𝑣 corresponds
to univariate share price time series input. The graph repre-
sents latent stock market structure.
Node degree is the number of connected node edges. Be-

tweenness centrality is a measure of a node’s occurrence
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frequency on the pair-wise geodesic. Closeness centrality is
a measure of a node’s average inverse distance to all other
nodes. Transitivity is a measure of interconnected neighbour-
hood nodes.

Multivariate single-step forecasting is the task of predicting
the value of a single future set of daily share prices (node val-
ues) in a spatial-temporal graph conditional on the historical
observations. Let zt ∈ R𝑁 denote a 𝑁 -dimensional variable
at time 𝑡 . Given X = {z1, z2, ..., zt}, the aim is to predict the
single-step-ahead vector of node values Y = {ẑt+1}.

Multivariate multi-step forecasting is the task of predicting
a sequence of daily share price values conditional on the his-
torical observations. Given observed valuesX = {z1, z2, ..., zt},
the aim is to predict the sequence Y = {ẑt+1, ẑt+2, ..., ẑt+H},
where 𝐻 is the next 𝐻 time-steps, termed the prediction
horizon.

2.2 Deep Neural Network Price Prediction
Deep neural networks (DNNs) have superseded classical ma-
chine learning models as the state-of-the-art for recognition,
detection and prediction problems in varying domains. DNNs
are multi-layer computational processing models that effec-
tively capture latent data features at multiple abstraction
levels [12].
Sezer et al. [19] find that the majority of recent research

investigating financial time series forecasting has focused on
recurrent neural network (RNN) or Long short-term mem-
ory (LSTM) models, with consistent applications to different
financial markets. The literature has also illustrated the in-
creased prevalence of hybrid models that combine RNNs
with an LSTM or RNNs combined with convolutional neu-
ral networks (CNN). Tealab [23] finds that hybrid models
produced more accurate predictions compared to standalone
models, although the author does not conduct an exhaustive
review.

In an applied portfolio management context, Ta et al. [22]
and Wang et al. [25] apply an LSTM to identify investable
financial securities based on the forecasted price, using a
composite of price and fundamental data. Building on this
methodology, Ma et al. [15] diverge by testing the predictive
performance of DNNs using only historical raw price data.
Bontempi et al. [1] remark on the importance of the pre-

diction horizon length in forecasting tasks. The existing lit-
erature has evidenced that the investigated models are ap-
plied to both single- [5] and multi-step [11] [4] forecasting
tasks. However, multi-step forecasting tasks involve addi-
tional complexity due to error accumulation. Error accumu-
lation is the propagation of past error into future predictions
[6], thereby decreasing predictive accuracy.

2.3 Graph Neural Networks
Data and the relationships between objects can be modelled
graphically in almost every domain. This observation of
naturally occurring graph structures in systems motivated
Scarselli et al. [18] to introduce the graph neural network
(GNN) model class that extends existing supervised DNN
methods to process graphically-encoded non-Euclidean data.
GNNs assume that the node state is dependant on its neigh-
bourhood state [26].
Historically, RNNs [9] [21] and Markov chains [24] were

applied to graph-based problems, notably exploited by Brin
and Page [2] for search engine creation. Zhou et al. [31] note
that the aforementioned techniques, although successful,
relied on converging to a solution, which constrains their
generalisability to other systems in which convergence is
impossible. Moreover, the authors state that the recent ad-
vances in deep learning have supported the development of
GNN-based architectures. Wu et al. attribute the success of
GNN models to their properties of permutation-invariance,
local connectivity and compositionality [26].
GNNs are designed to perform two distinct predictive

tasks: node classification and graph classification. Node clas-
sification refers to the model objective of learning a repre-
sentation vector 𝐻𝑣 for 𝑣 ∈ 𝑉 and a function 𝑓 , such that
the predicted node value is 𝑌𝑣 = 𝑓 (𝐻𝑣) [28]. Graph classifi-
cation tasks instead learn a representation vector 𝐻𝐺 and a
function 𝑔 to predict the graph label 𝑌𝐺 [28]. The function 𝑔
is independent of any node 𝑣 ∈ 𝑉 and thus unconditional on
the node-level properties of the graph.

