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ABSTRACT
Student advisors offer a great deal of assistance to students and can
sometimes get overwhelmed with managing the large number of
queries from students. There is a need for a solution that would help
lessen the burden on Students Advisors and assist more students
at the same time. An automated system that can handle some of
the simpler queries would be very useful. It would be beneficial to
both Student Advisors and students as students get the help they
need, and Student Advisors will have additional time to manage
complex queries. A Virtual Student Advisor website would include
a chatbot available to assist students round-the-clock (24/7). This
paper focuses on the chatbot aspect of the system. The aim of the
project is to implement a working conversational agent that assists
students with answering academic queries.

CCS CONCEPTS
• Natural Language Processing; • Machine Learning; • Pat-
tern Matching; • Software Development → iterative Develop-
ment Cycle; • Web Development;

KEYWORDS
Chatbot, neural networks, natural language processing, text pro-
cessing

1 INTRODUCTION
Navigating university can be a daunting task for any student. Stu-
dent Advisors play a vital role in assisting students throughout
their time at university [10]. It is an important role that, when
performed efficiently and effectively, will yield success for both the
students and the university. The University of Cape Town (UCT)
enrolls over 25000 students each year. Student Advisors assist all of
these students, directly or indirectly, over the course of the year, for
example, during registration. This poses a challenge as the sheer
number of queries is a great deal for them to process.

Students can get assistance from Student Advisors through email,
virtual meetings, or physical meetings (when it is safe to do so).
Given the sheer number of students being enrolled, it is evident
that each year Student Advisors are faced with an overwhelming
number of queries which have to be attended to. Due to the number
of queries and sometimes complexity of queries, students do not get
responses immediately and Student Advisors are overworked. This
inefficiency can have a detrimental effect on a student’s academic
career [11]. Student advisors also may not have enough time to
attend to all queries as they also have to complete their academic
duties like lecturing [11].

We proposed a Virtual Student Advisor system as a solution
to the problem. Such a system would offer an alternative for stu-
dents, rather than email a Student Advisor, the student could simply

visit the website and find the information they need. Several in-
dividuals at other universities have attempted to create such an
automated system for students with varying success [13, 17, 20].
Such a website would assist students with credit calculations, pre-
admission guidance, establishing prerequisites, offering summaries
for courses, and explaining policies and procedures. The website
would also provide summaries for information found in the UCT
handbooks. Students would be able to navigate the website to find
the information or use the chatbot to get answers.

This paper will be focused on the Chatbot aspect of the website.
A chatbot is a software system capable of imitating a conversation
with a human using natural language [2, 14, 15]. Implementing
such a system includes building the chatbot, training the chatbot
and developing the chatbot to provide the best answer possible to
most simple student queries.

1.1 Problem statement and Aim.
Student Advisors cannot efficiently and effectively attend to queries
submitted by students. The number of Student Advisors and the
time they are available is not proportional to the number of stu-
dents in the university and number of queries. The current form
of communication, email or virtual meetings, is not sufficient for
students. Depending on the availability of the Student Advisor, re-
sponse times vary regardless of how simple or complex the query
is. Student queries can range from simple queries like what the
prerequisites for a course are to complex queries like add/drop
protocols for modules.

The aim of the chatbot is to eliminate the unpredictability of
response times. It should also be available to provide answers to stu-
dents at all times. The chatbot would be able to answer most of the
simple queries, short questions that most students ask, with short
answers. The chatbot should be as accurate as possible. It would pro-
vide general information, information mostly found in handbooks
and UCT’s various websites. A chatbot to answer queries, available
at all times, would offer relief for Student Advisors. Students get
answers immediately and Student Advisors will have additional
time to attend to complex queries.

The following sections have been arranged as follows: Section
2 will provide the background of chatbots in general, chatbots in
the context of academic institutions and state their issues. Section
3 will provide a requirements analysis of the system and the design
plan of the implemented system. Section 4 shows the development
process, architecture design and how the system was implemented.
Section 5 will provide the findings made from user testing, discuss
the feedback and provide suggestions for future work. Conclusions
of the project are provided in Section 6.
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2 BACKGROUND AND RELATEDWORK
Computer programs capable of communicating in natural language
(chatbots) have existed for several decades. The first “chatbot” was
a program named ELIZA created by Joseph Weizenbaum in 1966
[20]. The program identified key words in input sentences and
generated answers through rules that where coded into the pro-
gram [19]. There have been many chatbot programs created since
then, Elizabeth and ALICE are some of the prominent programs in
existence.

