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1 Project Description
A primary focus of machine reading comprehension (MRC)
research centers around the retrieval of declarative knowl-
edge - that is, explicitly stated or static descriptions of entities
within a knowledge-base (KB) [38]. Evidence suggests that
current MRC and neural methods struggle to fully engage in
actual comprehension as well as fail to capture an understand-
ing of a required question-answering task [34, 38, 40].

The majority of current MRC datasets effectively train mod-
els to perform simple pattern matching of words & phrases
when attempting to query a knowledge source [39]. This fails
to mimic the manner in which humans use interaction and
observation in order to gain knowledge about an environment.
Furthermore, this simple pattern recognition does not reward
information-seeking behaviour that is necessary to answer
many natural language questions [22]. On the contrary, proce-
dural knowledge places emphasis on the sequence of actions
taken to perform a task as opposed to just a task’s comple-
tion. Such methods aim to reward the gathering of declarative
knowledge needed to answer a question.

To this end, we propose interactive question answering
(IQA) as a viable solution to the lack of comprehension skills
current methods fail to develop. IQA sees an agent be tasked
with answering questions that require interacting with some
dynamic environment [15]. This environment can be in the
form of a KB [13], some entity-relation schema, or, more
recently, a text-based game [11, 38]. Text-based games have
risen in popularity by allowing for language-learning prob-
lems to be approached using reinforcement learning (RL)
methods in dialogue-like environments [20, 30].

One of the most popular frameworks for text-based games
is Microsoft TextWorld [11, 30]. TextWorld is an open-source
simulator that aims to train RL agents to acquire skills such
as decision making and language comprehension. Moreover,
it provides a framework for interactive text-based games to
be developed in tandem with question-answer pairs.

Using TextWorld, Yuan et al. developed the Question An-
swering with Interactive Text (QAit) [38] task. Here an agent
interacts with a partially observable text-based environment
in order to gather information such as the attributes, locations,
and existence of objects to answer questions. The QAit task
aims to create interactive agents that seek out information and
answer questions in a procedural knowledge setting.

This project aims to further the state-of-the-art work done
by Yuan et al. [39] in the QAit task and improve upon their

results by means of implementing an alternative curiosity-
driven approach for the RL agent, integrating in some prede-
termined contextual understanding of the environment via a
knowledge-graph, as well as attempting to reframe the current
QAit task into a sequence modelling problem.

2 Research Motivation
2.1 Problem Statement
The current state-of-the-art (SOTA) model for RL based IQA
proposed by Yuan et al. [39] has established a good baseline
for future work. However, the model performance fails to
achieve significant results above random baselines. Baseline
models are also seen failing to generalise to unseen environ-
ments. This problem will be approached in the following
ways discussed in sections 2.2, 2.3, and 2.4.

2.2 Instilling Curiosity & Stochasticity into Text-Based
Agents

Although reinforcement learning has seen success in achiev-
ing super-human performance in extremely high dimensional
and challenging domains [27], this has all been done in consis-
tent and trained upon environments. Classical reinforcement
learning algorithms suffer when attempting to leverage this
pretrained knowledge to unseen environments [10]. In addi-
tion to this, these algorithms struggle to perform in sparsely re-
warded environments that potentially require long sequences
of actions before a reward is given [36, 39], such as in the
IQA task. The current reinforcement learning approaches in
IQA show the performance of using value-based methods
such as DQNs [25] and DDQNs [36] with epsilon-greedy
policies (which is a greedy algorithm with a small chance of
performing a random action). Prior work [36] has shown the
extreme difficulty of these methods achieving high rewards
in sparse environments due to the use of inefficient random
exploration. In addition to this, research [14] has shown that
DQN methods are poor at generalizing even in environments
with very similar underlying dynamics. To overcome these
limitations we propose that using a curiosity-based approach
alongside an actor-critic framework will greatly improve per-
formance. Curiosity driven reinforcement learning [7, 23, 29]
has shown promising results in increasing the performance
of agents in sparsely rewarded scenarios as well as it’s ability
to generalize to similar but unseen environments. The ad-
dition of curiosity to an agent can instill more human-like
exploratory behaviour and show the benefit of exploration
in partially observable environments. Furthermore the use of
an actor-critic stochastic policy, instead of an epsilon-greedy



policy, is also believed to aid an agent’s ability to explore
and adapt better in these unseen environments by allowing
agents to learn more robust and general policies [28]. It is also
hypothesized that the policy in the IQA task will be simpler
to learn and approximate compared to approximating the true
value function thereby allowing faster learning and yield a
superior policy [33, 35].