2.4 Spatial-Temporal Graph Neural
Networks

RNN-based approaches [14] are vulnerable to the vanishing
gradient problem [10] and ineffective on long-range tem-
poral sequences. Diffusion Convolutional Recurrent Neural
Network [14] is a hybrid architecture that extracts spatial
information and passes the output to an RNN to learn tempo-
ral dependencies [31]. CNN models can be adapted to learn
temporal dependencies using one-dimensional convolutions
but require an exceptionally deep network for learning to be
effective [27].
Spatial-temporal GNNs are explicitly designed to model

spatial and temporal dependencies in a system. Spatial and
temporal components extract underlying patterns from the
data in the corresponding domains. The spatial relations
are reflected by the graph structure, with dynamic node-
level inputs exhibiting one-dimensional temporal dependen-
cies [27]. Spatial-temporal graph convolutional networks
[30] [20] are CNN-based architectures frequently applied to
spatial-temporal graph modelling tasks. However, Wu et al.
state that previously introduced spatial-temporal GNNs are
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not suitable for modelling multivariate time series due to
two distinct factors: unavailability of prior information and
the sub-optimality of the predefined graph [26].
In non-idealised systems, a dependency can exist if an

edge is absent from the graph, nor does an edge always im-
ply an inter-node dependency. However, previous contribu-
tions evaluating spatial-temporal GNNs incorrectly assume
that the graph is a perfect representation of dependencies
[27]. Prior knowledge of the spatial dependencies is further
assumed, and the models rely on a predefined fixed graph
structure for training. This approach is unsuitable for stock
market systems with complex dependencies and latent struc-
ture.
Graph WaveNet (GWN) [27], MTGNN [26] and Spectral-

Temporal Graph Neural Network (StemGNN) [3] are archi-
tectures that overcome the aforementioned limitations. A
comparative analysis is summarised in table 1. GWN, MT-
GNN and StemGNN have achieved the state-of-the-art or
parity for single-step and multi-step forecasting task perfor-
mance on the evaluated datasets.
Whilst the MTGNN and StemGNN domain applications

prove generalisability, neither architecture is tested on stock
market data. GWN is evaluated only on traffic network
datasets, and therefore, we cannot infer generalisability. An
exchange-rate time series is used to evaluate MTGNN’s per-
formance, although the foreign exchange and stock markets
exhibit heterogeneous dynamics. MTGNN and StemGNN
outperform GWN on traffic network datasets, but MTGNN is
notably absent from the StemGNN performance evaluation.
A graph convolution [8] component is uniformly inte-

grated to extract spatial structure. However, in contrast to
GWN and MTGNN, StemGNN extracts dependencies in the
spectral domain. The reported experimental results [3] sug-
gest that this does not affect its applicability to stock market
prediction. GWN and MTGNN both utilise a temporal con-
volution component to learn temporal dependencies within
the time series.

GWN, MTGNN and StemGNN all can adaptively learn the
graph structure without the provision of prior information.
StemGNN and MTGNN outperform spatial-temporal GNNs
that are initialised with fixed graph structures. GWN simi-
larly outperforms the evaluated models. However, GWN’s
predictive performance decreases without prior structural
information. A notable weakness of StemGNN is that in its
explicit focus on general modelling cases, it fails to accommo-
date available prior information, whilst GWN and MTGNN
are flexible and accept adjacency matrix initialisations.

2.5 Graph Structure Encoding
GNN applications can be categorised into structural and
non-structural applications [31]. Structural applications in-
volve data that exhibits an explicit relational structure. Non-
structural applications involve data that has implicit or hid-
den relationships. Stock market data is an example of non-
structured data in which modelling does not expose the re-
lational schema, although the data can be transformed to
formulate a structural problem. Zhou et al. [31] review il-
lustrates that the existing literature seldom explores GNN
applications [29] [16] to stock market prediction.
LSTM Relational Graph Convolutional Network (LSTM-

RGCN) [13] is a GNN architecture that exploits inter-stock
linear correlations to capture market dependencies and en-
code them in a graphical structure. The RCGN component
extracts spatial dependencies, whilst an LSTM functions as
a news text encoder and dynamic information propagation
mechanism between RGCN layers. However, LSTM-RGCN
notably does not incorporate a temporal component, with
the authors formulating the problem as dual-class movement
prediction instead of price prediction.
A correlation matrix is calculated using historical price

data under the assumption of share inter-dependency, thus
positing that the matrix is representative of the latent market
structure. Li et al. motivate their choice by noting that histor-
ical market data encompasses prior market movements [13].
The correlation matrix functions as a proxy for prior struc-
tural information and initialises the graph adjacency matrix.
The authors constrain their evaluation of LSTM-RGCN to
Chinese stock market data. LSTM-RGCN outperforms the
evaluated models but produces a relatively poor accuracy
rate.