Artificial Linguistic Internal Computer Entity (ALICE) is an Ar-
tificial Intelligence chatbot capable of natural language processing
(NLP). ALICE is an adaptation of ELIZA created by Dr Richard
Wallace in 1995 [4]. The program uses pattern-matching algorithms
to match sentence inputs to outputs [2], which makes it easier and
less complicated than other NLP chatbot programs.

Elizabeth is also an adaptation of ELIZA but with multiple im-
provements in selection, substitution, and storage mechanisms
[14]. Storage functionality meant the program could store input
for further use in the conversation at a later point. Unlike ALICE,
Elizabeth still used the basic concepts of pattern matching and sen-
tence decomposition used in ELIZA, although with improvements
in adaptability and flexibility [14].

2.1 Related Applications.
There is not much literature on applications that implement a chat-
bot in the context of an academic institution or an online student
advising system.

Carolis et al [8] implemented a program that is similar to the
application this project aims to achieve. Their implementation at-
tempted to mimic human conversation together with the use of an
animated character with human resemblance. Bhavika R. et al. [13]
and Herry D Wijaya et al. [20] have also implemented applications
similar to a student advising chatbot. Suvethan N. et al. also imple-
mented a Virtual Student Advisor chatbot using NLP, a Schedular
and a feedback analyzer [17]. A feedback analyzer processes inputs
by users to the chatbot to find common topics.

Bhavika R. et al. designed a chatbot using Artificial Intelligence
Markup Language (AIML) and Latent Semantic Analysis (LSA). The
chatbot was created to answer Frequently Asked Questions in the
University [13]. This is close to what the chatbot in this project
aimed to achieve but limited mostly to a database of frequently
asked questions (FAQs). The program could respond to basic queries
but had difficulties understanding more complex queries.

Herry D. Wijaya et al. aimed to create a virtual assistant to be
integrated to the existing website of the Mercu Buana University,
Jakarta, Indonesia. The virtual assistant would aid in answering
questions and thus decreasing student traffic. The previous system
at the university had challenges in assisting students with queries.
The virtual assistant was created with inspiration from ELIZA [20].
They concluded their chatbot was successful although more re-
search would have been needed. A drawback of the project was
the little research done for the design. More research and testing
could have greatly improved the design and implementation of the
program.

Suvethan et al. created a mobile and web application students
can interact with. The application used NLP and pattern-matching

to manage students queries and provide appropriate answers. The
system could assist students automatically or give students the
option to meet with a human Student Advisor [17].

Jack Cahn of the University of Pennsylvania presented detailed
literature on how each step of the design process can be executed [5].
One can choose between using Bayesian models or non-Bayesian
models to process user input, each with their advantages and disad-
vantages. Bayesian models are mainly based on the probability of
the input sequence given the language base- language used to train
the chatbot. Non-Bayesian models apply neural networks, text clas-
sification using machine learning, perceptrons and decision trees.
Machine learning is more suited for a chatbot as it provides context
based on past instances and generates better communication. The
downside of this being that machine-learning based algorithms
have increased complexity and would take longer to implement.

2.2 Issues/Difficulties with current software.
2.2.1 Not Designed for South African Universities. Previous im-

plementations of chatbots have mostly been only capable of general
conversation. Current implementations in an academic setting have
been built specifically for their respective universities, e.g., Herry D.
Wijaya et al. implemented a chatbot specifically for Mercu Buana
University [20]. Existing chatbot libraries like Python’s ChatterBot
(ChatterBot) are designed for general “small-talk” conversation and
therefore have to be specialized for one’s needs [7]. In this case, the
chatbot’s training data would have to be altered for the University
of Cape Town. There seems to be no student advising chatbot that
has been built for a South African university in record. It is possible,
however, that a chatbot has been done before but not officially
documented.

2.2.2 Language. The University of Cape Town enrolls a diverse
pool of students in terms of race, culture, ethnicity, etc. The chat-
bot should be implemented with this in mind. It should utilize a
common language that most, if not all, students understand. The
main language of communication at the university is English. Other
chatbot programs have been implemented for different languages
like Kuan-Hua, Chinese standard speech known as Mandarin [6]. It
is worth considering that the English language has several versions,
United Kingdom, South African, Australian, etc., [18]. Training data
for this chatbot will have to be edited to the South African English
dialect [12].