2.3 Graph-Based Approach
Providing an RL agent with some contextual understand-
ing about the environment with which it inhabits has been
shown to drastically aid performance [3]. This additional
context results in action-sequences that are better suited to
goal-achievement by providing circumstantial information
regarding the action-space. Within the context of TextWorld,
many agents fail to generalise and capture necessary meaning
and relationships between entities found in the environment
[39]. A model failing to develop some contextual-awareness
of the world can be detrimental to performance. Current works
indicate knowledge graphs (KGs) as useful for expressing
supplementary information about the world in order to better
facilitate decision making whilst adhering to partial observ-
ability [2]. Thus, there is ample motivation for the investiga-
tion of equipping an agent with some additional knowledge in
order to supplement the learning & decision-making process
in a text-based QA system.

2.4 Sequence Modelling Approach
Reframing the QAit task as sequence modelling problem akin
to an offline RL problem, whereby optimal policies must
be derived from sub-optimal data, gives way for research
into sample efficient methods to achieve performant systems.
[8] has recently shown the potential for using transformer
sequence-to-sequence models as a way to optimize action tra-
jectories through an environment whereby only sub-optimal
data was available to learn from. A transformer based ap-
proach to action sequence generation can avoid many limita-
tions and difficulties faced by traditional RL methods such
as credit assignment. This is especially relevant in the QAit
task due to the sparsely rewarded environment structure. Ad-
ditionally transformers have illustrated strong generalization
performance in classical natural language tasks [6]. Lastly,
framing the action sequence generation in this manner would
allow taking full advantage of existing large models such as
GPT or BERT to improve training time and performance.

3 Research Objectives
3.1 Instilling Curiosity and Stochasticity into

Text-Based Agents
Value-based RL methods learn some value function that maps
an agent’s states & actions to some expected cumulative re-
ward from a given state onward [35]. These methods have

been observed failing to generalise to out-of-training prob-
lems [14, 39]. To this end, literature has indicated that sparsely
rewarded environments see this strategy outperformed by cu-
riosity driven approaches as well as an actor-critic framework
[7, 29]. Curiosity driven methods aim to encourage explo-
ration by rewarding actions that lead to unseen states. The
actor-critic framework enables teaching an agent to act di-
rectly upon an environment while also approximating some
value function to help further guide decision-making. By ap-
plying the aforementioned methods, we aim to improve upon
Yuan et al’s findings and achieve better generalisability to
unseen environments. We also aim to outperform existing
baseline models developed by the QAit task [39].

3.2 Graph-Based Approach
Given the nature of the partially observable environment with
which the RL agent inhabits, reasoning about the true underly-
ing world-state is challenging. Furthermore, comprehending
environmental complexities via potentially incomplete or in-
accurate text-based descriptions alone fail to act as sufficient
representations of this broader, unobservable world. Thus,
KGs can express supplementary information about the world
in order to better facilitate decision making whilst adhering
to partial observability. Moreover, this information about the
environment in the form of KGs can be provided to the agent
in a manner that encourages the development of contextual
understanding [1].

Therefore, by embedding specific details about an environ-
ment into a knowledge-graph and allowing an agent to utilise
it to inform decision making, we posit that improvements on
state-of-the-art accuracy on the QAit task can be achieved
[39].

3.3 Sequence Modelling Approach
By converting the current baseline SOTA architecture into
a single sequence-to-sequence transformer, we hope to take
advantage of the zero-shot generalisation performance and
scalability of transformers [6] to improve upon training time,
performance, and sample efficiency in the QAit task. We also
aim to leverage advances in current language modelling such
as BERT [12] to inject "weak common sense" into the model.