3 METHODOLOGY
3.1 Models
In this research, we evaluate GWN [27], MTGNN [26] and
StemGNN [3] for stock market price prediction. Each model
is composed using the PyTorch machine learning library,
based on the authors’ implementations.

3.1.1 Graph WaveNet. GWN is a hybrid architecture for
spatial-temporal graph modelling. The GWN architecture
consists of temporal convolution (Gated TCN) and graph
convolution (GCN) modules. The GCN module contains a
self-adaptive adjacency matrix that requires no prior infor-
mation and is learnt using stochastic gradient descent. The
Gated TCN module consists of one-dimensional convolu-
tions that capture long-range temporal sequences [17] whilst
avoiding the vanishing gradient problem [10]. The GCNmod-
ule extracts node-level dependencies using neighbourhood
feature aggregation [28]. The model outputs the predicted
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Table 1: Comparison of selected graph neural network architectures

Architecture Type Temporal Component. Spatial Component Datasets (MAPE%) Strengths Weaknesses

Graph WaveNet [27] Spatial-Temporal Gated Temporal (Gated TCN) Graph Convolution Traffic (8.23%) Learns graph structure adaptively Sub-optimal adaptive structure
Convolution (GCN) Accepts prior information Unproven generality

MTGNN [26] Spatial-Temporal Temporal Convolution Graph Convolution Traffic (5.18%) Learns graph structure adaptively Outperformed on multi-step tasks
(GCN) Electricity (-) Accepts prior information

Solar (-) Proven generality
Forex (-)

StemGNN[3] Spectral-Temporal Spectral-Sequential Spectral Traffic (6.46%) Learns graph structure adaptively Cannot accept prior information
Cell (Spe-Seq Cell) Graph Convolution Electricity (14.77%) Interpretable adaptive graph

(Spectral GCN) Solar (11.55%) Proven generality
ECG (10.58%)

sequence over the entire prediction horizon 𝐻 instead of
iteratively generating 𝐻 conditioned predictions. Following
the authors’ [27] adjacency matrix configuration results, we
evaluate a double transition matrix plus adaptive adjacency
matrix using the structural information initialisation against
the adaptive-only adjacency matrix.

3.1.2 MTGNN. MTGNN is a hybrid architecture designed
with an explicit focus on multivariate time series forecasting.
MTGNN can accommodate unavailable prior information
through an adaptive adjacency matrix, although the model
does not update the structure during training. MTGNN con-
sists of a distinct graph learning layer that extracts the ad-
jacency matrix. The GCN module utilises a neighbourhood
aggregation strategy [28] to learn node-level spatial depen-
dencies and the TCNmodule extracts temporal dependencies.
MTGNN avoids the vanishing gradient problem [10] by in-
cluding residual and skip intra- and inter-layer connections.
The model is trained using a curriculum learning strategy
that splits the input into subgroups. Curriculum learning
locates optimal local minima by training the algorithm on a
single-step forecasting task first and subsequently increases
the prediction horizon at each iteration [26]. We evaluate a
predefined static graph structure against the adaptive-only
adjacency matrix.

3.1.3 StemGNN. StemGNN is a hybrid architecture for mul-
tivariate time series forecasting that captures inter-series
correlations and temporal dependencies in the spectral do-
main. The spectral GCN component analogously extracts
dependencies in the spectral rather than spatial domain.
Spectral-Temporal GNN models are trained on the spectral
representation of the graph [31] using graph signal process-
ing techniques. A graph signal 𝑥 is transformed into the
spectral domain by a Fourier transform F , a convolution
operator is applied to the spectral signal and the inverse
Fourier transform F −1 is applied to transform the signal into
its original representation [31]. StemGNN consists of a latent
correlation layer to automatically learn correlations between
time series without a predefined graph structure to generate
an adjacency matrix. For our evaluation, StemGNN is not
initialised with prior information by design.

3.2 Experimental Design
3.2.1 Data. The performances of the GNN models are com-
pared on daily close price data for FTSE/JSE Top 40 Index
constituent shares from 18 May 2009 to 20 July 2021. The Top
40 Index contains the 40 largest JSE-listed companies by mar-
ket capitalisation. Market capitalisation is the current value
of all outstanding shares. Companies listed after 2012 are
excluded such that sufficient training data is available. The
final dataset consists of 30 nodes (stocks) and 3146 samples.
For GWN and MTGNN, the data is further pre-processed
following Wu et al. [27] and Wu et al. [26] to generate a four-
dimensional dataset. The dataset is augmented by aggregat-
ing samples into windows of a specified size to construct
synthetic features. The data is standardised using Z-score
normalisation that removes the mean and re-scales to unit
variance. The dataset is split in chronological order to pre-
serve temporal dependencies with 60% for training, 20% for
validation and 20% for testing (2019 - 2021).

