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Abstract
This literature review aims to investigate the viability of a reinforce-
ment learning based approach to question answering. We reviewed
the state-of-the-art RL methodologies to examine the applicability
to question answering specifically within the interactive question
answering domain. We also assessed the viability of using text-based
environments as a method of teaching language understanding. Ev-
idence suggests that advanced exploration methods will be critical
in the success of RL in IQA. Even though IQA can be framed as
an RL problem, we would suggest that the integration of tried and
tested RL, QA and NLP methods would be utilised for future optimal
systems.

Keywords: Question Answering Systems, Interactive Question An-
swering, Natural Language Processing, Reinforcement Learning,
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1 Introduction
Throughout recent years, question answering (QA) systems have be-
come progressively more useful by providing users with the ability
to find answers to questions posed in natural (or partially natural)
language. These systems are used in a variety of ways [8] as the
need to query large amounts of information becomesmore prevalent.
Despite advances in recent years, current QA systems often fail to
generalize to unseen and out of domain information. While attempts
have been made to better generalization capabilities [30, 56, 76] re-
sults have not seen significant improvement. These shortcomings
have motivated research into training a system to comprehend the
contextual semantics of a question in order to yield more accurate
and relevant answers. Hence, current literature has proposed inter-
active question answering (IQA) as a viable solution. IQA refers to a
system needing to interact with its environment to find answer to
a question. A growing body of evidence has shown reinforcement
learning coupled with text-based environments to be a promising
avenue for training agents to gain contextual awareness and under-
standing thus achieving sufficient comprehension of their domain.
This paper aims to provide a brief overview of relevant question
answering systems, natural language processing concepts as well
as a more in-depth review of reinforcement learning literature. Sub-
sequently, it discusses the role of reinforcement learning within
the question and interactive question answering domain while also
investigating text-based environments as a viable avenue for IQA.

2 Question Answering Systems
Question answering (QA) is a field largely based in natural language
processing and information retrieval [24]. It involves developing

systems that respond to questions presented by humans in natural
language. There are two types of question answering systems: open
and closed domain [48]. Closed domain systems are only interested
in answering questions that fit inside a strictly specified topic. Open-
domain systems, on the other hand, are designed to answer questions
on any subject. These systems normally require a large volume of
publicly available data.
Question Answering systems can broadly be divided into two

paradigms. Information Retrieval and Knowledge-Based [35].

2.1 Information Retrieval
Question answering systems based on information retrieval filters
through large collections of documents and text on the internet (or
in ontologies) [35] and applies ranking to find relevant passages
that most likely contain the answer. Once these passages are found,
neural reading comprehension algorithms are deployed to extract
the answer from found passages [35].

2.2 Knowledge-Based
Knowledge-Base QA systems rely uponmapping natural language to
some meaning representation (refer to section 3.2) which ultimately
can be structured into data queries that can be executed on databases
or knowledge bases [35].

2.3 Interactive Question Answering
Interactive question answering [19, 29, 74] refers to systems that
can answer questions by interacting with the environment to find
the answer. Interactive question answering can be seen as a com-
bination of closed and open domain question answering systems
without the need for extremely large datasets. Ultimately the goal
of IQA is creating a system that is completely generalizable to any
environment.

3 Natural Language Processing
Natural language processing (NLP) is regarded as the combined
study of linguistics, computer science and machine learning. NLP
concerns itself with how computers can interact with and understand
natural human language. NLP is used in many fields for a vareity
of tasks [39]. In the context of QA, most modern QA systems are
said to integrate some form of NLP [24]. The following are a few
relevant concepts within NLP:

3.1 Word Embeddings
Word embeddings are a numerical representations of words that are
used in text-based computation [5, 17]. Word embeddings reduce the
dimensionality of text-based problems so that computers can feasibly



process text. These embeddings serve to capture relevant/useful
information even in the absence of sentence structure [13]. Research
has been done into the use of word embeddings to increase QA
system performance [21]. By combining word embeddings with
other features, performance increases and answers can extracted
with greater ease [21]. The following is a high level overview of a
popular word embedding technique.