4 Related Work
4.1 Curiosity
For many sparsely rewarded environments, shaping the re-
ward function is not possible. Using random exploration meth-
ods rely upon the agent stumbling onto the goal state by
chance. This can be practically impossible in large environ-
ments and will result in failure to learn. Curiosity or intrinsic
motivation can be seen as a new way of learning which re-
quires no extrinsic rewards from the environment. It is a
controlled form of exploration. The two most popular formu-
lations of intrinsic reward can be grouped as follows: The



first class of methods try to encourage the agent to explore
states it hasn’t seen before. [5] have shown great results in
very sparsely rewarded environments, such as Montezuma’s
Revenge, using such exploration with DQN. The second class
of methods focus on encouraging the agent to take actions
that lower the error in the agent’s ability to predict the con-
sequences of its actions. Intuitively this aims to increase the
agent’s knowledge about the environment [9, 31, 32]. Mea-
suring the novelty i.e. how different a state is from a previous
state, or building an internal environmental model to predict
the next state can be a difficult problem in high dimensional
state spaces. This is compounded with environment stochas-
ticity and noise which ultimately makes intrinsic reward cal-
culation difficult.

4.1.1 Intrinsic Curiosity Module. [29] have derived a method,
belonging to the second class, to avoid these difficulties by
using a model that only predicts the environmental changes
that are caused because of the agent’s actions or those that
affect the agent. It works by transforming the agent’s observa-
tion into a feature space where only the relevant information
is represented. The agent itself learns the feature space using
a neural network trained on an inverse task of predicting the
agent’s action given the current and successive state. By train-
ing on the inverse task, the model’s features embedding space
only concerns itself with factors that affect the agent. The
feature space of the inverse model is then used to train a new
neural network to predict the next state’s feature representa-
tion given the current state’s features and action. The agent is
then supplied with the prediction error as an intrinsic reward.
Refer to figure 1 for an illustration. The intrinsic reward is
summed with the extrinsic reward, such as 𝑟𝑡 = 𝑟𝑒𝑡 +𝛽𝑟 𝑖𝑡 where
𝛽 balances the exploration and exploitation, to ultimately
solve the task given. [29] shows how curiosity greatly im-
proves exploration as well as acts as a mechanism for agents
to learn skills that potentially help in future scenarios. This
exploration helps in solving very sparse reward settings. [29]
also shows that fine-tuning an agent that has been trained
with curiosity and extrinsic rewards is more beneficial (learns
faster and achieves higher scores) than training from scratch
for new unseen environments. This shows how curiosity helps
agents generalise to new environments. This method however
could fail in learning a sufficient feature representation of the
environment thereby leading to poor performance.

4.2 Transformers
Traditional Recurrent Neural Network models have the draw-
back of losing information in extremely long sequences. Even
though LSTMs can retain some memory, due to the sequen-
tial structure, the output is not directly influenced by each
sequence element and long term dependencies can still be
forgotten. Attention mechanisms were created to allow each
item in the sequence some level of direct influence over the

output, ultimately to give a model more flexibility in its mem-
ory capability. Transformers [37] drop the recurrent structure
for a purely attention based architecture. Transformers make
use of a stack of 6 encoder and 6 decoder modules. Each
encoder contains two sub layers: a self attention layer and
a linear feed forward network. Each decoder contains three
sub layers: a self attention layer, an additional attention layer
used over the encoder outputs and a linear feed forward net-
work. Since transformers have no recurrence, meaning that
all inputs are given in no special order or position, problems
that require temporal information such as language modelling
create positional encodings that are added to the model to
give additional sequential information about inputs. The non-
sequential nature of transformers allow for significant training
speed up via utilising parallelism.

4.3 Previous Approaches to Text Games
In 2015, Narasimhan et al. introduced LSTM-DQN: a two-
part architecture for deep-reinforcement learning consisting
of an LSTM for the representation of textual input and a DQN
to jointly learn state representation and action policies [26].
This was tested on two text-based games both derived from
the Evennia framework and was found to outperform baseline
models [26, 30].