As a proxy for prior information, a statistical correlation
matrix (Figure 1) is calculated using the historical daily close
prices of the 30 companies in the training dataset partition
and initialises the adjacency matrix of GWN and MTGNN
pre-training. The static correlation matrix captures potential
inter-share dependencies in the market and encodes this
information in a graphical structure that is mathematically
equivalent to the adjacency matrix.

3.2.2 Baseline. Graph WaveNet, MTGNN and StemGNN
are baselined against a 100-layer LSTM model. The baseline
LSTM model outputs a forecast over the prediction horizon
for a single node, in contrast to the GNNmodels that produce
multi-node predictions for the entire horizon in a single run.
For single-step forecasting, a last-value or naive model is
selected in addition to the LSTM model to produce baseline
performance results. For any time series𝑋 = {𝑥1, 𝑥2, 𝑥3, ...𝑥𝑡 },
a naive model outputs the last sequential observation 𝑥𝑡 as
the forecasted series value 𝑥𝑡+1. The baseline models are
implemented using the PyTorch machine learning library.

3.2.3 Setup. Each experiment is conducted on an Apple
MacBook Pro with an Intel(R) Core(TM) i5-8257U CPU@ 1.4
GHz. Following Cao et al. [3], the models are trained using
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Figure 1: FTSE/JSE Top 40 Index correlation matrix

RMSProp optimiser and Mean Squared Error loss function
for 50 epochs. The initial learning rate is set to 0.001 with a
decay and dropout rate of 0.05. All other hyperparameters
are configured as reported by the authors [27] [26] [3] for
accurate comparative analysis.
The following error metrics are selected to evaluate out-

of-sample performance: Mean Absolute Percentage Error
(MAPE),MeanAbsolute Error (MAE), and RootMean Squared
Error (RMSE). For multi-step forecasting, these metrics are
averaged over 𝐻 steps corresponding to the prediction hori-
zon and all nodes. Each experiment is run 5 times and the
denormalised mean metric value is reported.
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4 RESULTS
4.1 Single-Step Forecasting
Table 2 compares the performance of GWN, MTGNN and
StemGNN and the baseline LSTM and Naive models on a
single-step forecasting task for 30-, 60- and 120-day window
sizes. Regular trading days for the Johannesburg Stock Ex-
change are Monday through Friday, and thus the selected
window sizes correspond to 6, 12 and 24 trading weeks.

The experimental results illustrate that MTGNN outper-
forms both GWN and StemGNN by a substantial margin
across the MAPE, MAE and RMSE metrics for all tested win-
dow sizes. In addition, the performance variation between
MTGNN and GWN and StemGNN increases as the window

size is increased, as MTGNN does not demonstrate simi-
lar levels of performance degradation. MTGNN achieves a
MAPE score of 10.62% for the 120-day window, whilst the
successive model StemGNN only achieves a MAPE score
of 23.25%. Further, the results demonstrate that predictive
performance of the GNN and baseline models decreases as
the window size is increased. Whilst GWN outperforms
StemGNN for the 30-day window, the results indicate a sharp
decline in GWN’s performance as the window size is doubled
from 30 to 60.

4.2 Multi-Step Forecasting
Tables 3, 4 and 5 compare the performance of GWN, MT-
GNN and StemGNN and baseline LSTM on a multi-step
forecasting task for 20-, 40- and 60-day window sizes and
5-, 10- and 20-day close price prediction horizons. Com-
paring MAPE scores, GWN significantly outperforms MT-
GNN, StemGNN and the LSTM for the tested hyperparam-
eters. However, the results for 60-day window size fore-
casting deviate and demonstrate that StemGNN achieves
marginally lower MAPE scores. Whilst the LSTM obtains
consistently lower RMSE scores, this can be attributed to
the independently-generated model predictions, which po-
tentially reduces error propagation and hence the RMSE of
predictions.