Figure 1. Example of Embedded Word Vector Relations [51]

3.1.1 Word2Vec. Word2Vec [45] is one of the most popular meth-
ods of constructing embeddings for words in a vocabulary. The
embeddings are constructed and learned by using a Skip Gram
[44] model or a continuous bag-of-words model [45]. Both models
use neural networks (NN) to learn a prediction task and apply the
learned weights as a contextual numeric representation of a word.
[45] show that Skip-Gram performs well with small data and can rep-
resent rare/uncommon words better whereas CBOW develops better
representations for high-frequency words and has a faster training
speed. The numeric vector representations of words produced by
Word2Vec and other embedding techniques can capture syntactic
and semantic information about words and their context [65]. It also
places similar words and concepts closer together in vector space
(refer to figure 1) which can be highly useful in text-related tasks.

3.2 Semantic Parsing

Figure 2. Example of Semantic Graph

Semantic parsers try to express natural language in a logical
form (semantic representation) that a computer can understand and
potentially act upon [38]. Semantic parsing is used in a variety of
domains such as question answering [6, 34], machine translation
[2] and code generation [52]. See figure 2 for an example of a type
of semantic representation - a semantic graph.

Semantic parsing has been applied in the question-answering do-
main as a way to convert natural language questions into actionable
queries against a knowledge graph or database [33, 72].

3.3 Recurrent Neural Networks

Figure 3. RNN unrolled in time [35]

Any network featuring a cycle inside its network connections is
referred to as a recurrent neural network (RNN) [23]. That is any
network in which the value of a unit is directly or indirectly deter-
mined by the network’s previous outputs. RNN’s use this cyclical
nature as a way to interpret temporal changes. RNNs are used as
the building block in building sequence-to-sequence [57] models.

3.3.1 Encoding. Sequence-to-sequencemodels aremodels inwhich
the input and output can be variable length. Sequence-to-sequence
models have many uses, such as machine translation [57], but can
also be used to encode [15] the context or semantic meaning of
text into an n-dimensional vector. The encoder (see figure 3), which
is a stack of RNNs, process each word (embedding) sequentially
using the current word 𝑥𝑖 and a representation of the previous
word/context ℎ𝑖−1 to compute an output 𝑦𝑖 and new representation
ℎ𝑖 . The last hidden vector ℎ𝑛 of a sequence is the entire sentence en-
coded into vector space with relevant information from all the words
in the sequence. Encoders are valuable as an effective way to cap-
ture contextual information in a vector representation. [47, 73, 74]
show the extensive use of encoding models in text-based settings
as a way to represent, potentially, entire paragraphs into a single
representative vector.

4 Reinforcement Learning
Reinforcement learning is a sub-field of machine learning that con-
cerns itself with teaching an agent how to map environmental sit-
uations to actions so as to maximise the cumulative reward given
by the environment i.e optimal control. The goal for the agent is
to learn on its own and discover which actions lead, ultimately, to
better outcomes (higher rewards).

4.1 Preliminary Concepts
4.1.1 Markov Decision Processes. Markov decision processes
(MDP) are mathematical frameworks that can be used to describe an
environment in a reinforcement learning problem. Almost all prob-
lems that can be solved by RL can be modelled into an MDP. Since
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Figure 4. Agent’s interaction with environment

Figure 5. Example of a MDP

the reinforcement learning problem is mathematically idealized by
Markov Decision Processes, one can construct precise theoretical
statements about these problems using MDPs [60].
Figure 5 shows an example of a MDP. The circles represent the

states and the arrows represent transitions with specific proba-
bilities. As can be seen, states can offer more than one potential
transition. An agent will transition from state to state with a certain
probability depending on the action/transition it decides to take.
Figure 4 shows the agent’s interaction with the environment in a
MDP. The agent and environment (MDP) interact at each step in a
sequence of discrete time steps. At every step the agent receives an
observation (some representation) of the state 𝑆𝑡 ∈ S, and selects
an action 𝐴𝑡 ∈ A(𝑠) based on this observation. Once the agent
has executed its action, one time step later, the agent will receive a
reward 𝑅𝑡+1 ∈ R ⊂ IR due to its action and the state it ends up in.
This reward can be positive or negative depending on the outcome
of the action. The agent now finds itself in a new state 𝑆𝑡+1 ∈ S and
the cycle repeats until a terminal state is reached.

MDPs have the Markov property meaning that the future is inde-
pendent of the past given the present i.e 𝑃 [𝑆𝑡+1 |𝑆𝑡 ] = 𝑃 [𝑆𝑡+1 |𝑆1, 𝑆2, ..., 𝑆𝑡 ].
Intuitively this means that every state must include the information
about all aspects of the past agent–environment interaction that
makes a difference for the future, meaning that all actions can be
accurately decided solely based upon the state the agent is in.