That same year Deep Reinforcement Relevance Network
(DRRN) was proposed as a means of playing text-based
games [19]. This saw an architecture that uses separate embed-
ding vectors for the representation of the action-state space.
These are then combined with some interaction function to
approximate the Q-function i.e. value function. This too was
evaluated on two text-based environments and gained state-
of-the-art performance.

4.3.1 Pretraining. Given the extremely sparse nature of
language learning in text-based games, methods have been
proposed to reduce this so-called unbounded action-space
[30].

Current literature indicates that the integration of pre-training
certain aspects of a model provide significant performance
improvements over other methods [2, 18]. For an agent to
successfully manage to generalise to an unseen environment,
transfer learning can be used to help agents better perform
by leveraging some pre-determined external KB. Similarly,
pretrained models are able to significantly improve the results
of agents playing text-based games, as shown by [17]. In
2019, Ammanabrolu & Riedl show how specific parts of their
KG DQN can be pre-trained and utilise existing question-
answering methods. This showed to improve the model’s con-
vergence and provides a way for knowledge to be transferred
between models for text-based games [2].



5 Procedures and Methods
5.1 Initial Code Base
As the simulator developed by [39] is publicly available on
GitHub, with an MIT license indicating limitless extendabil-
ity, our initial task will be to set up the already existing code
base. After installing necessary dependencies required for run-
ning, we will have access to the baseline platforms, data sets,
and data necessary for evaluation of our problem statement.
Moreover, this code base will be utilised by the procedures
outlined in Sections 5.2, 5.3, & 5.4. The initial code base
which will be altered for each approach is described as fol-
lows:

5.1.1 Environment & Difficulty . Following work done by
Yuan et al., Microsoft Textworld will be used in conjunction
with the QAit [39] world & question pair generator. This will
be done in order to generate sets of question-answer pairs re-
lated to TextWorld environments. QAit aims to test an agent’s
language comprehension abilities using tasks that require an
understanding of locality, existence, and attributes. All envi-
ronments are procedurally generated by sampling from the
world setting distribution (see Table 1), where environment-
configurations are distinguished into Fixed Map and Random
Map categories. Fixed Map generates text worlds with a fixed
number and layout of location-names, rooms, and random
objects within rooms. Alternatively, the Random Map setting
sees the generation of text worlds with a uniformly-random
layout of rooms, names, and objects.

Yuan et al.’s methodology for evaluating agent performance
will be used. This sees average QA training-accuracy being
calculated over five training sets. These will see Fixed and
Random Map Types having Number of Games settings of 1,
2, 10, 100, 500, and unlimited, respectively. In the context
of our experiments, unlimited games will see games being
generated during training with environment-parameters (such
as location, number of objects, map type, and random seed)
being randomly sampled. This process of randomly generat-
ing environments is carried out to evaluate the generalisation
capabilities of the agent.

An agent’s accuracy will be measured using zero-shot eval-
uation. This constitutes 500 never-before-seen games being
held out during training with each containing a single ques-
tion needing to be answered. Yuan et al. proposed this as
a means of assessing a model’s generalisation abilities in a
manner akin to the test set of supervised learning problems.

5.1.2 Question Types. There are three types of questions
that the agent will be attempting to answer based on these
generated worlds. First is the location type question such as
"Where is the can of soda?", where a suitable answer would be
"fridge". Second is existence type questions such as "is there
a raw egg in the world?" where the answer would simply be
yes or no. The last type of question which is the most difficult
is attribute type questions such as "is apple edible" where the

Fixed Map Random Map
# Locations, 𝑁𝑟 6 𝑁𝑟 ∼ Uniform(2, 12)
# Entities, 𝑁𝑒 𝑁𝑒 ∼ Uniform(3 ·𝑁𝑟 , 6 · 𝑁𝑟 )

Actions / Game 17 17
Modifiers / Game 18.5 17.7
Objects / Game 26.7 27.5
# Obs. Tokens 93.1 89.7

Table 1. Statistics of the QAit dataset. Numbers are averaged
over 10,000 randomly sampled games. [39]

answer is also yes or no. Objects within the attribute question
setting are given arbitrary and randomly made-up words to
discourage agent memorization of values such as an apple
always being edible.

