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Abstract
In this paper a survey of the state of machine translation (MT) is

conducted with a focus on neural machine translation (NMT) and

statistical machine translation (SMT) for the low resource language

setting. As such an overview of both the Transformer variant of

NMT and phrase-based SMT are detailed, as they are most powerful

machine translation models for the respective machine translation

methods. A case shall be presented for the use of SMT in the low

resource setting, despite the gains derived fromNMT in comparison

with SMT in the high resource setting due to the significantly

stronger results observed for SMT as opposed to NMTwhen trained

on minial corpora. Additionally, various methods for improving

low resource MT are presented, including modifying both NMT and

SMT models, using pivot languages for translations and methods

for increasing available parallel corpora. Additionally, this paper

will provide an overview of the existing research regarding machine

translation for the morphologically rich Nguni language group of

Southern Africa in particular, and the difficulties that exist therein.
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1 Introduction
In a globalising world, interlingual communication has become of

increasing importance to ensuring economic inclusion and allowing

individuals from various parts of the world to work together effi-

ciently. Thus, whilst machine translation is not new it has become

increasingly more relevant as a means to facilitate this interlingual

communication.

Machine translation refers to the use of a computer system to

translate some corpora from a source language eg. English to a

target language eg. IsiZulu [12]. Great strides have been made in

this discipline using neural network architectures to make trans-

lation more accurate. However, much of the work in this field has

been limited to high resource languages.[7, 10, 14, 17, 21]. High

resource languages are those languages for which large amounts

of text available to train models. The same cannot be said of low

resource languages. This is the case when analysing machine trans-

lation for the Nguni language group of South Africa. The Nguni

language group, including isiZulu and isiXhosa, constitutes the

most widely spoken language group in South Africa, with 41.1% of

South Africans speaking isiZulu or IsiXhosa as a home language

[1]. However, despite their prevalence in everyday South Africa,

Nguni language resources are still limited online, and as such par-

allel corpora for Nguni languages is minimal, limiting research into

machine translation for this context and access to the majority of

knowledge available on the web.

2 Evaluation Methods
Translations are evaluated along two main axes: adequacy and flu-

ency. Adequacy refers to the level at which a translation is able to

capture the meaning of a source sentence. This includes the ability

to accurately capture tone. Fluency refers to readability of the trans-

lation in the target language. This includes being grammatically

correct, clear and natural [22]. There are two main classes of evalu-

ators used to assess translation quality, namely human evaluation,

and automatic evaluation.

2.1 Human Evaluation
Human evaluation provides the most accurate evaluation of trans-

lations. This method makes use of people to evaluate translations

along the dimensions of adequacy and fluency by either rating

translations out of some range or ranking a set of translations in

order from best to worst [20, 22]. This method whilst providing the

most accurate evaluation, can be time consuming and expensive.

2.2 Automatic Evaluation
BLEU

BiLingual Evalution Understudy or BLEU is the most widely used

evaluation metric for machine translation and makes use of a com-

parison between the machine translation system’s output and, some

human generated reference translation [9]. BLEU scores are evalu-

ated along 3 main factors: (i) the translation length in comparison

with the reference length, (ii) the words used in the translation

in comparison with those used in the reference translation and

(iii) The worder order in the translation in comparison with the

reference translation. These comparisons are done by comparing

the n-grams of the translations and the reference translations [9].

For a corpus, the BLEU algorithm counts the number of matching

n-grams and returns as a score for the model a weighted average.

Scores range from 0 for the lowest quality translation models, and

1 for highest quality or perfect translation models. Whilst BLEU is

useful, it does fail to evaluate coherence in a document and does

poorly when evaluating very different kinds of systems eg, Human-

aided translation versus SMT [22].



Fezeka Nzama

NIST

The NIST metric, like the Bleu metric, makes use of n-gram com-

parisons between a reference translations and machine translations

to determine the quality of a model. However, the NIST score differ-

entiates itself from BLEU by scoring rarer segments higher weights.

This aim here is to account for diversity in informational of trans-

lated texts [20].