An important part of the application of reinforcement learning to
domains such as question answering is how the MDP is represented.
[12] show a way of formulating the question answering (In an IR
setting) task into an MDP upon which RL agents can attempt to
solve. States are defined by the current status of the answer space.

At each iteration, a sentence, from the document where an answer
can be found, is added to the answer pool. Actions are then defined
as selecting a sentence from the remaining sentences that are not
present in the extracted summary thus far. Results show that by
simply reformulating the problem into an MDP and applying RL,
significant improvements upon the baseline models can be found.

4.1.2 Policies and Value Functions. Agent’s use policies to de-
cide their actions at every time step. A policy 𝜋 is defined as a
mapping of environment states S to the probabilities of selecting
each possible action A [60]. If an agent is following a policy 𝜋 at
time 𝑡 , the policy function 𝜋 (𝑎 |𝑠) is the probability of performing
the specific action 𝐴𝑡 = 𝑎 given the agent is in state 𝑆𝑡 = 𝑠 .
A large proportion of reinforcement learning algorithms, in the

process of finding the optimal policy, (the policy that yields the
highest cumulative reward), estimate the value function. The value
function is a function of states or action-state pairs that estimate the
value (expected cumulative reward to be received going forwards) of
being in a specific state. Since the cumulative reward is dependant
on future actions in future states, the value function is defined with
respect to the policy the agent is following. The expected cumulative
reward 𝐺𝑡 can be defined as follows:

𝐺𝑡 =

𝑇∑
𝑘=𝑡+1

𝛾𝑘−𝑡−1𝑅𝑘

where 𝑇 is the terminal time step and 𝛾 discount factor (the weight
of importance given to immediate and future rewards). This means
formally the value function for any given policy is defined as:

𝑣𝜋 (𝑠) = E[𝐺𝑡 |𝑆𝑡 = 𝑠], for all 𝑠 ∈ S
The bellman equation for the value function decomposes the value
function into two parts, the immediate reward and the discounted
value of successor states. This can be formulated as :

𝑣𝜋 (𝑠) = E[𝑅𝑡+1 + 𝛾 ∗ 𝑣 (𝑆𝑡+1) |𝑆𝑡 = 𝑠]
The bellman equation illustrates an important recursive property
that is used for all methods that involve estimating a value function.

4.1.3 Prediction and Control. In reinforcement learning, there
are two separate goals: Prediction - where the goal of the agent is
to evaluate how well a given policy performs. An example of this is
to simply find the value function of an MDP given some policy. The
other goal, which is usually the focus of many, is Control - where
the goal of the agent is to find the optimal policy (best possible
performing policy) to some MDP [60].

4.2 Environments
Environments refer to the "world" an agent is situated in. Many
different types of environments exist [9] for different tasks. The
environment constructs the simulated experience for RL agents to
learn how to perform some task.

4.2.1 TextWorld. TextWorld [18] is a sandbox environment that
allows you to play text games interactively. It also provides gener-
ative capabilities to easily construct specific text-based games for
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different domains. Its generative processes allow it to fine-tune the
difficulty, range, and language of created games. TextWorld could
also be used to research generalization and transfer learning by
constructing sets of different but related games. TextWorld has been
used extensively in research involving text-based environments
[1, 26, 42, 73–75].

4.3 Model Free
Model-free methods are those of which the agent has no internal
representation of the MDP/Environment it is in. This means the
agent has no knowledge of the MDP transition or reward dynamics
and cannot use this information in the process of learning.

Figure 6. Dynamic Programming, Monte Carlo, and Temporal Dif-
ference Backup illustrated

4.3.1 Monte Carlo. Monte Carlo methods are one form of model-
free methods that directly learn from experience. Monte Carlo meth-
ods have the assumption that all episodes will terminate and that
experience is divided into episodes (sequence of time steps starting
in a start state and ending in a terminal state). The agent simu-
lates episodes of experience and learns directly from this experience
thereby not requiring any knowledge of how the environment func-
tions. In the learning process, an agent generates episodes of experi-
ence e.g (𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, ...𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇 ) and uses this history
to learn a value function or policy function. This means Monte
Carlo methods have to simulate entire episodes of experience before
learning can take place. Due to this, Monte Carlo cannot be applied
to continuous MDPs. What distinguishes Monte Carlo apart from
classic dynamic programming and temporal difference learning, is
that Monte Carlo learning does not employ bootstrapping. Hence
the estimate for one state does not build upon the estimate of any
other state therefore Monte Carlo methods have a lower bias com-
pared to other methods but this is traded off with a higher variance
as episode trajectories can be highly different [60]. An example of a
Monte Carlo update for a value function is as follows:

𝑉 (𝑆𝑡 ) ←− 𝑉 (𝑆𝑡 ) + 𝛼 [𝐺𝑡 −𝑉 (𝑆𝑡 )]

where 𝐺𝑡 represents the cumulative value seen from time 𝑡 onward
and alpha represents the step size.

4.3.2 Temporal Difference. Temporal difference methods are
the same as Monte Carlo methods in that they directly learn from
experience without the need of a model but unlike Monte Carlo, they
don’t need to wait for episode termination to learn, they bootstrap
from the sample trajectory [60]. TD methods make use of every
individual time step to learn. At time 𝑡 + 1, the experience of a single
time step (in the case of one-step TD-learning) is used to update
either the agent’s policy or value function. An example of a one-step
TD update for the value function is as follows:

𝑉 (𝑆𝑡 ) ←− 𝑉 (𝑆𝑡 ) + 𝛼 [𝑅𝑡+1 + 𝛾𝑉 (𝑆𝑡+1) −𝑉 (𝑆𝑡 )]

This is updating the agent’s current state value estimate in the
direction of the successive state’s value plus the immediate reward
it has seen. Intuitively this is essentially a combination of dynamic
programming and Monte Carlo ideas, where the agent updates its
estimates based on other learned estimates and does this from raw
experience. Since TD methods bootstrap, the variance between state
updates is much lower than its Monte Carlo counterparts but the
trade-off is in bias as values are updated based on other estimates
instead of experienced trajectories. This needs to be kept in mind
when deciding upon which type of learning to use.

4.3.3 Value-Based Methods. Value-based methods are methods
in which the agent tries to learn the value function of the MDP it
is situated in. The value function is extremely valuable as it gives
the agent information on what states it should be in. The agent
can use the value function for action selection simply by acting
greedily and choosing the action that will take it to the state with
the highest value. This is called the greedy policy and is usually
how control is implemented in value-based methods (not including
the possibility of exploration) [60]. Practically, most value-based
methods try to learn the value of action-state pairs. The idea behind
this, is that if the agent does not know themodel dynamics, it doesn’t
know which action will take it to the desired state so the solution
is to create a function that gives an estimate for the total expected
cumulative reward if an agent takes a specific action in a specific
state. This action-state expected reward value is called the Q-value.
The following are a few of the most popular value-based methods.

4.3.4 Q-Learning. Q-learning [69] is a way for agent’s to learn
the optimal state-action value function directly instead of repeatedly
performing policy evaluation and iteration. An example of the the
Q-learning update using one-step TD-learning is as follows:

𝑄 (𝑆𝑡 , 𝐴𝑡 ) += 𝛼 (𝑅𝑡+1 + 𝛾 max
𝐴𝑡+1

𝑄 (𝑆𝑡+1, 𝐴𝑡+1) −𝑄 (𝑆𝑡 , 𝐴𝑡 ))

Although [69] has shown the convergence properties illustrating
that Q-learning can be used effectively to solve MDP’s, practically
these value based methods suffer from poor convergence.
Pure value-based methods aren’t as commonplace in RL-based

question answering systems but have been used successfully. [12]
use Q-Learning to train an agent to extract answers to complex
question from document passages. This shows that even with po-
tential convergence issues, pure value-based approaches can attain
significant performance on question answering tasks.
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4.3.5 DQN. Most modern problems when modelled into MDPs
have extremely large state spaces (potentially continuous state
space). This is compounded when trying to learn the action-state
pair value estimates as the number of states is multiplied by the
number of actions. This high dimensionality makes traditional Q-
learning for larger problems computationally infeasible. The solu-
tion to this problem is function approximation. With the modern
advancements in deep learning, one type of function approximation
that is used heavily in modern RL are neural networks. DQNs (Deep
Q Networks) [46] have been shown, with a few additions such as ex-
perience replay memory [41] and target network, to be able to solve
large dimensional MDPs, such as Atari games, effectively. However
there are limitations with this approach, it was shown that non-
linear function approximation, such as neural networks, can cause
the Q-network to diverge [63]. DQN’s also tend to overestimate the
actual Q-value which can eventually lead to sub-optimal policies
[62]. Even though convergence is not theoretically guaranteed when
using neural network function approximation and overestimation
occurs, practically we see successful results in applying the DQN
algorithm to certain problems [27, 46, 74].