5.1.3 Baseline Reinforcement Learning Agents. Within
these procedurally generated text environments, baseline rein-
forcement learning agents that make use of Deep Q Networks
[25] will be used with an epsilon greedy policy. Multiple
Transformer [37] models will be used to encode the textual
observation along with other relevant environment informa-
tion into contextual vector representations that are used by
agents to decide upon the action to take. During training
time, the admissible actions are available for agents to use
but at evaluation time, actions must be constructed from the
vocabulary in the simple form of a triple (Action, Modifier,
Object). The question answering model functions differently
depending on the question. For location type questions, each
token in the final state observation string is used to construct
a probability distribution of potential answers. Here, the high-
est probability token is selected as the answer. For attribute
and existence questions, the probability distribution is simply
over the two possible answers: yes and no.

5.2 Instilling Curiosity and Stochasticity into
Text-Based Agents

5.2.1 Curiosity. For instilling curiosity into agents, we will
be adapting an existing approach by introducing an intrinsic
curiosity module (ICM) [29] (see section 4.1.1). This module
aims to learn relevant features about the agent’s text obser-
vations as well as use these features to predict the next state.
The module then uses the scaled prediction error as a form
of intrinsic reward. The RL agent will use a combination of
intrinsic and extrinsic reward to learn the QAit objective.

5.2.2 Actor-Critic. We will be using the A2C [24] algo-
rithm trained on a variety of different procedurally generated
environments (see section 5.1.1) to promote learning a general
policy that can be seen as an actual form of text comprehen-
sion compared to simply memorizing states. [28] has shown
promising results in A2C’s ability to generalise given that the
agent is trained on a variety of different but similar environ-
ments.



Figure 1. Intrinsic Curiosity Module (ICM) [29]

5.2.3 Testing. The following set of experiments will be
trained on the different experiment settings (see table 2) and
evaluated using the QAit benchmark testing set:

• Deep Q Networks with an Intrinsic Curiosity Module
• A2C actor-critic agent.
• A2C actor-critic agent with an Intrinsic Curiosity Mod-

ule.
Ultimately the results found shall be compared against the
baselines set out by the QAit task. These include DQN,
DDQN, and Rainbow agents as well as purely random agents.

Setting Option

Map Type Fixed
Random

RL Agent
DQN
DDQN
Rainbow

Number of Games

1
2
10
100
500
Unlimited

Table 2. Table of different experiment settings and their val-
ues.

5.3 Graph-Based Approach
The focus of this approach is to capture world context in a
KG that can be used to overcome the problem of partially
observable environments and catastrophic forgetting. Which
occurs when the model forgets relevant information when
presented with new information, which negatively impacts
performance [21].

5.3.1 Architecture. We propose integrating a KG that en-
codes facts and information about the world context relating
to the current state of the agent in order to better aid decision
making. Specifically, we wish to modify the current archi-
tecture of QAit [39] baselines (see Figure 3) by encoding a
KG and providing this as additional input to the aggregator.

Figure 2. Example of constructed KG [1]

Figure 3. QAit Architecture [39]

The KG will contain information about the world such as
the agent’s current location and other locations discovered,
entities found as well as their discovered attributes (See figure
2). We will be using a graph attention network (GAT) [? ]
to encode the KG in an embedding that can be used by the
agent.

5.3.2 Relation Extraction. As text-based games are deemed
open-domain QA problem, we will be required to use a re-
lation extractor designed with generalised ontological rea-
soning. Hence, similarly to work done by Ammanabrolu &
Riedl [1], graph information will be extracted using OpenIE
[4] in conjunction with some set of predefined heuristics, as
outlined by [4].

5.3.3 Testing. The performance of the graph-based meth-
ods will be tested by comparing results from the QAit bench-
mark baselines and the results from the following experiments
on the QAit benchmark testing set:

• GB-RL 1: Input GAT embedding directly to aggregator.
Run with each setting options in Table 2.

• GB-RL 2: Use KG in the form of a list of triples em-
bedded by observation encoder.