Embedding-Based Methods

These methods try to improve on the BLEU metric by allowing

translations that make use of synonyms [22]. Thus where the BLEU

metric expects that a machine translation matches a reference trans-

lation exactly, embedding based methods allow for differences be-

tween the machine translation and reference translation arising

from synonym use. These metrics do this by collecting reference

translations and candidate machine translations which have been

previously human rated for their quality in comparison to the ref-

erence translation and using these as a basis for new machine

translations. Alternatively, where human labelling isn’t available

quality is determined based on the similarity of the reference and

machine translation embeddings. Based on the earlierMETEORmet-

ric, some examples of embedding based methods include BLEURT

and BERTScore [20, 22].

3 Training Data in the low resource setting
The data required to train a machine translation system is referred

to as parallel corpora. This is text which can be found in two or

more languages, whose sentences can be aligned as a source and

translation pair. While online repositories of parallel corpora do

exist, for low resource languages these databases either do not exist,

offer small amounts of parallel corpora or have low quality transla-

tion pairs. [4, 9, 11, 18]. A number of methods have been proposed

to overcome this challenge.

One method suggests scrubbing the internet for webpages which

are translations of one another. Using the structural translation

recognition acquiring natural data or STRAND architecture, a tool

may be implemented to find pages that may be translations of each

other. Thereafter generating candidate parallel sentences and filter-

ing out non-translation pairs [19]

Another method suggests the use of a pivot language. This involves

translating some source language S to an intermediary language I

and from that language I to the target language T [10]. An obvious

constraint of this method is that for the pivot language to be effec-

tive a large number of parallel corpora between language I and S as

well as language I and T must exist. Moreover, a weak translation

to the pivot language from the source or from the pivot language to

the target language will negatively affect the translation as whole,

whilst doing multiple translations increases the probability of trans-

lation errors arising [20].

Imankulova et. al suggest the use of a filtered pseudo-parallel data

set as training data [9]. Creating this data involves using neural

machine translation techniques to do a translation from a mono-

lingual corpora in the target language to the source language, thus

creating a synthetic source sentence. Thereafter, a translation from

this source sentence into the target sentence is done to create a

synthetic target sentence. The original target sentence and the syn-

thetic target sentence are then compared. Where similarity is found

to meet some threshold, the target-synthetic source sentence pair

is retained, creating more parallel data [9]. This results in improved

translation quality for low resource languages.

4 Neural Machine Translation(NMT)
Neural Machine Translation or NMT is the current state of the art in

machine translation. This method makes use of the neural network

architecture, taking in a set of inputs to predicts outputs [13, 24].

4.1 Encoder Decoder Approach
The most common approach to Neural Machine Translation is the

encoder-decoder model. The vanilla architecture encoder takes in

an input sequence in the source language and outputs a context

vector, representing the essence of the original input. This context

is then used as an input to the decoder, which generates an output

sequence in the target language of translation taking into account

history of the output sequence already seen by the decoder. [13, 24].

This is incapsulated by the conditional probability below:

𝑝 (𝑦 |𝑥) =
𝑇∏
𝑡=1

𝑝 (𝑦𝑡 |𝑦1:𝑡−1, 𝑥1:𝑆 ) (1)

The goal of this encoder-decoder mechanism is to maximise the

conditional log-likelihood

max

𝜃

1

|𝑥 |
∑︁

(𝑥,𝑦) ∈𝐷
log𝑝𝜃 (𝑦 |𝑥) (2)

with D representing the set of paired training sentences and 𝜃 the

set of parameters to be learned [3, 13, 23].

4.2 Attention
Modern architectures use an attention mechanism to calculate this

context vector. This attention mechanism uses all the input word

representations and previous decoder hidden state to generate a

context vector for the next word to be decoded by the network.

The attention mechanism aids in computing a context vector that

is the weighted sum of all vectors representing the input words in

the encoder. These weights assigned to each word differ depend-

ing on the relevance of an input word to the current token being

generated. This leads to the generation of a dynamic context vector

that seeks to exploit the strength of the association between the

decoder state and each of the input words to make an accurate

translation.[13, 23, 24]. This attention mechanism than can be ex-

pressed mathematically, using the scaled dot-product method, as

follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(
𝑄𝐾𝑇

1√
𝑑𝑘

)
𝑉 (3)

where Q is a matrix of query parameters which correspond with

the word for which the attention is being calculated, K is a matrix

of key parameters which represent the various word embeddings,

and V is a matrix of values also representing word embeddings.
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The multiplication between Q and K yields an alignment score

which is scaled down by a factor of
1√
𝑑𝑘

. This value is than used

as a weighting on V producing a weighted context vector. Whilst

additive attention and dot product attention are both commonly

used, dot product attention is faster and more space efficient and

thus preferred [13, 23].