4.3.6 DDQN. Double DQN [64] is the proposed algorithm to solve
the overestimation problem inDQNs. Double DQN shows significant
results in increasing stability and reliability of learning, reducing
DQNs overoptimism as well as how this reduction in overoptimism
allows the discovery of better policies [64].

4.3.7 Rainbow DQN. Rainbow DQN [32] is an extension to the
original DQN algorithm that combines several improvements found
over the years into a single agent. Rainbow DQN uses: DDQN to
reduce the overestimation bias, Prioritised Experience Replay [53]
to speed up learning, dueling networks [68], multi-step learning
[58] for faster learning with suitably tuned hyper-parameter, Dis-
tributional reinforcement learning [4] instead of expected return,
and noisy nets [25] for exploration. This extension shows improved
performance in comparison to other methods.
[47] illustrate that DQN methods can be successful in accom-

plishing text-based game tasks illustrating a sufficient semantic
interpretation of language. [74] taking a similar approach compare
the performance of DQN [46], DDQN [64], and Rainbow DQN [32]
algorithms in a text-based interactive question answering setting.
The performance difference between these methodologies is small
indicating a different approach might be needed to increase results
greatly.

4.3.8 Policy BasedMethods. Policy-basedmethods are methods
in which the agent tries to learn the policy function directly. This
can be advantageous as it is able to learn stochastic policies whereas
value-based methods are deterministic. It can also be used to effec-
tively learn continuous or high dimensional action spaces and has
better convergence properties. Policy gradient methods search for a
local maximum in 𝐽 (𝜃 ) by gradient ascent 𝜃 ←− 𝜃 + 𝛼∇𝜃 𝐽 (𝜃 ). The
following are a few of the most popular policy-based methods.

4.3.9 REINFORCE. REINFORCE [70] is a Monte Carlo method
that updates the policy functions parameters directly using the

policy gradient with respect to 𝐽 (𝜃 ) = E
[ ∑𝑇−1

𝑡=0 𝑅𝑡+1 |𝜋𝜃
]
. [61] shows

that the gradient of the objective function to maximize expected
total cumulative reward is ∇𝜃 𝐽 (𝜃 ) =

∑𝑇−1
𝑡=0 ∇𝜃 log𝜋𝜃 (𝐴𝑡 |𝑆𝑡 )𝐺𝑡 . This

allows us to relatively easily calculate the gradient and update the
policy’s parameters directly using the REINFORCE update:

𝜃𝑡+1 = 𝜃𝑡 + 𝛼 ∗𝐺𝑡 ∗ ∇𝜃 log𝜋𝜃 (𝐴𝑡 |𝑆𝑡 )

As per the shortcomings of Monte Carlo methods, REINFORCE
suffers from high variance with a noisy gradient estimate and no
clear credit assignment to positive or negative actions throughout
the episode [60].

REINFORCE has seen success in the question-answering domain
both with the use of knowledge graphs and sentence extraction from
corpora [16, 20, 66, 71] where as pure value-based methods haven’t.
Possible reasons for this are that in these question answering tasks
the action space can be very large due to graph or document com-
plexity. This can make it hard for value-based methods such as DQN
[46] to converge and learn effective policies. Another reason, partic-
ularly in the knowledge graph paradigm, is that stochastic policies,
unlike DQN’s deterministic policies, might perform better by reduc-
ing the likelihood of an agent getting stuck in the knowledge graph
traversal process.

Figure 7. Actor-Critic Architecture

4.3.10 Actor-Critic. Actor-Criticmethods [40] are a combination
of policy-based and value-based methods with the goal of combining
each method’s strong points. Actor-Critic methods consist of two
models: The critic which updates some value function e.g(𝑄 (𝑆𝑡 , 𝐴𝑡 ))
(intuitively, it tells the actor how good the action was) and The actor
which decides which action to take as well as updating the policy
parameters in the direction suggested by the critic. This allows us
to bootstrap and reduces variance.
Since actor-critic ideally merges the strong points of both value

and policy-based methods, it can be assumed that the application of
these methods can significantly improve upon prior methods. [67]
demonstrate the potential benefit of using an actor-critic approach
to IR question answering.
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4.4 Sparse Reward Environments
Most real-world scenarios when modelled as MDPs have very sparse
or deceptive extrinsic rewards, this means it can be very hard for
an agent to learn which actions led to a positive or negative out-
come. Previous methods discussed show trouble in learning high
performing policies in these sparsely rewarded environments e.g
Montezuma’s Revenge [46, 64]. This problem can be compounded
when the state-action space is very large.