2.2.3 Confidentiality and Data privacy. Current literature does
not offer much detail on what security measures, if any, were put in
place to ensure that user’s data is protected. This is vital because the
chatbot is placed in an online platform and thus could be vulnerable
to malicious software online. Previous chats must be securely stored
in the database, in encrypted format if possible.

2.2.4 Accessibility. Students from low-income backgrounds should
also be able to access the website. Current implementations do not
state how the applications were built for optimum data usage to
cater for various types of users. Accessibility also refers to who
will be able to use the chatbot on the website. High school students
(prospective students) are potential users. This potentially brings
with it several ethical and legal challenges due to the storage of data
belonging to minor person(s). Related applications do not address
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this issue. Storing information of high-school students or persons
not registered to the university, whilst still abiding by the POPI Act
[1], is a challenge. A solution to this would be restricting storage of
previous chats to users that are registered to UCT only. Other users
can still use the chatbot, however, no information will be stored.

2.2.5 Ease of Use and UI Design. An important aspect of any
user-centred system is how easy it is to use. There is significant
literature on designing a user interface for a chatbot. For example,
S. Shyam Sundar and Eun Go provide literature that gives insight
into the advantages and disadvantages of humanizing a chatbot [9].
This project mainly focuses on the back-end on the chatbot, that is,
producing responses in text format rather than displaying. However,
humanizing a chatbot is not only limited to its appearance, but it
also refers to the types of responses, length of responses and time
taken to reply. Making a chatbot more human brings with it more
challenges as it means the responses will have to be edited to be
more “human-like”.

3 REQUIREMENTS ANALYSIS AND DESIGN
3.1 Requirements Analysis

3.1.1 Functional Requirements. Main functionalities of the chat-
bot are providing answers to simple short queries, providing short
explanations about courses, providing contact details for relevant
staff or departments, providing links to websites, and storing previ-
ous chats.

• The chatbot should be capable of various kinds of greetings
and goodbyes. One of the aims of the chatbot is to be human-
like, to a point. It should be able to respond to informal
greetings and goodbyes. Each course has a short descrip-
tion in the handbooks. The chatbot should provide a short
summary of all these descriptions. Messages should be short
and concise. This information will be manually extracted
from handbooks and inserted into the training data for the
chatbot.

• Sometimes students simply want contact details of a staff
member or department. The chatbot should be able to pro-
vide those contact details, if not then the chatbot should be
able to provide information on where the information can
be found. Such information changes frequently as different
staff members may have been appointed to different roles
with each year, so it should be possible to change this infor-
mation with ease. Providing information of where to find the
information may be a safer option as it is less likely that the
location of where the information is placed changes. This is
an area of improvement for future iterations.

• Each registered student will have a history of their chats
stored on the database. Chats are stored in an array of strings
as one of the attributes of the Users relation. Chats are stored
prefixed with “usr_” or “bot_” to differentiate between input
by the user and chatbot responses. These chats should be
secured to ensure data privacy.

3.1.2 Non-Functional Requirements.

• Quick response time . Users should get replies immedi-
ately, they should not have to wait, as they must with emails.

Every response should take no more than 3 seconds. How-
ever, several factors should be considered, response time
could be affected by speed of the internet or network cover-
age as well.

• Short responses . Users should not feel discouraged to read
responses sent back by the chatbot. Ensuring that the re-
sponses are of reasonable length is imperative for how often
users engage with the bot. if a query requires a long response
such as a whole page in a handbook then the user will be
given the link to the UCT website where the information is
stored or be referred to the handbook. The chatbot is meant
for short simple queries.

• Capacity . The number of previous chats stored is depen-
dent upon the size of the server as all the chats are stored
in the database. No information is stored locally (in user’s
device). Currently all chats are in text format therefore they
occupy relatively little space. It is not expected that each
user will be conversing with the chatbot frequently, there-
fore there will be enough space for chats sent within the
students’ time at the university.

• Grammatical correctness . Text input by the user does not
have to be spelled correctly or grammatically correct. The
input also does not have to match sentences in the training
data exactly in order for responses to be correct. The chatbot
will use pattern matching (further described in the following
section), so if the query has the expected key words then a
response will be generated.