Taking into account a dynamic context vector, Bahdanau et al. [3]

modifies the encoder-decoder conditional probability as follows:

𝑝 (𝑦 |𝑥) =
𝑇∏
𝑡=1

𝑝 (𝑦𝑡 |𝑦1:𝑡−1, 𝑥1:𝑆 ) (4)

=

𝑇∏
𝑡=1

𝑔(𝑦𝑡 |𝑦1:𝑡−1, 𝑠𝑡 , 𝑐 (𝑥)) (5)

Where g is a nonlinear function resulting in a probability of𝑦𝑡 and 𝑠𝑡
is the hidden state of the network. This model can be implemented

using recurrent neural networks, long short-term memory net-

works and gated recurrent neural networks. However, transformer-

based implementations are currently the preferred form of NMT

[3, 23].

Self-Attention

Self-attention is a variant of the attention mechanism in which all

the keys, queries and values come from the same input. The aim

of the self-attention mechanism is to relate some input sequence

with elements of itself. For example, given the following sentence

“Jess likes her red hat”, when calculating the self-attention for the

query word “hat” this mechanism would seek to describe how

strongly related with each word individually the word “hat” is. This

contextualises the word within the sentence. Thus, an expected

output might result in a higher weighting for the word “red” as

relating to the hat [13, 20, 23].

Multi-Head Attention

Multi head attention uses multiple layers of attention with, project-

ing each query and key-value pair linearly multiple times. Once

the independent attention outputs are found they concatenated

and linearly transformed into some expected vector representation.

This allows for the model to learn from different representational

subspaces at different positions simultaneously.[3, 23].

4.3 Transformers
Transformers have become the state-of-the-art NMTmethod as they

are quicker to train due to their parallelisability and outperform

their predecessors due to their ability to offer an infinite window

size where the model can draw on all the previous words in the

model, as well as the input representations to derive the next output

for the decoder. [13, 23]. The multi-head attention model is key

to transformer functioning, whilst transformers also use attention

in a number of ways [3] . Self-attention mechanisms are included

in the encoder and decoder, allowing for self-contextualisation of

words within each sub-network. Thereafter, a general attention

mechanism is used to link each output position in the decoder to

all input sequence positions, contextualising the output in terms

of the input. [23]. This allows the model to learn from the various

parts of the model individually, eliminates the need for recurrence

within the model.

4.4 NMT for low resource and Nguni languages
Whilst NMT outperforms SMT when trained on large data sets,

Koehn et al. found it to perform substantially worse than SMT

when trained with corpus of a few million or less words using an

attention-based encoder-decoder network [14]. Another alternative

approach suggests the use of a universal neural machine, which is

trained on a variety of languages, to avoid overfitting to limited

data, whilst increasing the available parallel corpora for training

purposes [21]. Where the languages a similar, such as Nguni lan-

guages, with shared surface forms for words and sentence structure,

this method can yield substantial translation quality improvements.

In addition to parallel corpora size, morphology also seems to play

a part in NMT, with agglutinative languages, such as Nguni lan-

guages, showing less favourable results than Afrikaans, which is

not agglutinative, when translated from English, despite have less

training data [17].

5 Statistical Machine Translation(SMT)
Statistical machine translation or SMT grew from the 1990s as the

internet facilitated access to large quantities of written text from

which statistical methods could learn to perform translations [20].

The most widely used form of SMT is phrase based SMT that seeks

to perform machine translations at a phrase level. This method

outperforms all other SMT methods[? ]The fundamental idea on

which SMT is built is that given a list of parallel corpora and a par-

ticular source sentence S, then there exists in the list of translation

sentences one translation that has the highest probability of having

been derived from the source sentence S. Mathematically, this is

expressed as the conditional probability Pr(T|S) [20]. Using Bayes

Theorem this conditional probability can be expressed in terms of

Pr(S|T) using the following formula:

𝑃𝑟 (𝑇 |𝑆) = 𝑃𝑟 (𝑇 )𝑃𝑟 (𝑆 |𝑇 )
𝑃𝑟 (𝑆) (6)

Where the Pr(T) is referred to as the language model for the target

language and Pr(S|T) is the conditional probability that S is the

correct source sentence given the translation sentence T, referred

to as the translation model. The aim here is to maximise Pr(T|S)[6].