Question answering, especially interactive question answering,
form sparsely rewarded environments as long sequences of actions
may be required before any reward is given making the task even
harder for reinforcement learning to solve. This indicates the need
for advanced reward shaping and exploration techniques.

4.4.1 Reward Shaping. Reward shaping [43] is a commonly used
technique [7] to deal with sparsely rewarded environments. It in-
volves enhancing the primary extrinsic reward given by the envi-
ronment with additional reward features to aid the agent in the
learning process. Although reward shaping has been successful in
practice, there are a few limitations with this method. The additional
reward features often have to be hand-crafted by domain experts
for the approach to be successful. This also introduces a human bias
that could inhibit the agent from learning true optimal policies that
humans would never think of.

4.5 Exploration
Exploration is important for an agent to discover new and promising
states that can lead to more optimal policies. It is especially impor-
tant in sparsely rewarded environments when a large sequence
of specific actions might need to be done to achieve some reward.
Traditional exploration methods such as epsilon-greedy [60] and
entropy regularisation [70] have shown success in inducing novel
behaviours in agents but these methods are not sufficient for the
exploration needed in many environments [49].

Text-based games are, fundamentally, partially observableMarkov
decision processes [36] since the true environment state is never
observed and only described by text. This means to act optimally
an agent must keep track of its observations in some manner. The
importance of efficient exploration is becoming more apparent as
research grows. [73] show the benefit of employing more advanced
exploration methods in text-based games as well as how these ex-
ploration methods help agents generalise better to unseen environ-
ments. The following are some more recently created exploration
methods:

4.5.1 Noisy Networks. Noisy networks [25] are a simple and
efficient way of inducing random exploratory behaviour that allows
for the agent to decide for itself when and how much it wants to
explore. Noisy networks are neural networks where the weights
and biases are affected by some parametric function of noise. Using
noisy networks in deep reinforcement learning consists of making
the last layer of the network, e.g Q-Function or Value-Function, a
noisy network. This induces randomness in the values produced
thereby affecting the policy. These parameters of the parametric

noise function are controlled by the agent and optimised in the
learning process. This allows a form of context to be given to the
exploration task. [25] shows how this method of exploration greatly
increases performance in certain environments but not all, this
shows how noisy networks are a problem specific strategy.

4.5.2 Curiosity. Formany sparsely rewarded environments, shap-
ing the reward function is not possible. Using random exploration
methods rely upon the agent stumbling onto the goal state by chance.
This can be practically impossible in large environments and will re-
sult in failure to learn. Curiosity or intrinsic motivation can be seen
as a new way of learning which requires no extrinsic rewards from
the environment. It is a controlled form of exploration. The twomost
popular formulations of intrinsic reward can be grouped as follows:
The first class of methods try to encourage the agent to explore
states it hasn’t seen before. [3] have shown great results in very
sparsely rewarded environments, such as Montezuma’s Revenge,
using such exploration with DQN. The second class of methods
focus on encouraging the agent to take actions that lower the er-
ror in the agent’s ability to predict the consequences of its actions.
Intuitively this aims to increase the agent’s knowledge about the
environment [14, 54, 55]. Measuring the novelty i.e how different a
state is from a previous state, or building an internal environmental
model to predict the next state can be a difficult problem in high
dimensional state spaces. This is compounded with environment
stochasticity and noise which ultimately makes intrinsic reward
calculation difficult.