5.4 Sequence Modelling Approach
The process of creating a sequence-to-sequence transformer
model to generate action trajectories can be split up into the
following parts:

5.4.1 Offline Data. By converting the RL problem into a
supervised learning problem, training data is needed ahead of
time. This will be done by either heuristic based play-throughs
of the environments or simply random roll-outs where each
state, action, and reward triple is saved. After every episode
play-through, the entire trajectory is processed and stored
such as (𝑅1, 𝑠1, 𝑎1, 𝑅2, 𝑠2, 𝑎2...𝑅𝑇 , 𝑠𝑇 , 𝑎𝑇 ) where 𝑅 refers to the
total summed reward from that timestep onwards, 𝑠 is a state,
and 𝑎 is an action. The trajectory representation enables the
ability for simple auto regressive training. The autoregressive
transformer model can be conditioned on reward and starting
state to generate the desired action sequence.

5.4.2 Architecture. The transformer is given a context of
the last 𝐾 environmental timesteps which is comprised of the
summed reward, state and action tokens. Each token type has
it’s own linear embedding layer to produce relevant typed
embeddings. The tokens are then fed into the transformer
model to predict the future action tokens. Each timestep is
also embedded into a positional embedding that is added to
each token embedding before being used in prediction.

5.4.3 Learning. Using the datasets created from the state,
action, and reward trajectories, we will sample batches of se-
quences having length 𝐾 , which is a tunable hyper-parameter,
and use these batches to train the transformer model with
cross-entropy loss. Each prediction head in the transformer is
trained to predict the action from the state inputted.

5.4.4 Testing. In order to test the performance of using a
sequence modelling approach, we will be using the QAit [39]
testing set for the following experiments:

• Comparing small and large context (𝐾) windows when
generating actions.

• Using pretrained language model such as GPT or BERT
and finetuning on the action generation task.

6 Ethical, Professional and Legal issues
The QAit codebase and baselines provided by Yuan et al. [39]
have been made available using an MIT License, allowing
for free and unrestricted use. Since QAit is thus open source
there is no foreseeable legal issues.

Due to the lack of human or animal subjects in conjunction
with having no privacy breaching experiments or data collec-
tion, we see that there are no associated ethical concerns.

In terms of professional issues, project members will follow
to the Open Source Software guidelines described by [16] and
ensure that the use of QAit will be done in such an appropriate
professional and ethical manner.

7 Anticipated Outcomes
7.1 Research
7.1.1 Instilling Curiosity and Stochasticity into Text-Based
Agents. The addition of curiosity as a form of intrinsic moti-
vation paired with the actor-critic framework is expected to
increase the agent’s learning speed, training performance and
ultimately generalisability on unseen environments.

7.1.2 Graph-Based Approach. Having context embedded
into a KG with which the agent utilises will allow for better
decision making and improve accuracy. Furthermore, since
different domains will contain their own context embedded in
their graphs, it is expected to allow the RL agent to produce
improved performance in unseen environments.

7.1.3 Sequence Modelling Approach. The anticipated out-
come would be that a sequence-to-sequence model will pro-
vide equal if not better results than the QAit baseline methods
whilst having greater sample efficiency and less training time.

7.2 Impact
7.2.1 Instilling Curiosity and Stochasticity into Text-Based
Agents. With the lack of literature present in the IQA task,
this research will provide more literature on the use of rein-
forcement learning as a viable solution to this task as well as
contribute to the efficacy of these techniques to create more
generalisable agents. Additionally, this research will further
illustrate the applicability of these methods to text domains.

7.2.2 Graph-Based Approach. This research will show
the potential of using KGs to represent complex and ab-
stracted environments as well as the use of these KGs as
supplementary information in an agent’s reasoning process.

7.2.3 Sequence Modelling Approach. This research will
further show the potential of using sequence-to-sequence
models as an abstraction of reinforcement learning in new
domains as well as increase the literature on this approaches
ability for environment generalisation.

7.3 Key Success Factors
The following are the key success factors pertaining to all
three approaches individually as well as their combined effect:

• Successful QAit baseline implementation, use of testing
set and environments.

• Extending QAit framework for each individual project
task, successful compilation and independent execu-
tion.

• Faster and more sample efficient learning.
• Increased zero-shot performance on QAit held data.
• Be able to draw conclusions about RL text-based QA

by generating meaningful results.