As the denominator is not dependent on S, the formula can then be

simplified to the following:

𝑇 ′ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑇 [𝑃𝑟 (𝑇 ) ∗ 𝑃𝑟 (𝑆 |𝑇 )] (7)

This model combining the language and translation models as

shown above is referred to as the noisy-channel model[12].

5.1 Language Model
The language model is expressed in the Pr(T) and works to capture

information about word ordering within a target language sentence.

Using substantially large monolingual corpora for language mod-

elling leads to higher translation quality than a model trained with
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a smaller data set of monolingual corpora, given both models are

trained on an equal size parallel corpora dataset[12]. The major two

major subgroups of language modelling techniques are outlined

below.

Back-Off N-grams

The most commonly used method for deriving this language model

is the Back-Off N-grammodel [24]. This model uses n-grams, where

the ‘n’ refers to the probability that a group of words appears as

the last n words in a sequence. N-1 words are kept in the mem-

ory of the model and used as the basis on which the conditional

probability is calculated. For example given the sequence English

phrase sequence, “Children go”, and two possible words “cat” and

“home”, Pr(home|Children go) would likely be higher than Pr(cat|

Children go) based simply on the grammar rules and convention of

the languages, and thus the likelihood that the sentence “Children

go home” appear more often in text than “Children go cat”. This

is example of an N-gram with N = 3 [20]. N-grams have proven to

be highly effective where large sets of training data are available,

whilst also being advantageous due to their simplicity. However,

this method does suffer where there is limited training data, as a

grammatically and semantically correct ordering of words could

have a low probability of appearing in a sequence due to it being

unseen in the training data. This can lead to inconsistency in trans-

lations. Additionally, the N-gram model is very memory intensive

as it stores the probability of every n-gram in the training data [2].

Continuous-Space Models

Continuous-Space Language Models (CSLMs) provides an alter-

native method for language modelling that is also shown to lead

to better BLEU scores for SMT than BNLMs when trained on the

same size corpus [24]. This alternative method is most commonly

implemented using neural networks. First proposed by Bengio et. al.

in 2003, this method seeks to represent words as points in a vector

space according to their features, such that the model takes into

account larger contexts ie. longer sequences of words or sentences,

as well as the grammatic and semantic similarity of words in a

vocabulary [5? ] . The idea is that given a sentence, eg. “The dog is

outside”, the word “cat” could sensible be a substitute for dog as the

two words perform similar semantic and grammatical functions. As

such, these words would be located near each other in the vector

space. Thus, using a neural network, the probability of seeing the

word “cat” in the sequence would be similar to that of seeing the

word “dog” in the sequence. This generalisation allows for unseen

sequences to carry similar probabilities to seen sequences [5? ] .
However, due to the computationally heavy nature of training these

neural networks, CSLMs continue to be underused in SMT.

5.2 Translation Model
The central idea used in the translation model for phrase based

SMT is that of associating a sequence of n words from the source

language to another sequence of m words from the target sentence.

As such a phrase in the source language can be linked to a phrase

in the target language[20].

Word-Level Alignments and Word-Based SMT

The simplest approach to the translation problem is at a word level.

Given a source and target sentence, this approach seeks to find

a translation in the target language for each word in the source

sentence[6, 12]. This is done by analysing a body of parallel corpora

and developing a probability distribution for the occurrence of a

target word, in relation with a source word. Thus, given some target

word T, if in the body of parallel corpora on which the model is

trained a particular source word S appears most often in parallel

sentences to those containing the word T, then using a frequency

distribution table some conditional probability Pr(S|T) can be deter-

mined which is maximises the likelihood of the words S and T being

translations of each other [6? ] . This mapping of target words to

source words is referred to as word level alignment. An extension

of this concept then allows for the alignments of source words

to 0 or more words in the target language, due to the vocabulary

differences existing between languages. This idea lends itself to the

IBM Model 1, which is word-based translation model defined using

the following formula

𝑝 (𝑇, 𝑎 |𝑆) = 𝜖

(𝑙𝑇 + 1)𝑙𝑆

𝑙𝑆∏
𝑗=1

𝑡 (𝑆 𝑗 |𝑇𝑎 ( 𝑗) ) (8)

𝜖

(𝑙𝑇 +1)𝑙𝑆 works as a normalisation factor ensuring that the sum

of all possible probabilities for translation TT and alignment a

is one. The second half of the formula is the product of all the

word-level translation probabilities. This simple model can then

be optimised using expectation maximization (EM) algorithm to

compensate for missing data to try various word alignments against

one another and improving the model by allowing it to learn from

itself as the EM algorithm approaches convergence[12]. Whilst

further improvements to this model have ben suggested, and result

in more powerful word-based statistical machine translation, this

method pales in comparison to phrase-based statistical machine

translation.