Figure 8. Intrinsic Curiosity Module [50]

4.5.3 ICM. [50] have derived a method, belonging to the second
class, to avoid these difficulties by using a model that only predicts
the environmental changes that are caused because of the agent’s
actions or those that affect the agent. It works by transforming
the agent’s observation into a feature space where only the rele-
vant information is represented. The agent itself learns the feature
space using a neural network trained on an inverse task of pre-
dicting the agent’s action given the current and successive state.
By training on the inverse task, the model’s features embedding
space only concerns itself with factors that affect the agent. The
feature space of the inverse model is then used to train a new neural
network to predict the next state’s feature representation given the
current state’s features and action. The agent is then supplied with
the prediction error as an intrinsic reward. Refer to figure 8 for
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an illustration. The intrinsic reward is summed with the extrinsic
reward, such as 𝑟𝑡 = 𝑟𝑒𝑡 + 𝛽𝑟 𝑖𝑡 where 𝛽 balances the exploration and
exploitation, to ultimately solve the task given. [50] shows how cu-
riosity greatly improves exploration as well as acts as a mechanism
for agents to learn skills that potentially help in future scenarios.
This exploration helps in solving very sparse reward settings. [50]
also shows that fine-tuning an agent that has been trained with
curiosity and extrinsic rewards is more beneficial (learns faster and
achieves higher scores) than training from scratch for new unseen
environments. This shows how curiosity helps agents generalise to
new environments. This method however could fail in learning a
sufficient feature representation of the environment thereby leading
to poor performance.

4.5.4 Random Network Distillation. Random network distilla-
tion [11] is an exploration method that introduces a new approach
for the prediction problem. Two neural networks are created: one
that is fixed where weights are randomized called the target network
and one that is trained on data collected by the agent called the
predictor. The target network simply receives the agent’s observa-
tion as input and outputs a fixed random embedding of the state.
The predictor network receives an observation and also outputs
a random embedding of the state. The predictor network is then
trained to minimize the difference between its output and the fixed
target output. This process essentially "distils" the predictor network
into a trained one. The prediction error between the two networks
is expected to be larger for novel states that are more dissimilar
to the states the predictor network has seen and been trained on.
This prediction error forms part of the intrinsic reward as a way to
encourage moving to novel states. One drawback to this method
is the risk of using a powerful optimization algorithm for training
the predictor. The algorithm might train the predictor network to
perfectly mimic the target thereby reducing all intrinsic reward for
the agent to zero.

Figure 9. Go-Explore Algorithm [22]

4.5.5 Go-Explore. Go-Explore [22] is the current state of the art
performing algorithm on the classic sparse reward environment
of Montezuma’s Revenge and Pitfall. Go-Explore is an exploration
approach that does not use intrinsic motivation, instead it does the
following: the first phase of the algorithm is to explore the state
space by keeping an archive of different game states (called ’cells’ in
this context) and the trajectories that lead to them. The agent selects
a cell from its archive in some probabilistic manner biased towards
newer states, it uses its trajectory knowledge to travel back to that
state and proceeds to explore from there. For all cells visited in the
process, if the new trajectory is better, store the new trajectory as a
way to reach that cell. Go-Explore essentially remembers and returns

to promising states for exploration. This avoids the problem of
detachment and derailment that intrinsic motivation methods may
suffer from. Detachment refers to the concept that an agent using
intrinsic motivation might get separated from high intrinsic reward
areas because the intrinsic reward at the border of a new area has
been consumed by the agent thereby making it difficult for the agent
to find its way back to explore a new section. Derailment refers to
when an agent discovers a promising state and it would be desirable
to return to that state to explore from there, then derailment might
occur. The longer, more complicated, and exact a series of actions
must be to achieve a previously identified high intrinsic reward
state, the more the stochastic nature of the policies will "derail" the
agent and prevent them from returning. The second phase evaluates
if the first phase solutions are not robust to noise and if necessary
will robustify them into a neural network with imitation learning.
Even though Go-Explore boasts SOTA results, the algorithm has
many drawbacks. The environment must be able to reset back to a
specific state or the environment must be deterministic so that the
trajectories stored correctly take the agent back to the state it wants
to go to. The Go-Explore algorithm also has no evidence of being
able to generalize.
[42] show incredible results in applying the go-explore explo-

ration method to text-based games. It is also demonstrated that
agents using go-explore adapted better to unseen environments
than their counterparts by solving over half of the unseen environ-
ments in the test set.

4.6 Model-Based
Model-based methods are methods in which the environment dy-
namics such as reward and transition functions are learned by (or
given to) the agent and modelled into some representation that the
agent can use to choose the optimal action. Model-based learning dif-
fers from model-free learning in that instead of trying to maximise
the reward received, the agent tries to find the optimal trajectory
with the lowest cost according to some defined cost function. Mod-
els can help agents learn faster and find better policies in fewer
interactions with the environments (i.e it is sample efficient) [37].
Models can help agents with the ability to predict the future and
this can be very beneficial in certain situations [59].
Model-based methods is still a relatively new research area and

the application of model-based methods in the question-answering
domain is yet to be investigated. This indicates the potential of
a new approach to question answering. The following is a recent
significant method in model-based reinforcement learning.