MTGNN is the unexpected laggard for the evaluated multi-
step forecasting tasks, demonstrating inferior performance
relative to the baseline. However, recall that the LSTM is
incapable of multi-node forecasting. The results indicate that
a 40-day window considerably improves MTGNN’s perfor-
mance, although MAPE scores for all tested horizons are
> 100%.
GWN achieves its best MAPE performance scores for a

20-day window and horizon hyperparameter combination.
This is followed closely by the model’s predictive perfor-
mance for a 40-day window and 5-day horizon. With the
exception of the aforementioned result, the results illustrate
a decline in GNN and baseline model predictive performance
as the horizon length is increased, measured across all met-
rics. Furthermore, the results do not demonstrate a clear
relation between window size and prediction error. GWN’s
performance improves for 5-day and 10-day horizons as the
window size is increased from 20 to 40, but the MAPE score
significantly decreases once the window is incremented by
an additional 20 days.

StemGNN demonstrates inferior performance on the short-
est window size, producing superior MAPE scores on a 40-
day window. An outlier is its performance for a 40-day win-
dow and 20-day horizon, where it outperforms GWN and
MTGNN as measured by MAPE. Furthermore, StemGNN’s
performance is relatively stable as the prediction horizon



Kialan Pillay

Table 2: Single-step forecasting performance comparison of GNNs and baseline models

30-Day Window 60-Day Window 120-Day Window

Model MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE

Last-Value 198.33 13252.53 16380.79 201.12 13235.56 16371.01 218.19 13274.57 16458.70
LSTM 187.82 12467.51 15354.32 192.90 12505.11 15455.85 197.15 11847.00 14561.59

Graph WaveNet 10.44 3072.72 8496.79 24.35 5432.03 15325.71 32.90 7603.66 20206.61
MTGNN 6.76 1478.92 3511.12 9.06 1953.99 4871.51 10.62 2472.13 6857.16
StemGNN 18.01 8415.90 21715.64 23.62 9329.78 21636.29 23.25 9249.32 21583.35

increases for both 40- and 60-day windows across all metrics
for the tested horizon lengths. This is evidenced by the stan-
dard deviation of the MAPE scores, which is 1.22 and 1.31
for the corresponding window sizes.

4.3 Correlation Matrix Multi-Step
Forecasting

Tables 6 and 7 compare the performance of GWN and MT-
GNN on a multi-step forecasting task for 20- and 40- window
sizes, 5- and 10-day horizons with the inclusion of the statis-
tical correlation matrix to initialise the GWN and MTGNN
adjacency matrices.

The results indicate that the provision of structural infor-
mation proxied by a multivariate correlation matrix does
not improve predictive performance, as evidenced by the
MAPE scores. For GWN, the forward-backward-adaptive
adjacency matrix configuration obtains the highest MAPE
score for a 20-day window only. However, the improvement
in MAPE is marginal for the 5- and 10-day horizons and the
recordedMAE and RMSEmetrics increase as compared to the
adaptive-only model. Doubling the window size significantly
degrades the performance of the GWNmodel initialised with
the correlation matrix, illustrated by the consistent increase
across MAPE, MAE and RMSE. This can be attributed to the
temporal divergence between the extended input sequence
length and the static multivariate correlations.
The provision of prior information results in a minimal

improvement in MTGNN’s predictive performance as mea-
sured by the selected evaluation metrics for a 20-day window.
However, performance similarly degrades as the window size
is doubled for the tested horizons. An outlier is MTGNN’s
performance for a 40-day window and 5-day horizon, for
which it obtains a marginally lower MAPE score.

4.4 Multivariate Correlation Analysis
GWN (Figure 2) and MTGNN (Figure 3) extract a graph
structure that is highly dissimilar to that represented by the
correlation matrix. Comparing the adaptive adjacency matri-
ces, GWN extracts a sparse graphical structure, in contrast

to the dense graph learnt by MTGNN. There are no identi-
fiable commonalities between the two matrices, nor is one
matrix a more fine-grained representation of the extracted
dependencies. Interpreting the adjacency matrices under the
hypothesis of multivariate correlations representing graph
structure, MTGNN extracts a perfect positive correlation be-
tween the majority of pairs. GWN extracts a minimal subset
of strongly positive correlations, but these diverge from the
pair-wise correlations learnt by the MTGNN model.