• Reliability, maintainability, and availability . The bot
will be available for users at all times (“24/7”). It may not be
available when the website is undergoing maintenance or
data is being updated. Maintaining the chatbot is a challenge
because one must ensure that the dates and information the
system uses are accurate and relevant to the current year.

3.2 Design Plan
3.2.1 Architecture. The system follows aModel-View-Controller

architecture. The class diagram in figure 1 shows the objects that
make up the chatbot system, back-end. The actual view of the sys-
tem is what is displayed on the website UI, in this context, the view
is the object that is responsible for accepting user input from the
front end and returning responses, Chatbot. The Chatbot object is
the Controller (in context of the website), it is only responsible for
accepting texts and returning the response generated by the model
to the front end.

The Bot, PreProcessor and Trainer objects make up the Model
aspect of the system. information is passed to the Bot, which then
uses the trained neural network model to generate a response. Pre-
Processor cleans user input off punctuation marks or any acronyms
or derived words. The Trainer object loads the trained neural net-
work, processes the cleaned input, and provides a response that
is then sent to the Chatbot object (Controller) to be sent to the
view. DatabaseManager is responsible for any queries made to the
database, either to save chats or get information.
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Figure 1: Class Diagram presenting architecture of the chatbot.

The user is abstracted from the logic of the system. All informa-
tion required by the view can be acquired through the controller.
Each object has one responsibility. Trainer is only responsible for
creating or loading the neural network for language processing.
PreProcessor is only responsible for processing user input before it
is passed to the neural network. Using a layered architecture makes
the system more maintainable as changing one layer (i.e. View,
Model or Controller) has less consequence over the whole system.
For example, the view can be changed with little to no consequence
to the model.

3.2.2 Iterative Development Cycle. The system was developed
through an iterative process. It is an evolutionary system which
evolved with each iteration. An iterative, agile process was more
favorable to accommodate for changing requirements during the

development process. Developing the system iteratively also makes
testing easier, the system is tested after each feature is implemented
to ensure that correctness is maintained.

An evolutionary prototype was created for the first demonstra-
tion. The demonstration had positive feedback. An evolutionary
prototype was preferred to a throw away prototype because it
would be easier to refine a working system based on the feedback
rather than starting from scratch again [3].

There are six steps in the iterative development cycle. Planning,
Implementation and Testing are repeated with each iteration and
Initial Planning, Deployment, Evaluation are only done at the be-
ginning and end respectively [16].

• Requirements gathering/Initial Planning : The initial
phase entailed gathering requirements from the supervisor
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(client) through Microsoft Team Meetings. A virtual student
advisor is a user-centred system therefore interviews were
held with stake holders, i.e., Student Advisors. This helped
with the initial understanding of how the system is expected
to behave. It was assumed that requirements would change
so the system was started with that in mind. Requirements
were reviewed with each iteration. The following three steps
were carried out with each iteration.

• Planning : This included choosing the appropriate features
to be implemented in that iteration. Priority was placed on
features based on how useful they would be to students.
The main goal of the system is to create a chatbot that can
produce results (ability to converse). Each iteration was a
week long. Time was fixed and limited, so it was important
to stay on schedule.

• Implementation : The feature(s) chosen in the planning
step are then coded into a working program then integrated
with the chatbot system. Some features are more complex
therefore sometimes an iteration would have one feature
and some iterations have multiple. For example, implement-
ing a working Deep Neural Network model occupied an
entire iteration compared to data pre-processing which was
implemented with other features.

• Testing : Testing was done bothmanually and automatically.
New unit test cases had to be written with new classes and
behaviours. However, there needed to be testing of the over-
all system to ensure no new errors were introduced into the
system with new features. The chatbot is mostly back-end
therefore white-box testing was most appropriate as it tests
the internal intricacies of the system. testing was done using
unit tests for all methods. After successful testing, planning
for the following iteration begins.

• Deployment : Deployment to a work environment in this
case means producing a working system that will be demon-
strated to the supervisor and second reader. Thus, there are
two deployments for this project. First deployment was to
demonstrate software feasibility and second is to demon-
strate a fully functional system.

• Evaluation : The product is evaluated by users, students.
the system may have to be updated based in user’s feedback
and experience. Evaluation is also by the supervisor to see if
the system meets the expected requirements.