4.6.1 Recurrent World Models. World models [31] are a repre-
sentation of spatial and temporal features of a world. World models
have a variety of uses. They can be used as internal low dimensional
representations for control and action selection. They can also be
used to generate synthetic data to train an agent thereby increas-
ing sample efficiency in the learning process. World models also
give an agent the ability to plan. [31] demonstrates a new way of
developing world models which is the combination of the former
two uses where the agent generates synthetic experience in the low
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Figure 10. Recurrent World Model Overview [31]

dimensional internal representation to learn a policy and apply it to
solve a task. This new method to train world models is done using
large RNNs in an unsupervised manner that capture a compressed
spatial and temporal representation of the real environment. [31]
also develop a new agent architecture to use these world models. Re-
fer to figure 10 for an illustration of how the world model and agent
interact. This method shows it is possible to develop a world model
in an unsupervised fashion, e.g using random rollout trajectories
as training data, that can be used for training an agent’s policy for
an environment it has never actually seen. This gives the training
process incredible sample efficiency. This technique achieves SOTA
results in the CarRacing-v0 open AI gym environment.

5 Reinforcement Learning in Question
Answering

Recent literature [10, 12, 20, 28, 67] has shown promise in apply-
ing RL to the question answering domain. The following is a brief
overview and discussion of previously mentioned literature.

5.1 Knowledge Base Applications
[20] illustrates RL’s capability of knowledge base traversal and rela-
tionship inference for question answering. Using REINFORCE, (refer
to section 4.3.9), an agent is trained to navigate large knowledge
graphs conditioned on only the question. This requires the agent
to infer new relations between two nodes as a way to answer the
question. Comparative results show the method is the same if not
better than it’s counterparts on benchmark datasets.

5.2 Interactive Question Answering
Interactive question answering [19, 29, 74], which requires an agent
to explore its environment to gather the necessary knowledge to
answer a given question, can be seen as a natural extension to the
question answering challenge. The question of whether or not a
system can be trained to have the ability of knowing how to find
and reason for answers in dynamic and changing environments.
Unlike navigating knowledge graphs to find the answer [20], inter-
active question answering requires an agent to understand natural
language concepts within the given questions as well as display an
understanding of how to find the answer via exploration, interaction
and interpretation of the environment it is situated in. Information
about unseen environments couldn’t have been memorized and
rewards are very sparse. Both [19, 29] explore interactive question-
answering in 3D virtual environments giving large importance to
agent’s visually interpreting the scene. Both approaches break down
an agent’s responsibilities into separately trainable models e.g navi-
gation, vision, language. Each sub-model relays their information
and interpretation of what do to ultimately succeed in answering
the question given.

[74] investigates the interactive question answering domainwithin
an entirely text-based environment [18], seemingly requiring the
agent to have an understanding of the language it operates in.
TextWorld [18] is used as an environment to procedurally create
different text-based games. In conjunction with these games - ques-
tions are created. The agent then has to navigate the text game
to find the answer to the given question. [74] use a value-based
approach (refer to section 4.3.3) specifically Q-learning. The agent is
also trained on changing environments to discourage memorization
and over-fitting as well as encourage actual language understanding.
A core idea is that the ability of the agent to learn a language as a way
to represent its environment gives hope that a more generalizable
policy will also be learned.
The results of the recent IQA literature [19, 29, 74] show how

interactive question answering is a challenging task that leaves
much room for improvement.

6 Conclusion
To conclude, reinforcement learning methods have extensive lit-
erature expanding the field into different directions. Its been illus-
trated that new advances in RL show promise in not only traditional
question answering systems but specifically the field of interactive
question answering. The lacking performative results in the interac-
tive question answering domain show room for improvement and
potential for research. The ability for question answering systems
to generalise to new and unseen environments has not been shown
to be adequate which further reinforces the idea of teaching agents
or models the skills to fundamentally find the answer to a given
question where the answer is not explicitly represented in some
structuredmanner.Whilst ultimately interactive question answering
has been framed to be a reinforcement learning problem, elements
from traditional QA systems and natural language processing play
a large role in the potential success to be had.
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