The graph representation of each adaptive adjacency ma-
trix is given in Figure 7 and Figure 8 and further highlights
the disparity in graph density. Node colour is a gradient
scale of node degree, whilst node size illustrates between-
ness centrality. Figure 8 illustrates that there are multiple
nodes with a relatively high degree which is indicative of
salient stocks. For GWN, there are fewer highly connected
stocks as expected, with the analysis indicating that Anglo
American Platinum, Capitec, and AngloGold Ashanti are the
dominant stocks. The MTGNN graph (Figure 8) shows that
several nodes frequently occur on the pair-wise geodesic
and thus represent highly influential stocks. This finding
is consistent with the dense graph structure. On the other
hand, Figure 7 illustrates far fewer influential nodes in the
GWN graph, with Anglo American Platinum, Capitec, and
AngloGold Ashanti providing maximal influence on other
graph nodes through strategic placement.

Tables 8 and 9 containmetrics for a simple and hierarchical
correlation network constructed from the static correlation
matrix. Unsurprisingly, the density, betweenness centrality,
closeness centrality, and transitivity metrics are directly pro-
portional to the correlations for each stock, represented by
edges. Betweenness centrality peaks for 𝑐 = 2, and then grad-
ually decline as density increases, for both the simple and
hierarchical network. Transitivity increases substantially for
𝑐 ≥ 2. The metric value is consistent with the number of
identified communities, which stabilises at two for 𝑐 ≥ 2 in
both constructed networks. This aligns with the results of
bi-clustering (Figure 4) performed on the correlation matrix,
which finds two compact clusters of highly correlated stocks.
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Table 3: 20-day window multi-step forecasting performance comparison of GNNs and baseline LSTM model

5-Day Horizon 10-Day Horizon 20-Day Horizon
Model MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE

LSTM 46.85 3345.75 4653.75 54.97 3912.20 5408.92 68.54 4782.45 6596.19
Graph WaveNet 17.87 2554.10 6430.45 17.27 2716.00 6819.69 12.17 3147.66 8852.29

MTGNN 216.97 29217.75 54875.26 258.05 31484.04 54808.86 232.43 32251.45 63249.00
StemGNN 24.96 10327.52 24464.46 26.64 10907.52 25375.75 30.92 11992.33 27384.19

Table 4: 40-day window multi-step forecasting performance comparison of GNNs and baseline LSTM model

5-Day Horizon 10-Day Horizon 20-Day Horizon

Model MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE

LSTM 63.23 4276.09 5707.56 72.85 4813.56 6402.42 78.71 5538.65 7173.87
Graph WaveNet 12.44 3960.92 11642.37 15.35 4370.69 12882.04 25.69 5022.74 13472.62

MTGNN 122.63 19905.99 42729.60 152.71 23566.66 49893.09 182.12 29028.59 62179.24
StemGNN 19.78 8640.64 21504.16 19.94 8576.14 21305.53 21.97 9287.20 22693.34

Table 5: 60-day window multi-step forecasting performance comparison of GNNs and baseline LSTM model

5-Day Horizon 10-Day Horizon 20-Day Horizon

Model MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE

LSTM 57.93 4054.60 5139.31 68.95 4808.36 6052.57 80.53 5666.38 7039.22
Graph WaveNet 25.82 5535.79 15284.90 26.23 5792.11 16287.67 28.82 5998.07 16441.86

MTGNN 269.24 32627.72 59139.12 324.88 34788.54 54687.03 269.80 30684.99 51937.85
StemGNN 23.10 9198.82 21732.27 25.55 10797.06 26811.51 23.51 9604.94 22622.16

Table 6: 20-day window multi-step forecasting performance comparison of GWN and MTGNN with predefined
adjacency matrix

5-Day Horizon 10-Day Horizon

Model Adjacency Matrix MAPE(%) MAE RMSE MAPE(%) MAE RMSE

Graph WaveNet Adaptive-only 17.87 2554.10 6430.45 17.27 2716.00 6819.69
Graph WaveNet Forward-backward-adaptive 15.80 3237.76 9103.10 16.59 3348.49 9104.82

MTGNN Adaptive-only 216.97 29217.75 54875.26 258.05 31484.04 54808.86
MTGNN Predefined 214.05 28885.62 54690.14 237.09 30302.03 55173.77

Table 7: 40-day window multi-step forecasting performance comparison of GWN and MTGNN with predefined
adjacency matrix

5-Day Horizon 10-Day Horizon

Model Adjacency Matrix MAPE(%) MAE RMSE MAPE(%) MAE RMSE

Graph WaveNet Adaptive-only 12.44 3960.92 11642.37 15.35 4370.69 12882.04
Graph WaveNet Forward-backward-adaptive 22.25 5150.09 14683.01 20.43 5089.13 14254.43

MTGNN Adaptive-only 122.63 19905.99 42729.60 152.71 23566.66 49893.09
MTGNN Predefined 118.53 20303.73 44546.03 192.05 26726.98 52491.44



Kialan Pillay

Figure 5 illustrates that Discovery, Remgro and AngloGold
Ashanti are both the most influential and salient stocks in
the network. There are several nodes on the edge of the
network that are not influential nor important. The network
illustrates that only a fractional subset of the total stocks are
considered salient, with a larger subset providing a range of
influence in the network. The hierarchical network (Figure 6)
contains additional influential nodes as a consequence of the
denser structure. The network further illustrates that Mondi
is the dominant stock, followed by a subset of six stocks that
hold diminished, although roughly equal importance.