4 SYSTEM DEVELOPMENT AND
IMPLEMENTATION

4.1 Development Software
For implementation of the chatbot, several factors had to be con-
sidered when choosing the technologies to be used. The chatbot
would have to access the database therefore the language must be
efficient with databases. The chatbot would use Machine Learning
so it would be beneficial to choose a language with good support,an
established community and various libraries, for Natural Language

Processing models. Python was chosen as the language to imple-
ment the chatbot. It is an established programming language with
a large community and libraries. There are several libraries that
have been created for Natural Language processing purposes. The
main NLP libraries used in this project are NLTK, TFLearn, and
NumPy. The Natural Language Toolkit (NLTK) provides libraries
and programs for processing human language. NLTK also provides
test data that can be used to test the chatbot. Another library used is
TFLearn, a TensorFlow Deep Learning Library. TFLearn is an exten-
sion of the tensorflow framework, a software library for machine
learning and artificial intelligence mostly used for implementing
deep neural networks. TFLearn provides a higher-level Application
Programming Interface (API) which makes is easier to use. These
libraries make it easier to implement the neural network model that
will be used to match a text to a pattern and provide the appropriate
response. Python’s Flask will be used to build the chatbot into a
web application with an endpoint that the main website can make
POST requests to.

In addition to the language model, the application will also use
regular expressions to match queries to responses. This is mainly
used for answers that can be fetched directly from the database such
as course names, prerequisites, course codes or course descriptions.
Using regular expressions has advantages and disadvantages. It en-
sures more correct answers are generated as information is fetched
from a database rather than using the model which attempts to
provide the correct answer. The downside being that it provides
a potential extra step for input which will not match the regular
expressions which leads to slower responses.

Training data is stored in JavaScript Object Notation (JSON)
format. This provides an easy way to access the data. Python has a
JSON library which provides an efficient and simple way of loading
and processing a JSONdocument. JSONuses human-readable text to
store and transmit data. This choice was also better so the document
could be stored in the MongoDB database, a document database
that uses JSON to represent data. The files are lightweight and thus
make it efficient to load and process large amounts of data. This
is favorable as the chatbot needs thousands of sentences to learn
questions and the appropriate answers. Questions and answers
are stored in a pattern-response format. Each pattern has a tag,
e.g., “greetings”, “registrationForm”, “uctLocation”, etc. There are
hundreds of tags and thousands of questionswhich the bot is trained
on. The JSON file is arranged as follows:

1 {
2 "intents" : [
3 {
4 "tag" : "<intentName>" ,
5 "patterns" : ["<questions_pattern>"] ,
6 "responses" : [ "<responses_pattern>"]
7 }
8 ]
9 }

Listing 1: JSON representation of the training data
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MongoDB, a NoSQL database, was chosen to store information.
A NoSQL database is preferred because data does not have to be
strictly structured as in SQL, which makes it easier to store, update
or query. It is highly efficient and enables easy updates to the
schema design if the need arises.

Potential vulnerabilities of the development process are integra-
tion of the chatbot into the overall virtual student advisor website.
Training the chatbot could take a really long time which would then
affect the progress of the project. Changing requirements could
also have affected the progress, however, an agile approach made it
possible to adjust to those changing requirements.

4.2 Classes
4.2.1 ChatApp. It is the controller class that connects with

the View and Model. However, relative to this paper ChatApp also
behaves as the display. Informationwhich would be sent to the View
is displayed on terminal. The ChatApp object accepts user input
passed in from the View (Website User Interface). It sends the input
to the Model and receives a response back. The response would
then be passed on to the View to be displayed to the user. The main
behaviour of the ChatApp class is to display the previous chats and
the current chats. It also uses functions of the DatabaseManager
class to get previous chats to be displayed and to save chats of the
current session.

4.2.2 Bot. Bot uses the trained model to create a response for
that particular sentence using the saved neural network model.
The saved model is fetched from memory when a chat session is
started. Main behaviour of the class is getResponse which accepts
a sentence (user input) and returns a response (bot response).

4.2.3 PreProcessor. It is responsible for cleaning up training
data before it is used to train the model. Cleaning up the training
data refers to removing trailing spaces, removing some punctuation
like question marks, replacing words with their root/stem words,
and replacing any acronyms with the complete words. This helps
with removing any inconsistencies in sentences, it also makes it
easier for the model to recognize patterns and match user input to
appropriate responses.