8 Project Plan
8.1 Risks
A risk assessment matrix is attached in the Appendix (see
section A.1).

8.2 Timeline & Milestones
A Gantt chart, containing the timeline for the project along
with the project deliverables and milestones, can be found in
the Appendix section A.2.

8.3 Deliverables
This project’s main deliverable is the final research paper with
supporting code for each of the research directions described
in this proposal. Other deliverables are:

Deliverable Due Date
Proposal 24 June

Proposal Presentation 9 July
Software Feasibility Demonstration 10-13 August

Final Paper Draft 6 September
Final Paper 17 September

Final Code Submission 20 September
Final Demonstration 4-8 October

Project Poster 11 October
Project Web Page 18 October

8.4 Resources Required
The primary resources required are as follows:

• UCT High Performance Cluster
• QAit Baselines and Test data
• Access to personal computers and IDEs

Other resources include access to open source software li-
braries:

• Pytorch
• WandB
• TextWorld

Our work will also seek to extend existing codebases that
include, but are not exclusive to, the following:

• Qait Task1

• Graph-Based Approach: KG-DQN2

• Sequence-Modeling Approach: Decision-Transformer3

8.5 Work Allocation
All members of the group will work together on shared deliv-
erables and milestones, such as the presentation and website
creation, as well as on the foundational code base before each
individual works on their approaches. Edan Toledo will con-
struct an actor-critic agent with curiosity, Roy Cohen will

1Interactive Language Learning by Question Answering Github (Accessed 4
August 2021)
2KG-DQN Github (Accessed 4 August 2021)
3Decision-Transformer Github (Accessed 4 August 2021)

implement a graph-based approach, and Greg Furman will be
implementing a sequence model trained with offline learning.

https://github.com/xingdi-eric-yuan/qait_public
https://github.com/rajammanabrolu/KG-DQN
https://github.com/kzl/decision-transformer
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A Appendix
A.1 Risk Assessment

Risk Condi-
tion

Consequence Category Probability Impact Mitigation Monitoring Management

Hardware
Limitations

Processing can
take long periods
of time and will
result in time pres-
sure or practical
infeasibility.

Operational Medium High Ensure that
all data struc-
tures and
algorithms
used are opti-
mized during
development.
Ensure all
models have
GPU support

Run the
code base
occasionally
to ensure that
processing
isn’t taking
longer than
expected.

Ensure there
is sufficient
facilities to
train mod-
els, and
options for
outsourcing
processing.

Drop out of
a team mem-
ber

Losing a team
member could
result in the col-
laborative part of
the project to be
delayed.

Unforeseen Low Medium Ensure good
communica-
tion between
members and
take time off
when needed.

Regular com-
munication
between team
members and
their physical
and mental
health.

Ensure that
all project
tasks have
maximum
slack/float
time to ac-
commodate
this risk.

Scope Creep Project goals will
not be met

Management Low Medium Ensure all
members are
on track with
initial time-
line and only
focus on pre-
determined
goals.

Take note
of proposal
scope which
is approved
and ensure
that not too
much func-
tionality is
added beyond
it.

Dial back
any corollary
experiments
that are not
integral to
the project
objective.

Team mem-
ber falls
ill with
COVID-19
during col-
laborative
phase of
project

Having a temporar-
ily missing team
member during the
collaborative phase
will result in delays
of the project.

Unforeseen Medium Medium Reduce so-
cial contact
and adhere
to social
distancing
guidelines.

Be aware
of potential
COVID-19
symptoms.

Distribute
short term
work between
remaining
healthy
members for
duration of
recovery.

Lack of
expertise
with chosen
libraries.

This will result
in time wastage
as each person
attempts to famil-
iarise themselves
with the necessary
libraries.

Development Medium Medium Dedicate
time during
vacation to
learning the
library docu-
mentation and
tutorials

Check ability
to complete li-
brary tutorials

Avoid over
complication
by using
the more
basic library
functionality
required to
achieve de-
sired network

Table 3. Risk Assessment Matrix



A.2 Gantt Chart

Figure 4. Gantt Chart for IQA project
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