Figure 2: GWN 50-epoch adaptive adjacency matrix

Figure 3: MTGNN 50-epoch adaptive adjacencymatrix

5 DISCUSSION AND CONCLUSIONS
Recently introduced spatial-temporal GNNs are unsuitable
for modelling stock market data with complex dependen-
cies due to unavailable prior structural information. Graph
WaveNet [27], MTGNN [26] and StemGNN are GNN archi-
tectures that solve the requirement of a predefined graph

Figure 4: Bi-clustered correlation matrix

Figure 5: FTSE/JSE Top 40 Index correlation network
(𝑐 = 5)

Figure 6: FTSE/JSE Top 40 Index two-level hierarchical
correlation network (𝑐 = 5)

structure by adaptively learning spatial dependencies during
training. These architectures have been applied to forecast-
ing problems in several distinct domains and demonstrate
reasonable predictive accuracy with reported MAPE scores
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Table 8: FTSE/JSE Top 40 Index correlation network metrics

Correlations (𝑐) Nodes Edges Density Betweenness Centrality Closeness Centrality Transitivity Communities

1 30 30 0.07 0.07 0.16 0.06 3
2 30 56 0.13 0.13 0.36 0.25 2
3 30 85 0.20 0.10 0.47 0.29 2
4 30 113 0.26 0.10 0.52 0.39 2
5 30 139 0.32 0.09 0.57 0.45 2

Table 9: FTSE/JSE Top 40 Index two-level hierarchical correlation network metrics

Correlations (𝑐) Nodes Edges Density Betweenness Centrality Closeness Centrality Transitivity Communities

1 30 55 0.13 0.05 0.25 0.38 3
2 30 136 0.31 0.10 0.55 0.46 2
3 30 221 0.51 0.08 0.67 0.58 2
4 30 289 0.66 0.08 0.75 0.7 2
5 30 355 0.82 0.07 0.84 0.83 2

of ≤ 10% for traffic network datasets. However, stock mar-
kets are an application not evaluated in these studies. LSTM-
RGCN is a GNN architecture that utilises a correlation ma-
trix to represent spatial dependencies but does not contain
a temporal component. LSTM-RGCN only performs price
movement prediction and reports an accuracy of 58.71% on
Chinese stock market data.

To address these weaknesses in the literature, this research
evaluated the application of GWN, MTGNN and StemGNN
to single-step and multi-step forecasting tasks on the JSE
and tested the effect of prior structural information proxied
by a correlation matrix on share price prediction accuracy.

For single-step forecasting, MTGNN outperformed GWN
and StemGNN, achieving a significant increase in relative
predictive accuracy across varying windows. We suggest
that MTGNN’s performance is attributable to the curriculum
learning strategy. Recall that curriculum learning locates
optimal local minima by initially training the algorithm on a
single-step forecasting task. An optimal initialisation point
may allowMTGNN to update its parameters more effectively
as the prediction horizon remains constant.
Whilst the authors [26] fail to report MAPE scores for

single-step forecasting, our results are comparable with MT-
GNN’s performance on traffic network multi-step forecast-
ing. This consistency is notable given that traffic networks
exhibit explicit spatial relations. However, MTGNN’s multi-
step forecasting results differ substantially from those pre-
sented in the original contribution. Our results suggest that
MTGNN cannot accurately forecast a sequence of daily close
prices but sufficiently models the data if the problem is con-
strained to forecasting a single set of future values.