4.2.4 Trainer. This object’s main responsibility is using the
TFLearn library to initialize the deep neural network, with its hid-
den layers and output layer. The hidden layer is tested with different
number of neurons and batch sizes to see which yields the best re-
sults. As the training data is still growing, adding possible questions
and answers, the actual numbers are still being tested. Currently
the hidden layer has 8 neurons. If the model has not been trained
yet or data had changed then it will be trained again, else the model
is loaded from memory.

4.2.5 DatabaseManager. Responsible for establishing a con-
nection with the database and querying the database for informa-
tion or previous chats. Current operations of the DatabaseManager
are getChats, saveChats, getMajor, getCourse, getProgram. The
chatbot uses these operations to get information from the database.

Figure 2: Flow chart showing the flow of the chatbot system.

Figure 2 shows the flow of the program. When a user opens the
program, a new chat session is started (Appendix A.2). The previous
chats are fetched from the database and displayed for the user to
see. Previous chats can only be fetched if the user is registered, else
the chats are not saved at all. The user can begin with the current
chat session. The user gets a response after each entry. Inputs and
responses are saved immediately, this ensures that if the program is
unexpectedly stopped the chat history will still be available. If the
user wants to end the chat session then the user enters “quit”. This
is for the terminal version. On the website the user would simply
cancel the chat window or bubble.

Appendix A.2 is a flow chart of what happens when a chat session
is created. The PreProcessor loads processed data from memory or
processes the data if the file is not found and saves it. Training data
is then use to either train a new model or load a saved model from
memory.

Appendix A.1 is a screenshot of the working chatbot on the web-
site. Each chat is displayed with a timestamp to assist users in
recalling when texts were exchanged. To fetch chat history from
the database, MongoDB is queried to search for the user’s chats
using the student number as the unique key. The query is shown
in Figure Example of query made to the Mongo database..
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Figure 3: Example of query made to the Mongo database.

4.3 Integration
The goal of the chatbot is to be used in website therefore it has to be
integrated into the website. For the front-end to be able use the chat-
bot, POST requests are sent to the chatbot endpoint (see figure Code
snippet of how POST requests are processed and what is returned.)
using a unique Unified Resource Allocator (URL). The chatbot app
was deployed on Heroku which then generated a unique URL,
https://advicechatapp.herokuapp.com/chat that can be made to the
chatbot. The URL accepts a student number, if there is one, and
the user input in JSON format and returns the generated response
together with the student number in JSON format. Requests are
transported over a secure communication (Hypertext Transfer Pro-
tocol Secure- HTTPS) which offers more data protection compared
to regular Hypertext Transfer Protocol (HTTP).

Figure 4: Code snippet of how POST requests are processed and what is
returned.

4.4 Testing
The chatbot was tested together with the virtual student advisor
website by users, students and student advisors. users were asked
to give feedback on the appearance, quality of responses and ease of
use of the system. The system was also tested for average response
time of each user input. As this is a chatbot meant for people,
whether or not time was satisfactory was dependant upon each
individual. The Python time library was used in automated testing
as it yields more accuracy compared to a person with a timer. The
chatbot was also tested for accuracy with unseen questions.

Users completed the tasks and filled in the google form or an-
swered questions based on the experience. The tasks and questions
that people had to complete are listed under the Findings section
along with the results.

5 RESULTS AND DISCUSSION
5.1 Findings
Ethics clearance from the university was first acquired prior to
testing. The clearance permitted for testing that can only be done
remotely (virtual meetings) and only on individuals of the univer-
sity of cape town. User’s identity was to remain anonymous as it
would not largely affect the results of the system. None of the in-
terviews would be reproduced or published along with the research.

Testing was conducted on nine individuals. User testing was car-
ried out over virtual meetings on MS Teams. Number of questions
and tasks had to be limited to due to time. It is important that users
stay focused fatigue could affect their view of the system. The tasks
and questions were as follows:

(1) Please try to find the chat bubble that lets you talk to the
chat bot.

Table 1: Task 1 results.

Response Percentage (%)
I found the chat bubble 88.9
I don’t know where to look 11.1

(2) Please Rate the Difficulty of the Task Above (Finding the
chat bubble). Ranked from very easy (1) to very difficult (5).
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8
8

0 0 0

1

Scale

N
o.
of
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Figure 5: Bar graph showing results of the above question

(3) Is the chat bubble where you expected to find it?
Table 2: Question results

Response Percentage (%)
Yes 66.7
No 33.3

(4) Try asking the chatbot using a fixed structure (Appendix
A.4).
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Table 3: Suggested structure task

results

Response Percentage (%)
Could use the suggested structure 66.6
Could not use the structure 33.3

(5) Try to ask the bot about the NQF credits for MAM1000W.
(Check boxes)

Table 4: table showing results of
finding MAM1000W credits.