Phrase-Level Alignments and Phrase-Based SMT

Phrase based SMT makes use of phrases as the basic translation,

thus alignments are done at a phrase level as opposed to at a word

level. A phrase is sequence of words with consistent word align-

ment. This means for corresponding phrases there are no word

alignments that fall outside of the sequences. This is referred to as

being consistent with word alignment [12]. This method decom-

poses the translation model as follows:

𝑝
(
𝑇 𝐼1 |𝑆𝐼1

)
=

𝐼∏
𝑖=1

𝜙
(
𝑇𝑖 |𝑆𝑖

)
𝑑
(
𝑎𝑖 − 𝑏𝑖−1

)
(9)

With the 𝜙
(
𝑇𝑖 |𝑆𝑖

)
probability distribution modelling the phrase

translation. 𝑑
(
𝑎𝑖 − 𝑏𝑖−1

)
models the reordering of the target sen-

tences using a distance-based reordering model that defines the

differences in start position for related phrases within a source-

targes sentence pair [12, 16]. The translation process in this case
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begins by splitting the sentence into phrase, translating each phrase

and thereafter permuting these phrases into an order consistent

with the target language. [12, 15, 16]. Extracted phrase pairs are

stored in a phrase translation table and the translation probability

of phrase pair 𝜙
(
𝑇𝑖 |𝑆𝑖

)
is estimated using the relative frequency:

𝜙
(
𝑇 |𝑆

)
=

𝑐𝑜𝑢𝑛𝑡
(
𝑆,𝑇

)∑̄
𝑇𝑖

𝑐𝑜𝑢𝑛𝑡
(
𝑆,𝑇𝑖

) (10)

which allows for one phrase to be matched with multiple phrases

in a sentence pair.

The advantages of this phase-based statistical machine learning ap-

proach over word-based SMT are that phrase based SMT allows for

many-many-many alignments of words, overcoming issues around

vocabulary length differences. Additionally, the use of phrases com-

municates context for words better than the word-based method

and thismethod potentially allows for the learning of longer phrases

given a large corpora. [12, 15]. However, this method is a memory

intensive process.

5.3 SMT for low resource and Nguni languages
Whilst the clearest method for improving SMT for low resource lan-

guages is to increase the available corpora for these languages. An

alternative method investigated by researchers is the use of pre- and

post-processing rules to the machine translation process, which was

found to increase BLEU and NIST scores for the Setswana, Sesotho

and Arabic [7, 8, 18]. Another method suggests the use of linguistic

modules in conjunction with SMT to improve performance[12]. As

with NMT, another suggested approach makes use of a shared high

resource pivot language. However, as in the case for NMT, this

approach suffers from increased probability of errors arising from

multiple translations, whilst also being dependent on the existence

of a large parallel corpora between the pivot language and both the

source and target language [12].

6 Conclusions
Machine translation in the low resource setting faces many chal-

lenges. These challenges are excerbated, in the case of the Nguni lan-

guages group, by themorphologically rich nature of these languages

and the stark differences existing between them and more highly

resourced European languages such as English. However, methods

to overcome this challenge such as pre- and post-processing inputs

or outputs using syntax rules, creating hybrid machine translation

models have been suggested and have shown some promise.

Whilst neural machine translation, and transformers in particular,

have led to great advancements in machine translation for high

resource languages, where there is limited parallel corpora, this

method’s performance is significantly inferior to that of phrase-

based SMT. This suggests that whilst NMT is the current state-of-

the-art, SMT may still provide particular benefits and merit more

research attention in the low resource setting.

Methods for improving NMT in the low resource setting are seeing

more attention from researchers. This has led to the development

of universal NMT models aimed at exploiting language similarity,

and related neural network based models for creating synthetic par-

allel corpora. These methods have been further bolstered by tactics

suggesting the use of pivot languages in the translation process.

Thus, it is clear that machine translation for low resource languages

warrants further exploration as a sub-field of machine translation.
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