For multi-step forecasting tasks, the results illustrated
that GWN achieved the highest predictive accuracy over
the tested window sizes and horizon lengths. We posit that
GWN’s performance on this task is a consequence of the
artificially set receptive field size, which is equated to the
window size hyperparameter [27] by design. Overall, a 40-
day window produces the highest predictive performance
for all evaluated GNNmodels. This window size corresponds
to the previous two-months daily close prices and indicates
that this range is the optimal input sequence length.
The results of the single- and multi-step forecasting ex-

periments illustrate that a GNN model can achieve suitable
predictive accuracy on FTSE/JSE Top 40 Index daily close
price data. For both tasks, a GNN model achieves a consid-
erable performance improvement over the baseline LSTM.
These results provide further evidence in support of mod-
elling both temporal and latent spatial dependencies in stock
market data.
StemGNN obtains MAPE scores that are approximately

10% lower than those reported on electricity, ECG and solar
datasets. However, these domains exhibit explicit structure
and recall that StemGNN’s latent correlation layer adaptively
learns inter-series correlations to extract the graph structure
without prior information.

Similarly, comparing the best GWN performance score to
the metrics reported for traffic network forecasting, we find
that the approximately 10% decrease in MAPE is realistic
given the dynamic dependencies exhibited by stock markets
and inherent complexity in its extraction. In practical appli-
cations, tasks are predominately formulated as multi-step
forecasting. Therefore, our results demonstrate that GWN
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can successfully predict future daily close price values over
short- and medium-term prediction horizons. Furthermore,
they support the authors’ proposed architectures and claims
of generalisability.

Based on the results of the correlation matrix experiment,
we found that this mechanism captures and encodes prior
structural information sub-optimally. The a priori inclusion
of multivariate correlations produced a negligible impact on
model predictive accuracy. This result is evidenced by the
disparity between the adaptive graph structures of GWN
and MTGNN compared to the correlation matrix. The re-
sults are further consistent with those presented by Li et al.
[13], which illustrated poor stock price movement predictive
accuracy. Furthermore, the results show that both adaptive
adjacency matrices do not extract linear correlations. We
conclude that a static correlation matrix does not accurately
capture dynamic latent dependencies or structure.
However, the multi-step forecasting results indicate that

the dense adaptive MTGNN graph structure is similarly un-
representative of the dynamic non-linear market dependen-
cies. In contrast, GWN’s share price forecasting performance
suggests that the model can accurately extract spatial depen-
dencies. Therefore, we can infer that fewer complex depen-
dencies exist, given that the sparse graph is an approximate
representation of market structure. We conclude that GWN
can accommodate the unavailability of prior information
sufficiently. Our results are consistent with Wu et al. [27]
findings which demonstrate that an adaptive-only adjacency
matrix achieves suitable performance, albeit with a reduction
in accuracy.
In our analysis of the inter-stock correlations, we con-

structed correlation networks and identified two clusters of
highly correlated stocks. This analysis also identified a min-
imal subset of influential and salient stocks in the market.
Further analysis of the correlation networks can produce
prior structural information encodings that may capture
non-linear dependencies more effectively and thus improve
predictive performance.
In summary, this research has addressed the aforemen-

tioned gaps in the literature and produced empirical results
that assess the applicability of the selected GNN models to
JSE-listed share price prediction and the suitability of a corre-
lation matrix proxy for the graph structure. The MTGNN and
GWN architectures produced the highest predictive accuracy
on a single-step and multi-step forecasting task, demonstrat-
ing the suitability of applying GNN models in this domain.
We disproved the hypothesised performance increase and
determined that multivariate linear correlations do not cap-
ture complex stock market dependencies. Our novel analysis
of share price correlations highlighted the potential in ex-
ploring richer transformations of the data to construct alter-
native structural information encodings more representative

of the linear and non-linear dependencies. Furthermore, the
extracted GWN adaptive graph is a state-of-the-art repre-
sentation of the dependencies in the FTSE/JSE Top 40 Index.
This work provides a foundation for future investigation of
this model class and real-world applications of share price
forecasting.

6 LIMITATIONS AND FUTUREWORK
This research has demonstrated that GNNs can be success-
fully applied to forecast JSE-listed share prices. The results
of this work present several opportunities for further inves-
tigation. The selected models were evaluated on a single
dataset. Obtaining empirical results on data from different
stock exchanges allows for a broader assessment of model
generalisability and identifying potential discrepancies in
market dynamics. The methodology was restricted to an
evaluation of three state-of-the-art models, which can be
extended as novel GNN architectures are introduced in the
literature. In addition, testing prior structural information
sources other than a correlation matrix, or feature combina-
tions thereof, presents a promising avenue for future study.
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A ADAPTIVE GRAPHS

Figure 7: GWN 50-epoch adaptive graph

Figure 8: MTGNN 50-epoch adaptive graph
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