Option Percentage (%)
The bot gave the correct answer 66.6
Did not get the correct response 44.4
Found it difficult to ask question correctly. 33.3

(6) Now ask the chat bot any question(s) of your choice. (Did
you get a response to the question you asked?).
• Some of the random question included: “What is astro-
physics”, “Who is the course convener for Computer Sci-
ence” and “contact student advisor”.

Table 5: Results, when a random
question was asked.

Response Percentage (%)
Received a correct response 77.8
Did not get a correct response 22.2

(7) Are you satisfied with how fast the chat bot answered?.

Figure 6: percentage of users satisfied with response time

(8) Now please log out of your account and then log back in.
(Can you see your previous chats with the bot?).

Figure 7: success rate of chat history recovery

(9) Do you have any suggestions for the chatbot?
• Suggestions included:
– Auto-correct.
– Auto-Complete.
– Considering Typing errors.
– Keeping track of frequently asked questions and auto-
matically updating the FAQ page on the website.

– Better suggestions.

Appendix A.3 shows results of the training phase. With the cur-
rent model, the best results came from small training data with 8
neurons of the hidden layer. The ideal accuracy is above 95% for a
chatbot. It is expected that the accuracy will improve when all the
data has been gathered and curated. This section will be expanded
and tested more when user testing is complete.

5.2 Discussion
User testing and automated testing yielded a variety of interesting
results. The User Interface design of the chat bubble was successful
as users could easily identify the chatbot icon and were able to use
it. It is worth noting that making the icon bigger could improve
the experience as more users would be drawn to it and utilize its
functionalities.

The chatbot’s response time was excellent. All users were sat-
isfied with the speed at which the chatbot responded. It is worth
noting that this could also be affected by the user’s quality of in-
ternet as the website sends a POST request to get a response from
the chatbot. If a user has poor internet it may result in the chatbot
giving slower responses.

Users were provided with suggestions on types of questions to
ask and how to ask those questions. This is not mandatory; it is
simply suggestions to ensure users get the best out of the chatbot.
Some users found using the chatbot was easier after looking at the
document whilst some found that looking at the suggestions was
an extra obstacle to using the application. It is possible that the
suggestions may have added a layer of complexity which made
using the application even harder. This would need more extensive
user-testing to find out if users find the suggestion helpful, if the
suggestions could be simplified or, if the suggestions could be pro-
vided in a different manner. Suggestions could be provided as auto
complete, as a user begins asking a question that could be answered
by the database then the suggestion could be displayed to make it
easier for the user.

Providing the correct answer is one of the most vital, if not the
most vital, aspects of any auto responsive application. Automated
testing showed that the chatbot was 90% accurate with unseen data
(Appendix A.3) but, this was significantly less with user testing.
The chatbot could answer 77% of random questions and only 44.4%
of the questions asked using the suggested structure (NQF Credits
for MAM1000W). However, accuracy of results improved as the
users continued to interact with the chatbot and began to under-
stand the suggestions more. The poor results can be attributed to
several factors: incorrect input (i.e., spelling), misunderstanding of
the instruction document and inputs including special characters.
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Admittedly, these problems could have been accounted for in devel-
opment with features such as auto correct and recognizing special
characters. These problems can be addressed in future iterations of
the system. User input should be processed more thoroughly before
it is passed to the model and the model should also account for a
range of possible user errors.

The chatbot was also successful in storing users’ previous chats
and displaying the history of chats whenever the user accessed the
chatbot. A suggested feature related to chat history is the ability to
“clear history”. Users should have the ability to delete a chat or all
previous chats if they want to. The chats could also be displayed
with time stamps to help users keep track of when they sent queries.

It is a secure application. This is made possible by the using
a reputable and secure cloud platform hosting system, Heroku.
Additional security is offered through using HTTPS to transport
information between web applications rather than HTTP. When-
ever the chatbot makes web searches, the user will only receive
links limited to the UCT domain, this protects against potential
malicious software in third-party websites. Data protection is also
provided in the database, user’s passwords are stored in encrypted
format meaning even an administrator cannot view the password.

In comparison to existing virtual student advisor automated sys-
tem like those by Herry D.Wijaya et al. [20] and, Bhavika R. et al.
[13], and Suvethan et al. [17] it was a successful implementation.
The application is not only capable of small and short "small-talk"
like that by Herry D.Wijaya et al [20] but also capable of answering
simple queries meant for University of Cape Town. The language
base was also implemented in the South African dialect and thus
catered for most UCT students. It is an efficient chatbot that stu-
dents can use to get results immediately. the drawbacks of the
system are the accuracy of the responses given- needs much im-
provement, managing incorrect grammar or spelling and currently
the application is limited to Science and Commerce. the system also
needs an application to manage information used by the chatbot
and keep it up to date.

The use of a database to store information from handbooks made
it easy to understand queries and efficiently retrieve information
from the database through pymongo functions.

With a few more iterations and improvements this chatbot could
be a very effective feature of the virtual student advisor website.
Users would be able to ask any question and get instant responses
rather than searching for the information throughout the site. Rela-
tive to the site, the chatbot could also be a navigation tool of where
to find information or sections of a site. The chatbot has great poten-
tial, not only within the site, but also as a stand-alone application
that students can use. The application could have a mobile version
which would further simplify interaction with the chatbot, espe-
cially for students. Use of the chatbot could significantly decrease
the number of queries Student Advisors receive and thus give them
additional time for complex queries.

5.3 Future Work
Several improvements can be implemented to make it faster and
easier to use. The chat box on the website could be editable by
the user to fit their own preferences. The chat bubble could be
expandable to fit the entire screen, this would make it easier to
read current and previous chats at the same time. The regular
expressions used to match queries to responses could be improved
to account for incorrectly spelled words, to a degree, and sentences
with similar key words or structure. More training data would lead
to better responses. The more data that the chatbot could train on,
the more queries the chatbot will be able to answer. Data gathering
is an intensive process that requires structure and time, if there
is a dedicated section then more questions and questions can be
gathered.

6 CONCLUSIONS
A chatbot is an automated conversational agent that can be utilized
to assist users instantly. In the beginning we identified that stu-
dent advisors are faced with the burden of responding to too many
queries and students do not get responses immediately. The project
aimed to develop a conversational agent capable of immediately
responding to simple student queries about academics and poten-
tially university as a whole. The developed chatbot was successful
in responding to simple queries about academics effectively and
efficiently. The chatbot could not effectively respond to random
queries about university as a whole and thus needs much improve-
ment in this area. It can best be used for simple frequently asked
queries. Using the chatbot as per the suggestions would also greatly
improve the experience. Testing showed that the chatbot was rel-
atively successful. However, it is still in need of much improvement.

Suggestions for the future would be to split such a project into
two sections, a data gathering section and an agent development
section. This would allow for more time to be spent on each section
and thus yield better results. User testing should also be replicated
multiple times as it provides quality and actionable feedback. More
research on previous implementations of chatbots and how to op-
timize them would also improve it. Also develop a User Interface
that would make it easy for administrators or Student Advisors to
input requirements that have changed from previous years. Extend
the system to work for other faculties, departments at UCT and
potentially other universities.
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CHAT BOT SUGGESTIONS 
Example: “careers in major_name” -> “careers in computer science”.

CAREERS 

ASSOCIATED MAJORS 

Careers in major_name. 

SALARY RANGE 

Salary range for major_name. 

major_name salary range. 

DESCRIPTION 

major_name description. 

ALL 

What is major_name. 

COURSES 

COURSE CODE 

Course name of course_code. 

What is the course code for course_name? 

NQF CREDITS 

How many credits does 

course_name/course_code have? 

course_name/course_code NQF credits. 

NQF credits for course_name/course_code 

NQF LEVEL 

What is the NQF level of course_name/ 

course_code. 

course_name/course_code NQF level. 

NQF level for course_name/course_code. 

GLOSSARY 

Describe word 

MAJORS 

What are the majors offered at UCT? 

First year courses of 

major_name/major_code 

PROGRAMMES 

Length of programme_code 

Minimum credits for programme_code. 

STUDENT ADVISORS 

Contact details for name surname. 

name surname contact details. 

name surname email address. 

I need a student advisor. 
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